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Abstract. Suppose there are n users and m items, and the preference of each user
for the items is revealed only upon probing, which takes time and is therefore costly.
How can we quickly discover all the frequent items that are favored individually by
at least a given number of users? This new problem not only has strong connections
with several well-known problems, such as the frequent item mining problem, it also
finds applications in fields such as sponsored search and marketing surveys. Unlike
traditional frequent item mining, however, our problem assumes no prior knowledge of
users’ preferences, and thus obtaining the support of an item becomes costly. Although
our problem can be settled naively by probing the preferences of all n users, the num-
ber of users is typically enormous, and each probing itself can also incur a prohibitive
cost. We present a sampling algorithm that drastically reduces the number of users
needed to probe toO(logm)—regardless of the number of users—as long as slight in-
accuracy in the output is permitted. For reasonably sized input, our algorithm needs to
probe only 0.5% of the users, whereas the naive approach needs to probe all of them.

Keywords: frequent item mining, random sampling

1 Introduction

We propose a new data mining problem called HIDDEN FREQUENT ITEM MINING: Sup-
pose we have a set of users U and a set of items T , and that the preference of each user for
the items is revealed only upon probing, which takes time and is therefore costly. Our aim
is to quickly discover all the frequent items that are favored (i.e., the best choice) individually
by at least a predefined number of users. This problem finds applications in areas such as
sponsored search and marketing surveys.
Connections with Existing Problems. Our problem has strong connections with several
well-recognized problems, including frequent item mining [5,12,13,20], heavy hitter finding
[7,8,17], and estimation of population proportion problem in survey sampling [21,22]. As will
be clear in Section 3, although our problem resembles the frequent item mining problem, one
crucial difference sets it apart from its counterpart: in our problem, users’ preferences are un-
known in advance and therefore obtaining them is costly. In contrast, our counterpart assumes
that the items purchased in each transaction (which may be viewed as the preferences of a user
in our problem) are already known. We will also see that existing problems, such as heavy
hitter finding, can be adapted to tackle a special case of our problem. Unfortunately, such an
adaption results in an excessively high cost, thus rendering it impractical. Similarly, the esti-
mation of population proportion problem in survey sampling can be employed to tackle a spe-
cial case of our problem. However, existing solutions to this problem make extra assumptions
in their results and are generally less efficient than our solution. Despite sharing similarities
with existing studies, our proposed problem—to the best of our knowledge—has neither been
proposed before, nor can it be efficiently solved by adapting solutions to existing problems.
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Item Users favoring the item Support

t1 u1,u2,u3 3
t2 u1,u4,u5,u6 4
t3 u5 1
t4 None 0

Table 1. Illustration. We have n = |U| = 6, m = |T | = 4, U = {u1,u2,u3,u4,u5,u6}, and T =
{t1,t2,t3,t4}. If p=1/3 so that pn=(1/3)·6=2, then both t1 and t2 are frequent items, since their
individual support is at least pn=2. However, neither t3 nor t4 is a frequent item, since their individual
support is below 2. In this example, both users u1 and u5 favor two items each, whereas other users
favor only one item each.

Proposed Problem. Given a set U of n users and a set T of m items, we say that a user
u∈U favors item t∈T if user u gives item t the highest score (or ranking), relative to other
items in T . We have at our disposal a favorite-probing query (or query for short) q, which
probes—and subsequently returns—the favorite items q(u) of a given user u∈U. For sim-
plicity, we sometimes say “probe a user” to mean that we issue a query to discover a user’s
favorite items. We assume that the preference of a user remains unknown until a favorite-
probing query is issued to probe about it. In addition, we measure the support of an item
by the number of users who favor the item. A user can favor multiple items simultaneously
by giving the highest score to multiple items.

Problem Aim. The aim of our problem is to discover all the items whose individual support
is at least pn, where p∈(0,1] is a parameter called support proportion and n is the number
of users. In other words, each of these items must be favored by at least p×100% of all users.
We call each of these items a frequent item (or sometimes popular item). Table 1 shows an
example of our problem.

Worst-Case Lower Bound & Remedy. Readers might raise this question: Is it always possi-
ble to solve the proposed problem without probing the preferences of all users? The answer is
no if an exact answer is always desired; for instance, if a particular item t is favored by pn−1
users, then we must probe all n users until we can confirm whether item t is frequent. This
is because leaving any user’s preference unaccounted for opens up the possibility that the
user favors item t. This in turn implies that every exact algorithm requires at least n queries in
the worst case—meaning that our problem has a lower bound of n query. This result naturally
motivates us to consider another question: would it be fatal to return an item whose support
is only marginally lower than the threshold pn? We believe the answer is no, as supported
by the applications to be discussed in Section 2.

Contributions. We are the first to propose the HIDDEN FREQUENT ITEM MINING problem,
which finds applications in a variety of areas. Our problem also bears a strong relationship to
numerous database problems. To efficiently solve our problem, we present the first sampling
algorithm that outperforms the naive approach and other competing methods both in theory
and in practice. Our analysis shows that to fulfil a strong probabilistic guarantee, our algo-
rithm needs to issue only s=max{8pε2 ln

m
δ ,

12(p−ε)
ε2 lnmδ }

1 queries, which equalsO(logm)
when all user parameters are fixed. One feature of s is its independence of n—suggesting
that the number of users to probe is irrelevant to the number of users itself. To further ex-
tend the usability, we also describe how our algorithm can handle the scenario where users’
preferences frequently require updates.

1 ε is the error parameter and δ is the confidence parameter. They are fully discussed in Section 4.1.
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2 Applications

Application 1 (Marketing Survey) It is often a top priority for various industries to con-
duct marketing surveys to identify their most popular products for promotional purposes. For
example, companies in the movie industry are eager to find out the popular movie actors to
further promote those actors’ movies. The same promotion strategy is also widely employed
in various other industries, such as the music and retail industries. Companies in the music
industry aim to identify the most popular musical artists to promote their albums, whereas
those in the retail industries are keen to discover which brands of a certain type of product
(e.g., red wine) are favored by customers.

Although such promotions could bring in substantial profits to the companies, the task
of identifying popular products could also be costly due to the huge number of customers
needed to probe. For example, the number of unique visitors to the well-known movie web-
site IMDb (http://www.imdb.com) exceeds 250 million each month [1]. In addition,
companies often have to offer financial incentives (e.g., coupons) to attract participation in
a survey. Thus, the costs of conducting surveys include both manpower and funding. As a re-
sult, minimizing the number of customers needed to probe should be the goal of a company.

We can model the above marketing survey as our proposed problem. If we aim to dis-
cover the popular movie actors, then each customer is modeled as a user u∈U and each actor
as an item t∈T . The aim is therefore to identify all the actors that are favored individually by
at least pn customers, while at the same time minimizing the total number of queries required.

Our problem can also discover sleeping beauties [11]—items that have potential to become
popular but have yet to. For instance, although IMDB already provides a list of popular
movies [2], the movies obtained from our problem may not appear in that list, because some
movies of popular movie actors may not be popular or well-known. However, such movies
possess high potential to go viral because they feature movie actors favored by current users.

Application 2 (Sponsored Search) Another major application of our problem is to help
search engine companies uncover popular ads. Given a set of possible search terms—some
of which may have never been entered by users before—and a set of ads, search engine com-
panies would want to identify the ads that receive the highest score (or Adrank, as it is called
in the literature) from many search terms. Those ads would therefore be shown frequently to
users when they type in keywords appearing in the search term set. To model this application
as our proposed problem, we let U be the set of search terms and T be the set of ads. The
aim is therefore to identify a subsetR of ads such that each ad inR receives the highest score
from at least pn search terms. At the same time, however, we want to keep the number of
score calculations to a minimum. It is worth noting that set R changes over time because
any updates of advertisers’ bid price for their ads could affectR. To tackle this problem, we
will propose a fast update procedure in Section 5.4.

Discovering popular ads can benefit both search engine companies and advertisers. On the
companies’ side, they may want to raise the price that they charge for popular ads to further
increase their revenue. On the advertisers’ side, search engine companies can now inform the
advertisers concerned that their ads are frequently shown to prospective customers. Given this
assurance, those advertisers would more likely keep advertising in the search engines. This
information also serves as a valuable indication to the advertisers that their current settings
of bid prices and campaign budgets are reasonable. In fact, it is a well-known issue in the
sponsored search community that advertisers often struggle to find out whether their current
setting is effective in attracting users [6,24]. Therefore, our problem can alleviate this issue.

Application 3 (Crowdsourcing) Our problem can also help crowdsourcing platforms dis-
cover the most popular task types among their users. A crowdsourcing platform allows task
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requesters to put tasks of various types (e.g., image tagging and audio transcription) onto
the website and allows workers to work on the tasks offered by the requesters [10]. There
are several well-established crowdsourcing platforms for both task requesters and workers,
such as Amazon Mechanical Turk (AMT) (http://www.mturk.com/).

Suppose that a new worker comes to a crowdsourcing platform to look for tasks to work
on. However, since the platform does not possess any personal information about the new
worker, what type of task can the website recommend to him? A natural step for the website
to take is to recommend a set of popular task types that are the favorites of its current workers
to the new visitor. In order to identify this set, we can model the scenario as our problem, with
the user set U representing the current workers and the item set T the task types. Our goal is
therefore to discover the task types that are favored by many workers. As with Application 1,
because a query requires both manpower and financial incentives, a crowdsourcing company
should aim to identify the set of popular task types by probing as few workers as possible.

3 Related Work

3.1 Frequent Item Mining

The frequent item mining problem [5,12,13] is related to our problem and can be stated as
follows: Given a set of items and a set of transactions—each of which is a subset of the set
of items—we identify all the itemsets, which are subsets of the item set, such that each of
the itemsets appears in at least a given number of the transactions.

For the sake of comparison, we can view the favorite items of a particular user in our
problem as a transaction in the frequent item mining problem. There are several crucial dif-
ferences between the two problems. (1) In our problem, because a user in fact does not make
a “transaction” (i.e., the favorite items), it makes sense to assume that the “transaction” is
hidden. Therefore, the favorite items of a user remain unknown until we issue a favorite-prob-
ing query to identify them. In the frequent item mining problem, by contrast, a transaction is
indeed made by a customer and thus it makes sense instead to assume that it is known. Thus,
there is no need to issue a favorite-probing query to find the “favorite items” of a user in the
frequent item mining problem. In short, while our counterpart assumes that user preferences
are known, our problem does not. (2) In our problem, a transaction represents the favorite
items of a user. However, in the frequent item mining problem, a transaction generally does
not correspond to the favorite items of a user, because, for instance, the items in a transaction
might be bought for other people.

3.2 Heavy Hitter Finding

The heavy hitter finding problem [7,8] is similar to the frequent item mining problem, in that
a heavy hitter corresponds to a frequent item in frequent item mining. The difference is that
in heavy hitter finding, the transactions come as a data stream, whereas in traditional frequent
item mining, the transactions are fixed and remain constant throughout. The heavy hitter
finding problem also assumes that the items in each transaction are known and is therefore
different from our problem.

3.3 Survey Sampling

Our problem bears similarities to problems in survey sampling. A particularly relevant one
is the estimation of population proportion problem [21,22]. This problem can be stated as fol-
lows: given a set of user and a set of categories (or items in the language of our problem), and
each user belongs to exactly one category, the aim is to estimate the proportion of users be-
longing to each category. There are two major differences that distinguish our problem from
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the problem in survey sampling. (1) In our problem, a user is allowed to favor multiple items,
whereas under the setting of the estimation of population proportion problem, each user can
favor only one item. Therefore, our problem is far more general than its counterpart. (2) In
the estimation of population proportion literature, results are commonly derived based on the
following two assumptions [21,22]: (1) the data is normally distributed, or at least the normal
approximation can be applied to the data. (2) The finite population correction factor can be ig-
nored. In this paper, we do not make either of these assumptions. Despite the differences above,
we compare the performance of the algorithm proposed in [21,22] with ours in Section 5.1.

4 Problem Definition

Let U and T be two given sets, where U is the user set containing n= |U| users and T the
item set containingm= |T | items. Each user u∈U is associated with a unique score function
that takes as input the item set T and returns as output the item(s) t∗∈T that receives the high-
est score (or highest ranking) from user u, relative to other items in T . We say that a user u
favors (or prefers/endorses) the item t∗∈T if and only if user u gives item t the highest score.

We have at our disposal a favorite-probing query q that takes as input a user u∈U and
returns as output the favorite item(s) q(u)∈T of that user. We measure the support of an
item t∈T , denoted by support(t), by the number of users who favor that item. We say that
an item t∈T is frequent (or sometimes popular) if support(t)≥pn, where p∈(0,1] is a pa-
rameter called the support proportion.
Aim. Given the user set U and item set T , the HIDDEN FREQUENT ITEM MINING problem
is to find a subset R⊆T of the item set such that R contains all the frequent items and no
items that are not frequent. Formally,R={t∈T |support(t)≥pn}.

4.1 ε-approximation

We present a relaxed version of the HIDDEN FREQUENT ITEM MINING problem. We call
it the ε-approximation of the HIDDEN FREQUENT ITEM MINING problem. We first clas-
sify items into different types according to their support. Table 2 provides a summary of
the classification.

Definition 1 (Classification of items). Let p,ε∈ (0,1] be two parameters. We say that an
item t∈T is frequent if support(t)≥pn; we say that t is potentially-frequent if (p−ε)n≤
support(t)<pn. Otherwise, we say that t is infrequent.

Problem Formulation. An algorithm for the ε-approximation of the HIDDEN FREQUENT
ITEM MINING problem accepts three user-specified parameters: (i) support proportion
p∈ (0,1], (ii) error parameter ε∈ (0,1] such that ε<p, and (iii) failure parameter δ∈ (0,1].
Given these parameters, the algorithm provides the following performance guarantee.

Definition 2 (ε-approximation guarantee). An algorithm is said to achieve the ε-
approximation guarantee (or guarantee for short) for the HIDDEN FREQUENT ITEM MIN-
ING problem if, with probability at least 1−δ, the algorithm satisfies the following properties
simultaneously:

P1 All frequent items (i.e., items whose individual support is at least pn) in item set T are re-
turned. In other words, the algorithm will produce no false negatives (i.e., recall=100%).

P2 No infrequent items (i.e., items whose individual support is less than (p−ε)n) in item set
T are returned. In other words, the algorithm will not return an item that has a support
lower than the minimum tolerable value.
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Scenario Classification (Def. 1) Decision (Def. 2)

support(t)≥pn t is a frequent item Return t
(p−ε)n≤support(t)<pn t is a potentially-frequent item May or may not return t (i.e., incon-

clusive)
support(t)<(p−ε)n t is an infrequent item Do not return t

Table 2. Summary of Definitions 1 and 2.

Remark 1 (Treatment of potentially-frequent items). Notice that potentially-frequent items
may or may not be returned. If such an item happens to be returned, then our algorithm is
said to have returned a false positive—the only scenario in which our algorithm errs. Still, all
such false positives possess a desirable property that their support is fairly high: they are only
marginally lower than the threshold value sought by the user. In most cases, therefore, returning
such a high-support false positive should not be fatal and should be tolerable to the user. As we
see in Section 5.3, our proposed algorithm also possesses another desirable property that for
every potentially-frequent item, the lower its support, the lower the chance of it being returned.

Example 1. Suppose that n=105,m=103,p=10%,ε=1%,δ=1%. Then, with probability
at least 1−δ=99%, an algorithm that achieves the ε-approximation guarantee returns all
items with an individual support at least pn=0.1·105=10,000 (Property P1). Moreover,
the algorithm does not return any items with a support less than (p−ε)n=(0.1−0.01)105=
9,000 (Property P2). This leaves those items with a support between 9,000 and 10,000; these
items may or may not be returned (Remark 1).

5 Algorithm

Notation: discover(t). For every item t, we denote by discover(t) the support that is discov-
ered by our algorithm for item t. This is different from support(t), which means the true
support of item t.

5.1 Support-Sampling (SS)

We propose a fast algorithm that provides the ε-approximation guarantee. Our algorithm,
termed SUPPORT-SAMPLING (SS), works as follows: It first randomly selects a user, and then
it issues a favorite-probing query to identify the user’s favorite item(s). It then increments the
discovered support of the item(s) accordingly. Our algorithm will repeat the above process for
s=max{8pε2 ln

m
δ ,

12(p−ε)
ε2 lnmδ } times. In other words, it in total selects (without replacement)

s users and finds their respective favorite item(s). After sampling all these s users, SS returns all
items whose discovered support is at least (p−ε/2)s, along with the probability (=1−δ if not
early terminated) of successfully achieving the ε-approximation guarantee. Notice that the in-
cremental nature of SS makes early termination with a performance guarantee possible. Specif-
ically, at any point of execution, the user can ask SS to return a set of items that (potentially)
satisfy the ε-approximation guarantee, together with the probability of success. We call our al-
gorithm support sampling because each sample (i.e., a selected user) can be regarded as a piece
of supporting evidence that an item is frequent. The pseudocode of SS is given in Algorithm 1.

Comparison with survey sampling Recall from Section 3.3 that our proposed problem
shares similarities with the estimation of population proportion problem in survey sam-
pling [21,22]. In particular, the method proposed in [21,22] can be adapted to solve a special
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Algorithm 1 SUPPORT-SAMPLING (SS)
Input: U,T ,p,ε,δ
Output: A setR of items, the probability of success.
1: s=max

{
8p
ε2
lnm

δ
, 12(p−ε)

ε2
lnm

δ

}
//Sample size

2: for each item t∈T do
3: discover(t)=0 //Initialization
4: for i=1 to s do
5: select a user u uniformly at random and independently from U
6: issue a favorite-probing query q(u) to identify the favorite item(s) t∗ of user u
7: increment (all) discover(t∗)
8: if user chooses early termination then

//See Lemma 3 for derivation of failure probability
9: failure=max

{
mexp

(
− iε

2

8p

)
,mexp

(
− iε2

12(p−ε)

)}
//R is the set of returned items

10: R={t∈T |discover(t)≥(p−ε/2)i}
11: return (R, 1−failure) //Early termination
12: R={t∈T |discover(t)≥(p−ε/2)s}
13: return (R,1−δ)

case of our problem—when each user favors exactly one item. However, the method be-
comes invalid if any user favors more than one item [21,22]. The method requires a sample
size of max1≤i≤mz

2(1/i)(1−1/i)/ε2, where z is the upper (δ/2i)×100th percentile of
the standard normal distribution. This sample size is significantly larger than ours when the
error tolerance ε is small, which is often the case in practice. For example, our sample size
is only half that of our counterpart when p=1%,ε=0.1%,δ=1%,m=1000 and for any
arbitrary value of n (because both sample sizes are independent of n).

The method in [21,22] has several disadvantages. As detailed in Section 3.3, their results as-
sume that data is normally distributed and the finite population correction factor can be ignored.
Our derivation, however, makes no such assumptions. Furthermore, to evaluate their sample
size, we need to solve a maximization problem, which is inconvenient in practice. In contrast,
our derivation gives rise to a simple closed-form formula that can be readily evaluated.

5.2 Analysis of Support-Sampling

We show that SS provides the ε-approximation guarantee. In the proofs, we allow each user
to favor multiple items. Proofs are presented in the Appendix.
Proof strategy. We first consider individually the probability that SS fails to achieve Prop-
erties P1 and P2. We then use the union bound to find an upper bound for the probability that
our algorithm fails, whereby deriving the required sample size to achieve the ε-approximation
guarantee. We start by proving three lemmas that are useful in showing the ε-approximation
guarantee of SS. All proofs can be found in the Appendix.

Lemma 1. SUPPORT-SAMPLING fails to achieve Property P1 of ε-approximation guarantee

with probability at most ke−
sε2

8p , where k is the number of frequent items.

Lemma 2. SUPPORT-SAMPLING fails to achieve Property P2 of ε-approximation guarantee

with probability at most (m−k)e−
sε2

12(p−ε) .

Lemma 3. SUPPORT-SAMPLING fails to achieve the ε-approximation guarantee with prob-

ability at most max{me−
sε2

8p ,me−
sε2

12(p−ε)}.
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Theorem 1. SUPPORT-SAMPLING achieves the ε-approximation guarantee by sampling
s users, where s=max{8pε2 ln

m
δ ,

12(p−ε)
ε2 lnmδ }.

Proof. See Appendix.

Remark 2. Theorem 1 implies that if all parameters are fixed, the sample size s becomes
O(logm).

Example 2 (Performance Comparison). Table 3 shows the number of queries needed by SS
under a variety of input settings. SS consistently requires only a tiny number of queries—
typically less than 0.5% of that needed by the naive one.

Input Sample Size Ratio
p ε δ n m s s/n

.1 .02 .05 107 107 4.6·104 0.46%

.2 .04 .05 107 107 2.3·104 0.23%

.2 .06 .05 107 107 0.9·104 0.09%

.1 .02 .01 107 107 5.0·104 0.50%

.1 .02 .05 108 107 4.6·104 0.05%

.1 .02 .05 109 107 4.6·104 0.005%

.1 .02 .05 107 108 5.1·104 0.51%

.1 .02 .05 107 109 5.7·104 0.57%

Table 3. Sample size needed by SS under various input settings. Input in the first row is the default;
numbers in bold are values different from the default.

5.3 Analysis of potentially-frequent items

In this section, we give further insight into how often SS returns potentially-frequent items—
those with a support marginally lower than pn. Our result shows that if a potentially-frequent
item t has a support between (p−ε/2)n and pn, then it is likely that it will be returned. On
the contrary, if its support is between (p−ε)n and (p−ε/2)n, then it is unlikely that it will
be returned. More generally, our results signify that for every potentially-frequent item, the
lower its support, the less likely our algorithm will return it. Therefore, SS possesses another
desirable property that if a potentially-frequent item happens to be returned, then the chance
is higher that it has a support close to pn rather than to (p−ε)n. Our discussion is supported
by the results below. Proofs are presented in the Appendix.

Lemma 4. Let random variables X and Y be the discovered support of items th and t`
respectively, such that X ∼ B(s,ph) and Y ∼ B(s,p`), where ph = support(th)/n and
p`=support(t`)/n. If support(t`)≤support(th) , or equivalently p`≤ph, then

Pr[Y ≥c]≤Pr[X≥c], where c=(p−ε/2)s.

Lemma 4 suggests that as the support of a potentially-frequent item decreases, so does the
chance of SS returning it.

We now derive tight bounds for the probability that a potentially-frequent item is returned.

Proposition 1. Let the support of a given potentially-frequent item t be pn− r, where
εn/2<r≤εn. The probability that item t is returned by SS is at most e−2s(

r
n−

ε
2)

2

.
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𝑛𝑝𝑛
(Return 𝑡)

(𝑝 − 𝜀)𝑛
(Unlikely to return 𝑡)

(𝑝 − 𝜀/2)𝑛

support(𝑡)

Unlikely to return 𝑡 Likely to return 𝑡 Return 𝑡Not return 𝑡

0

≈ 50% chance to return 𝑡

Fig. 1. Decisions by SUPPORT-SAMPLING for any item t.

Example 3. It is easy to see that the bound decreases exponentially as r increases from εn/2
to εn. To examine how rapidly the bound falls, we adopt the default input in Table 3. Now,
if r= εn

1.5 , then the probability that an item with a support =pn− εn
1.5=(p− ε

1.5)n is returned
is at most 1.6×10−3. As r increases from εn

1.5 to εn, the probability decreases exponentially
from 1.6×10−3 to 6.3×10−26.

Our next result shows that if an item has support between (p−ε/2)n and pn, it is likely
to be returned.

Proposition 2. Let the support of a given potentially-frequent item t be pn− r, where
0<r<εn/2. The probability that item t is returned by SS is at least 1−e−2s(

r
n−

ε
2)

2

.

Special Case: r=εn/2.A glance at Propositions 1 and 2 suggests that both are undefined
for r=εn/2. The reason is that for an item twith support(t)=(p−ε/2)n, its expected discov-
ered support equals (p−ε/2)s, and our algorithm returns item t only if its discovered support
is at least (p−ε/2)s—which is exactly the expected discovered support. Unfortunately, in gen-
eral, a tail inequality—including Hoeffding’s inequalities—is only capable of bounding the
probability that the value assumed by a random variable exceeds or falls behind the expected
value. Thus, we cannot use a tail inequality to bound the probability that item t is returned.

Even so, we argue that the probability of returning item t is approximately 0.5 by ap-
pealing to the Central Limit Theorem [23]. Notice that the discovered support of item t
follows the binomial distribution B(s,p−ε/2). Since s is typically larger than 30, which
is a rule of thumb for applying the Center Limit Theorem [23], the Central Limit Theo-
rem tells us that the binomial distribution is approximately a normal distribution with mean
µ=(p−ε/2)s [23]. Now, because the probability for a normally distributed random variable
to be at least as large as its mean is 0.5, it follows that the probability of item t being returned
is approximately 0.5. Figure 1 summarizes our discussion in this section.

5.4 Updates of users’ preferences

In some applications, a user’s preference can be ever-changing. In the sponsored search ap-
plication, for example, the score that a search term assigns to an ad will change accordingly
whenever the advertiser concerned adjusts the bid price for that ad. This therefore motivates
us to devise a fast update method. Fortunately, SUPPORT-SAMPLING is robust to updates
of users’ preferences. In fact, not only can we reuse the results based on the previously sam-
pled users, we also need not sample any new users to fulfill the ε-approximation guarantee.
Specifically, for each user u whose preference needs to be updated, we consider two cases.

Case 1: u was sampled. We issue an additional query to identify the new favorite item(s)
t of user u and increment discovered(t). we also decrement the discovered support of the
item(s) that was u’s favorite.

Case 2: u was not sampled. We do not need to issue any additional query, nor do we need
to update the result of our algorithm.
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Input Values

n 1m, 2m, 4m, 8m, 10m
m 40k, 80k, 160k, 320k, 640k
p 0.05,0.10,0.15,0.20,0.25,0.30
ε 0.1p,0.15p,0.2p,0.25p,0.3p

Table 4. Input values (defaults shown in bold).

Correctness. After the above procedure, SS still maintains the ε-approximation guarantee.
For Case 1, the score function update of a sampled user u will not affect the selection prob-
ability of any user, because the selection probability depends only on the number of users,
rather than on the users’ score functions. For Case 2, we note that user u’s preference will
not be considered with or without a score function update, because (1) u was not sampled
and (2) the update will not affect the selection probability, as in Case 1.

Example 4. Suppose we update the preferences of k (1≤k≤n) users, each of whom is ran-
domly chosen without replacement. While the naive one needs to issue exactly k queries,
our algorithm needs to issue a query only if the user was sampled previously. So, the number
of queries needed by our algorithm for the update follows a hypergeometric distribution [23].
Thus, the expected number of queries needed is k×(s/n). Using the default setting shown
in Table 3, we have s/n≈0.46%. Therefore, the expected number of queries is just 0.46%
of the number required by the naive algorithm.

6 Experiments

We experimentally evaluate our proposed algorithms using both real and synthetic datasets.
Setup. All experiments were run on a machine with a 3.4GHz CPU and 32 GB memory.
The OS is Linux (CentOS 6). All algorithms were coded in C++ and compiled using g++.

We compare our proposed algorithms, SUPPORT-SAMPLING (SS), with the Naive So-
lution (NS) as well as three adapted existing algorithms: Survey Sampling [21,22] (Section
3.3), Top-k query [15,19] (a well-known problem in the database literature) and Sticky Sam-
pling [17], which is a classic algorithm for the heavy hitter problem (Section 3.2). The adap-
tion of Top-k query and Sticky Sampling is made possible by requiring the algorithms to
issue a favorite-probing query for each user to identify the user’s favorite items as a first step.
In particular, because Sticky Sampling is a streaming algorithm, we implement it in such
a way that a new user arrives only after we finish processing the user immediately preceding
him/her, so as to allow enough time for it to discover the favorite items of each user. The
performance metrics are the execution time and accuracy. For randomized algorithms such
as SS and Sticky Sampling, we ran them 100 times for each experiment setting to report
its average execution time and average accuracy. The default values of the parameters p and
ε are 10% and 1% respectively.
Real Datasets. We use two real datasets to simulate the marketing survey application (Appli-
cation 1): Yahoo! musical artist ratings dataset [4] (Yahoo! dataset) and Netflix movie ratings
dataset [3] (Netflix dataset). Yahoo! dataset contains over 100 million user ratings of 98,211
musical artists (m=98,211) by 1,948,882 users (n=1,948,882), whereas Netflix dataset
consists of more than 100 million users ratings of 17,770 movies (m=17,770) by 480,189
users (n=480,189). In real datasets, a query q(u) on user u corresponds to finding the artists
(or movies for the Netflix dataset) that receive the highest rating from user u, relative to other
artists/movies. We assume those artists/movies that did not receive a rating from user u were
not favored by u. We must also emphasize that although the ratings given by each user are
known before we issue a query, in practice this information is unknown beforehand. To ac-
count for the need to obtain user ratings in practice, we multiply the execution time of each
algorithm by 10,000.
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(a) Varying p (Yahoo!) (b) Varying ε (Yahoo!) (c) Varying p (Netflix) (d) Varying ε (Netflix)

Fig. 2. Performance of SS versus other competitors on real datasets.
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Fig. 3. Statistics of SS on real datasets.
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Fig. 4. SS vs. NS on updating users’ preferences on real datasets.

Synthetic Datasets. We use synthetic datasets to simulate the sponsor search application
(Application 2). Following related studies (e.g., [18,25]), we view each item t∈T as a point
in a space, and we set the dimension (i.e., number of attributes) d to 5. To exploit the gen-
erality of our problem, each user is randomly associated with either a linear

∑d
i=1wixi or

quadratic
∑d
i=1wix

2
i score function, where wi is the attribute weight of the score function

for the ith attribute of an item, and xi is the ith attribute value of an item. Note that although
linear score functions are often employed in the literature (e.g., [18,25]) for its simplicity,
non-linear score functions, such as quadratic ones used in our experiments, can better model
users’ preferences in many cases [16]. We independently generate each attribute value of
an item from the uniform distribution with support (0,1), and so is each attribute weight wi
of a user’s score function.

In synthetic datasets, a query q(u) on user u corresponds to computing
argmaxt∈T score(u,t), where score(u,t) is the score that user u gives to item t. Experiments
on synthetic datasets were conducted using various input settings shown in Table 4. The set-
tings are similar to existing studies (e.g., [18,25]), except that dataset sizes are proportionally
increased. As in [25], we set m (number of items) to be smaller than n (number of users).
This is because in practice—and also in our real datasets—the item set size is often substan-
tially smaller than the user set size. In all experiments, the failure parameter δ is set to 5%,
due to its negligible impact on the execution time.

6.1 Results on Real Datasets

We compare the execution time of various algorithms and then discuss the accuracy of SS
on real datasets.
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(a) Time as n varies (b) Time asm varies (c) Time as p varies (d) Time as ε varies

Fig. 5. Performance of SS versus other competitors on synthetic datasets.

Comparison on efficiency. As Figure 2 shows, SS consistently requires far less time than
NS and other competitors, and their performance gap widens as p or ε increases. In particular,
when both p and ε are at their default values, SS takes only about 8% of the time by NS
to process the Yahoo! dataset, and about 20% of the time by the survey method, which is
the second best. Notice that Top-k and Sticky Sampling are even more inefficient than NS
because in order to adopt them, it is necessary to first issue a favorite-probing query for each
user to identify the user’s favorite items, which is exactly the strategy used by NS.

Accuracy of SS. We start by introducing some terms. We call a potentially-frequent item t a
high potential item if (p−ε/2)n≤support(t)<pn; otherwise, we call it a low potential item.

Figure 3 shows the statistics of SS on real datasets. The Failure rate in Figures 3(a)
and (b) refers to the proportion of times SS fails to achieve the ε-approximation guarantee.
Observe that although the failure parameter δ is set to 5%, SS never failed to achieve the
ε-approximation guarantee in all the experiments, and thus recall is always 100%. This is
because our theoretical analysis for SS is conservative, and so in practice the failure proba-
bility is generally much lower than the failure parameter δ. The accuracy of SS is consistently
higher than 99.7% in all experiments. The very slight inaccuracy stems from the fact that
some potentially-frequent items are returned. However, notice that those returned potentially-
frequent items are often high potential items, rather than low potential ones. This also verifies
our findings in Section 5.3: high potential items are likely to be returned, whereas low poten-
tial items are unlikely to. Figures 3(c) and (d) show the fraction of times over the 100 runs that
each potentially-frequent item is returned, when parameters p and ε are at their default values.

Comparison on updating users’ preferences We compare the performance of SS and NS
on updating users’ preferences. Recall from Section 5.4 that SS can handle updates of users’
preferences efficiently, whereas NS needs to issue an additional query for each user whose
preference requires an update. Figures 4(a) and (b) show that for the Yahoo! dataset, both the
execution time and number of queries needed by NS for updating users’ preferences grow far
more rapidly than SS. Similar trends can also be observed from the Netflix dataset (Figures
4(c) and (d)).

6.2 Results on Synthetic Datasets

We compare SS with other algorithms on synthetic datasets with sizes specified in Table 4.
Scalability with n. The execution time of NS, Top-k query and Sticky Sampling grow lin-
early with n (Figures 5(a)). The linear relationship makes them impractically slow when
n is large. For instance, NS requires more than 6 hours to complete when n reaches 10M.
In stark contrast to its competitors, SS is insensitive to the increase of n, consistently taking
less than 4 minutes to execute regardless of the size of n.
Scalability withm. Figure 5(b) shows that the execution time of our competitors grows lin-
early withm. For example, NS takes almost 6.2 hours to process 640K items. By contrast,
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the execution time taken by SS grow extremely slowly withm, and it requires less than 8 min-
utes to process 640K items. The efficiency of SS can be explained by referring to the sample
size formula s=max{8pε2 ln

m
δ ,

12(p−ε)
ε2 lnmδ }, where s grows only logarithmically withm.

Influence of support proportion p. As Figures 5(c) show, SS requires less time as p in-
creases. The cost of our competitors remain constant because of their independence of p.
Influence of error rate ε. Similar to the situation when p increases, the cost of SS falls as
ε increases (Figures 5(d)). In particular, SS requires only about 1.5% of the execution time
and queries by NS when ε=1%.

7 Conclusion

We proposed an interesting problem called HIDDEN FREQUENT ITEM MINING, which has
important applications in various fields.We devise a sampling algorithm that sacrifices slight
accuracy in exchange for substantial improvement in efficiency.
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References

1. About IMDb. http://www.imdb.com/pressroom/about/, 2019.
2. IMDb Charts. http://www.imdb.com/chart/top, 2019.
3. Netflix datasets. www.netflixprize.com, 2019.
4. Yahoo! datasets. https://webscope.sandbox.yahoo.com/, 2019.
5. R. Agrawal, R. Srikant, et al. Fast algorithms for mining association rules. In Proc. 20th int. conf.

very large data bases, VLDB, volume 1215, pages 487–499, 1994.
6. D. Chakrabarty, Y. Zhou, and R. Lukose. Budget constrained bidding in keyword auctions and

online knapsack problems. In WWW2007, Workshop on Sponsored Search Auctions, 2007.
7. G. Cormode and M. Hadjieleftheriou. Finding frequent items in data streams. Proceedings of

the VLDB Endowment, 1(2):1530–1541, 2008.
8. X. Dimitropoulos, P. Hurley, and A. Kind. Probabilistic lossy counting: an efficient algorithm

for finding heavy hitters. ACM SIGCOMM Computer Communication Review, 38(1):5–5, 2008.
9. D. P. Dubhashi and A. Panconesi. Concentration of measure for the analysis of randomized al-

gorithms. Cambridge University Press, 2009.
10. M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin. Crowddb: answering queries

with crowdsourcing. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of data, pages 61–72. ACM, 2011.

11. E. Garfield. Premature discovery or delayed recognition-why? Current Contents, (21):5–10, 1980.
12. J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques. Elsevier, 2011.
13. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In ACM Sigmod

Record, volume 29, pages 1–12. ACM, 2000.
14. W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the

American statistical association, 58(301):13–30, 1963.
15. I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing techniques in

relational database systems. ACM Computing Surveys (CSUR), 40(4):11, 2008.
16. T. Kessler Faulkner, W. Brackenbury, and A. Lall. k-regret queries with nonlinear utilities. Pro-

ceedings of the VLDB Endowment, 8(13):2098–2109, 2015.
17. G. S. Manku and R. Motwani. Approximate frequency counts over data streams. In Proceedings of

the 28th international conference on Very Large Data Bases, pages 346–357. VLDB Endowment,
2002.

18. P. Peng and R. C.-W. Wong. k-hit query: Top-k query with probabilistic utility function. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management of Data, 2015.

19. A. Shanbhag, H. Pirk, and S. Madden. Efficient top-k query processing on massively parallel
hardware. In Proceedings of the 2018 International Conference on Management of Data, pages
1557–1570. ACM, 2018.

http://www.imdb.com/pressroom/about/
http://www.imdb.com/chart/top
www.netflixprize.com
https://webscope.sandbox.yahoo.com/


14 WH Lin and CW Wong

20. S. K. Solanki and J. T. Patel. A survey on association rule mining. In 2015 Fifth International Con-
ference on Advanced Computing & Communication Technologies, pages 212–216. IEEE, 2015.

21. S. K. Thompson. Sample size for estimating multinomial proportions. The American Statistician,
41(1):42–46, 1987.

22. S. K. Thompson. Sampling. Wiley, 2012.
23. R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye. Probability and statistics for engineers and

scientists. Macmillan New York, 2011.
24. W. Zhang, Y. Zhang, B. Gao, Y. Yu, X. Yuan, and T.-Y. Liu. Joint optimization of bid and budget

allocation in sponsored search. In Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 1177–1185. ACM, 2012.

25. Z. Zhang, C. Jin, and Q. Kang. Reverse k-ranks query. Proceedings of the VLDB Endowment, 2014.
A Appendix: Probabilistic Inequalities

We outline several probabilistic inequalities that will be employed in our proofs.

Proposition 3 (Chernoff’s bound [9] and Hoeffding’s inequality [14]). LetX1,X2,...,Xs
be independent Bernoulli variables and Pr[Xi=1]=p, where 0<p<1, for i=1,2,...,s. Let
X=

∑s
i=1Xi and E[X]=µ such that µ`≤µ≤µh, where µ`,µh∈R. Then, for any ε<1,

Pr[X≥(1+ε)µh]≤e
−µhε

2

3 , Pr[X≤(1−ε)µ`]≤e
−µ`ε

2

2 , (1)

Pr[X≥µ+ε]≤e−2ε2

s , Pr[X≤µ−ε]≤e−2ε2

s . (2)

B Appendix: Proofs

Proof (Lemma 1). LetX be the discovered support of a given frequent item t (i.e., an item
whose support is at least pn). For i=1,2,...,s, letXi be the indicator random variable such
that Xi=1 if the ith sampled user favors item t, and Xi=0 otherwise. We first note that
X=

∑s
i=1Xi. In addition, since our algorithm samples users independently and uniformly

at random, we have E[Xi]=Pr[Xi=1]≥ pn
n =p, for all i=1,2,...,s. So, we conclude that

E[X]=E[
∑s
i=1Xi]=

∑s
i=1E[Xi]≥ps.

Now, we bound the probability that item t is not returned. According to our algorithm,
this event occurs if and only if the discovered support of item t is less than (p−ε/2)s:

Pr
[
X<

(
p− ε

2

)
s
]
=Pr

[
X<

(
1− ε

2p

)
ps

]
≤e−

ps( ε2p)
2

2 =e−
sε2

8p .

The inequality above is established by Chernoff’s bound (Proposition 3). Now, without
loss of generality, suppose that there are k frequent items in the item set T , where 1≤k≤m is
unknown. As will be clear shortly, the value of k is irrelevant to the analysis of our algorithm.
By using the union bound (a.k.a Boole’s inequality), therefore, the probability that at least one

of the k frequent items is not returned by our algorithm is bounded above by ke−
sε2

8p . ut

Proof (Lemma 2). Now, let Y be the discovered support of a given infrequent item (i.e., an
item whose support is less than (p−ε)n). By using the same line of argument for random
variableX in Lemma 1, we can show that E[Y ]<(p−ε)s.

Now, we bound the probability that the given infrequent item is returned. By the design
of our algorithm, this event occurs if and only if the discovered support of that item is at
least (p−ε/2)s:

Pr
[
Y ≥

(
p− ε

2

)
s
]
=Pr

[
Y ≥

(
1+

ε

2(p−ε)

)
(p−ε)s

]
≤e−

(p−ε)s[ ε
2(p−ε) ]

2

3 =e−
sε2

12(p−ε) .
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The inequality is established by Chernoff’s bound (Proposition 3). Since there are k items
whose support is at least pn, it follows that there are at most m−k items whose support
is less than (p−ε)n (because there are m items). By the union bound, the probability that

our algorithm returns at least one of the infrequent items is at most (m−k)e−
sε2

12(p−ε) . ut

Proof (Lemma 3). From Lemma 1 and Lemma 2, we know that the probability that our
algorithm fails to achieve Property P1 (resp. Property P2) of the ε-approximation guarantee
is at most ke−

sε2

8p (resp. (m−k)e−
sε2

12(p−ε) ). By appealing to the union bound again, the
probability that our algorithm fails to achieve the ε-approximation guarantee is at most
ke−

sε2

8p +(m−k)e−
sε2

12(p−ε) .We simplify the expression to identify the sample size s:

e−
sε2

8p ≤e−
sε2

12(p−ε) ⇐⇒ 12(p−ε)≥8p⇐⇒ p≥3ε . (3)

Case 1: p<3ε. By referring to Equations (3), we know that e−
sε2

8p >e−
sε2

12(p−ε) . Hence

ke−
sε2

8p +(m−k)e−
sε2

12(p−ε) <ke−
sε2

8p +(m−k)e−
sε2

8p =me−
sε2

8p .

Case 2: p≥3ε. Again by Equations (3), we have

ke−
sε2

8p +(m−k)e−
sε2

12(p−ε) ≤ke−
sε2

12(p−ε) +(m−k)e−
sε2

12(p−ε) =me−
sε2

12(p−ε) .

Taking the maximum of both cases, we finish the proof. ut

Proof (Theorem 1). We use the result of Lemma 3.

Case 1: p<3ε. In this case, the probability that SUPPORT-SAMPLING fails is at most

me−
sε2

8p . By setting this quantity to δ and then solve for s, we have s= 8p
ε2 ln

m
δ .

Case 2: p≥3ε. Similarly, the probability that SUPPORT-SAMPLING fails in this case is at

mostme−
sε2

12(p−ε) . By setting this quantity to δ and then solve for s, we have s= 12(p−ε)
ε2 lnmδ .

Taking the maximum of both cases, we finish the proof. ut

Proof (Lemma 4). For i=1,2,...,s, let Xi and Zi be Bernouilli distributions with mean ph
and p`/ph, respectively. Let Yi :=XiZi so that Yi≤Xi with probability 1, and that Yi is a
Bernouilli distribution with mean p`. Now, notice thatX=

∑n
i=1Xi and Y =

∑n
i=1Yi. Also,

since Yi≤Xi, it follows that Y ≤X with probability 1. Therefore, the event Y ≥c implies
the eventX≥c. Consequently, we have Pr[Y ≥c]≤Pr[X≥c]. ut

Proof (Proposition 1). Let Y be the discovered support of a given potentially-frequent item t
with support(t)=pn−r, where εn/2<r≤εn. Then, using the same argument in Lemma 1,
we can show that E[Y ]=

(
pn−r
n

)
s=
(
p− r

n

)
s. Hence, the probability that item t is returned

by SUPPORT-SAMPLING is given by Pr
[
Y ≥

(
p− ε

2

)
s
]
= Pr

[
Y ≥

(
p− ε

2+
r
n−

r
n

)
s
]
=

Pr
[
Y ≥

(
p− r

n

)
s+
(
r
n−

ε
2

)
s
]
= Pr

[
Y ≥E[Y ]+

(
r
n−

ε
2

)
s
]
. Now, since r > εn

2 , it follows
that

(
r
n−

ε
2

)
s>0. Hence, we can apply Hoeffding’s inequality (Proposition 3) to bound the

equation: Pr
[
Y ≥E[Y ]+

(
r
n−

ε
2

)
s
]
≤e−

2( rn− ε
2)

2
s2

s =e−2s(
r
n−

ε
2)

2

. ut

Proof (Proposition 2). The proof is similar to that of Proposition 1 and is omitted due to the
space constraint. ut
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