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ABSTRACT
As data outsourcing becomes popular, oblivious algorithms have

raised extensive attentions. Their control flow and data access pat-

tern appear to be independent of the input data they compute on.

Oblivious algorithms, therefore, are especially suitable for secure

processing in outsourced environments. In this work, we focus on

oblivious shuffling algorithms that aim to shuffle encrypted data

blocks outsourced to a cloud server without disclosing the actual

permutation of blocks to the server. Existing oblivious shuffling

algorithms suffer from issues of heavy communication cost and

client computation cost for shuffling large-sized blocks because all

outsourced blocks must be downloaded to the client for shuffling or

peeling off extra encryption layers. To help eliminate this void, we

introduce the “repeatable oblivious shuffling” notation that avoids

moving blocks to the client and thus restricts the communication

and client computation costs to be independent of the block size.

For the first time, we present a concrete construction of repeatable

oblivious shuffling using additively homomorphic encryption. The

comprehensive evaluation of our construction shows its effective

usability in practice for shuffling large-sized blocks.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols;Man-
agement and querying of encrypted data.
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1 INTRODUCTION
In recent years, data outsourcing has increased in popularity due

to the great benefits available to users. It allows a third party cloud

server to take over complicated and expensive tasks of storing,

managing, and utilizing data for individual users called the client.

Cloud servers are widely considered as “semi-trusted” or “honest-

but-curious", in that they follow the protocol honestly but may pas-

sively attempt to learn protected information from all data observed

during the execution of the protocol. For this reason, outsourced

data are crucially encrypted by the client. However, encrypting

outsourced data is not sufficient for providing privacy. For example,

previous works [14, 15, 17, 26] show that disclosing the patterns of

data access may leak information about the contents of encrypted

data. This scenario provides motivations towards the study of oblivi-

ous algorithms, because each possible execution of these algorithms

involves a sequence of data accesses that do not depend on the input

values.

In this paper, we study oblivious algorithms for shuffling en-

crypted data on a server. We consider the scenario in which a client

has outsourced the encryption of n identically-sized data blocks.

At some later time, the client wants to obliviously shuffle these

encrypted blocks once in a while, according to some permutation.

An oblivious shuffle is an algorithm whose patterns of block move-

ments and computational operations do not leak any information

about the actual permutation to the server. The ability to obliviously

permute blocks of encrypted data is critical for many privacy-aware

outsourcing services. Here are some typical examples.

• Privacy-preserving data access: The sequence of accesses to
outsourced data (i.e. access patterns) can disclose sensitive user

information, such as access privilege, access frequency, and visit-

ing habits, etc. To hide access patterns, Oblivious RAM (ORAM)

[10] and other lightweight solutions [9, 19, 39] commonly de-

pend on oblivious shuffling to continually move outsourced data

around in the server’s storage in a fashion that disallows the

server to correlate the previous physical locations of the data

with their new locations.

• Privacy-preserving data integration and sharing: Deploy-
ing a federated repository of encrypted data on a cloud server

facilitates outsourcing multi-party computation (MPC) to the

cloud [16, 31] and sharing information among multiple owners

[4, 32, 35]. Identity privacy requires that no one can associate
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an intermediate value with an individual party/owner that con-

tributes to this value. For instance, the server may be eligible to

find themin ormax value in the federated dataset, but shouldn’t

know which party/owner provided it. This can be achieved by

starting the protocol by obliviously shuffling data [5].

• Privacy persevering computation: secure computation over

encrypted data using homomorphic encryption [1] enables the

users to outsource various large-scale computational tasks (i.e.

data analytics, data mining, machine learning) to a cloud. Many

of these tasks require to separate certain sub-samples from the

entire data (data filtering) or re-order the data for certain purposes

(data sorting). For example, to train a deep neural network, within

every epoch one often needs to sort the training data randomly

and then operate iteratively on small subsets of the sorted data

(mini-batch) at a time. When the data is encrypted due to privacy

concerns, the above operations must be also formed obliviously

because the exploitation of any side channels induced by disk,

network, and memory access patterns may leak a surprisingly

large amount of information [28]. Both oblivious filtering and

sorting can be reduced to oblivious shuffling [18, 28, 34].

• Cryptocurrency: the prevalent approach to improve anonymity

for Bitcoin users is the idea of hiding in a group [33, 40]. To be

specific, the users in the group exchange their coins with each

other to hide the relationship between the user and the coin

from an external observer. It can be supported by first sending

the same amount of coins from all users to a third-party mixing

server, then obliviously shuffling these coins in the mix server

and sending the permuted coins back to each of them.

1.1 Problem Formalization
Our reference scenario adopts the typical cloud model [36] includ-

ing a fully trusted client and a “honest-but-curious” server. The
client has limited computing resources (i.e. storage space and com-

putational power) but the server does not have such limitations.

At initialization, the client has an array of n data blocks, B =
(B1, · · · ,Bn ), each of sizem. The client encrypts each Bi to [Bi ], and
outsources encrypted blocks [B] = ([B1], · · · , [Bn ]) to the server.

Note that n is termed as the number of blocks involved in a shuffle,

not the total number of blocks in a data repository, thus can be

sufficiently small. The block sizem is measured by the number of

encryption units (a unit of data is a single plaintext to be encrypted)

for accommodating all data of a block. For example, assuming one

unit allows 1Kb data for encryption, a block containing 2Mb data

would have the block sizem = 2048, represented as a column vector

of length 2048 with one element per encryption unit.

As the key of “obliviousness”, the shuffling of [B] should prevent
the server from tracking any [Bi ] during the process, 1 ≤ i ≤ n.
This requirement can be formulated as below:

Definition 1 (Oblivious Shuffle (OS) [38]). A random shuffling of

n encrypted blocks [B] = ([B1], · · · , [Bn ]) is oblivious if the server
is unable to correlate any block before and after the shuffling. In

other words, each Bi is equally likely to be at any position after the

shuffling.

To prevent the server from tracking a shuffle, OS usually requires

that outsourced blocks [B] are encrypted with some semantically

(IND-CPA) secure encryption schemes and all blocks in [B] are re-
encrypted during the shuffling, so that the ciphertexts of the same

block become different and these ciphertexts are indistinguishable

to the server [27, 30, 38]. The performance of an OS algorithm can

be measured by communication cost, client computation cost, and
server computation cost. Due to network bandwidth bottleneck and

client resource limitation in the outsourcing scenario, minimizing

communication cost and client computation cost is the focus of

research interest [27, 30, 38].

Motivating Scenarios. In this paper, we focus on the applica-

tion scenarios using OS for shuffling a small number of large-sized

blocks, i.e.m ≫ n, inspired by the following observations.

Firstly, in many cases, the data is represented as the blocks that

have a large block sizem (e.g. thousands), owing to the fact that

more than 80% of all data is unstructured (e.g. images, videos, lo-

cation information, and social media data) or semi-structured (e.g.

XML documents or word processor files) large objects (LOBs) [6, 23].

Secondly, for many applications, oblivious shuffles often involve

only a small number n of blocks (a typical n is in the range 2-10).

For example, private data access requires to frequently permute

the children of nodes within some tree-based storage for hiding

access patterns [9, 10, 19], where each node normally has few chil-

dren (such as 2 for binary trees in [10, 19]) but a child contains

one or several LOB as one block each. Private data integration for

outsourcing multi-party computation may require to shuffle out-

sourced data from different parties for hiding identity privacy [5],

where all LOBs belonging to the same party create a gigantic data

block but only a small number of parties (≤10) is often involved in

real applications [3]. Private computation for answering Top-k or

k-NN query over LOB data may require to shuffle the k answers

for hiding their relative ordering [7, 22], where every answer is an

individual LOB but k is often sufficiently small (≤10).

Under the above scenario ofm ≫ n, it is important to eliminate

the effect of block sizem on the communication and client compu-

tation costs. This requires that OS is performed without moving

outsourced blocks between the server and the client, regardless of

how many shuffles are performed. We can formulate this problem

as below:

Definition 2 (Repeatable Oblivious Shuffle (ROS)). An oblivious

shuffle of [B]=([B1], · · · , [Bn ]) is repeatable if it can be performed

by the server without increasing the number of encryption layers.

Essentially, ROS guarantees that oblivious shuffling can be per-

formed any number of times in such a way that the cost of each

shuffle remains the same (by keeping encryption layers the same),

and also the communication cost/client computation cost of each

shuffling is independent of the size m of blocks (by eliminating

block movement to the client). Specifically, we target at an effi-

cient server-side oblivious shuffling without increasing encryption

layers, hence the term “repeatable”. Meeting this property turns

out to be a major challenge. In fact, existing OS algorithms either

treat the server as a simple storage device and perform the shuffle

through downloading the outsourced data to the client and upload-

ing the shuffled/re-encrypted data to the server [12, 13, 27, 30, 38],

or permute outsourced data using server computation at the cost of
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increasing encryption layers each time, which requires periodically

downloading outsourced data to the client for peeling off extra

encryption layers [2, 10]. Therefore, existing OS algorithms are not

repeatable because they all suffer from theO(m) blowup in commu-

nication and client computation costs due to moving outsourced

data blocks to the client for re-encryption/peeling-off. The costly

O(m) blowup would limit their practical adoption for large-sized

blocks.

1.2 Contributions
The goal of this work is to construct an efficient ROS algorithm

that eliminates the O(m) blowup in communication cost and client

computation cost for the scenario ofm ≫ n. Our contributions are
summarized as follows:

• (Section 1.1) Motivated by the applications wherem ≫ n holds,

we present the notation of repeatable oblivious shuffle (ROS) as

a tailored OS solution to eliminate block movement for over-

coming the typical communication bottleneck and limited client

resources in outsourced environments.

• (Section 4) We build the first practical ROS algorithm using effi-

cient additively homomorphic encryption.

• (Section 5) We give a rigorous security analysis of our ROS con-

struction and show that it is secure.

• (Section 6) We show experimentally that our ROS construction

outperforms the state-of-the-art OS algorithms in the motivated

scenarios.

2 RELATED WORK
Existing OS algorithms fall into two general categories: client-
side shuffling and server-side shuffling. The former depends on the

client’s computation for obliviously shuffling encrypted data, while

the latter depends on the server’s computation for achieving this

purpose. Next, we review existing client-side and server-side shuf-

fling algorithms and summarize them in Table 1. The discussion

is based on the shuffling of n outsourced data blocks of sizem, i.e.

B = (B1, · · · ,Bn ).

2.1 Client-side Shuffling
Since outsourced data can be of unbounded size but the client has

only limited storage, client-side shuffling commonly works in a

multi-round manner. In each round, the client downloads a small

portion of outsourced data to its local storage, shuffles it after de-

cryption, re-encrypts the data and writes it back to the server. The

early approach to oblivious shuffling in this category is based on

oblivious sorting algorithms. The best bound is obtained by Zig-zag
Sort [12], which involves O(mn logn) client cost and O(mn logn)
communication cost. Melbourne Shuffle [27] is the first OS method

that is not based on an oblivious sorting algorithm. The optimized

Melbourne Shuffle has O(mn) client cost and O(mn) communica-

tion cost. Some other works such as Buffer Shuffle [13], Interleave
Buffer Shuffle [38], and Cache Shuffle [30] also implement client-side

shuffling with this cost complexity. All of these approaches have

some small constant factors in the aforementioned complexity.

2.2 Server-side Shuffling
This group of works leverages server-side computation to perform

oblivious shuffle for reducing communication cost and client com-

putation cost. It essentially performs a shuffle through computing a

homomorphic matrix multiplication between outsourced data blocks

and permutation matrix on the server.

Layered Shuffle [2] is the first server-side shuffling. It requires a

sequence of additively homomorphic encryption (AHE) schemes Eℓ
where the ciphertext space of Eℓ is in the plaintext space of Eℓ+1
and the ciphertext size of Eℓ is linear with ℓ, for all ℓ ≥ 1. Each

scheme Eℓ is additively homomorphic meaning Eℓ(x) ⊕ Eℓ(y) =
Eℓ(x+y) and Eℓ+1(x) ⊗ Eℓ(y) = Eℓ+1 (Eℓ(y) · x). After ℓ − 1 con-
secutive shuffles, the current outsourced counterpart of B has ℓ

encryption layers
1
, notated by Eℓ(B). To perform the ℓ-th shuffle,

the client encrypts a permutation matrix π with Eℓ+1 and uploads

Eℓ+1 (π ) to the server. Then the server performs homomorphic

matrix multiplication using Eℓ (B) and Eℓ+1 (π ), which outputs

the permuted result Eℓ+1(B) = Eℓ+1

(
Eℓ(B) · π

)
that has ℓ + 1

encryption layers. Due to ciphertext expansion, the shuffling costs

increase at a polynomial rate with the total number ℓ of shuffles

so far. The average costs of the first ℓ consecutive shuffles include

O(ℓn2) client cost for encrypting permutation matrix, O(ℓn2) com-

munication cost for uploading encrypted permutation matrix, and

O(mn2ℓ2) server cost for homomorphic matrix multiplication.

The costs of layered shuffle can become unbounded due to the

unbounded increase of ℓ as more shuffles are performed. To solve

this problem, [10] proposed to periodically, say after every ℓ shuf-

fles, peel off extra encryption layers by downloading the current

outsourced blocks Eℓ+1(B) of ℓ+1 encryption layers to the client, re-
moving extra layers and re-encrypting it, and uploading encrypted

data of one layer to the server. It incurs O(ℓmn) communication

cost andO(ℓmn) client cost amortized over the ℓ shuffles. Thus, the

total cost per shuffle with peeling-off is O(ℓn2 +mn) client cost,
O(ℓn2 +mn) communication cost, and O(mn2ℓ2) server cost.

Fully homomorphic encryption (FHE) [21] enables an unlimited

number of both homomorphic addition and multiplication. If both

the blocks and permutation matrix were encrypted under FHE, the

server can trivially perform homomorphic matrix multiplication on

its own without interacting with the client. This ROS construction,

however, is only theoretically interesting because FHE is too far

away from being practical [20].

From Table 1, we can see that all existing OS algorithms suffer

from the term O(m) in client and communication costs. In Section

4, we will construct a ROS algorithm based on the efficient AHE

scheme, which eliminates this term by avoiding block movement.

3 PRELIMINARIES
3.1 Cryptographic Primitives
Our ROS construction employs the Paillier cryptosystem [29], which

is an AHE scheme providing semantic security. Its public key N

1
The initial outsourced blocks corresponds to ℓ = 1, i.e. E1(B) = E1(B).
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Table 1: Comparison of OS algorithms over n data blocks of sizem. Form ≫ n, our ROS is asymptotically better than existing
OS algorithms in terms of communication and client computation costs by avoiding the large termm.

OS Algorithms Communication cost Client computation cost Server computation cost

Client-side shuffling

Zig-zag Sort [12] O(mn logn) O(mn logn) —

Melbourne Shuffle [27] O(mn) O(mn) —

Cache Shuffle [30] O(mn) O(mn) —

Buffer Shuffle [13] O(mn) O(mn) —

Interleave Buffer Shuffle [38] O(mn) O(mn) —

Server-side shuffling

Layered Shuffle [2, 10] (ℓ ≥ 1) O(ℓn2 +mn) O(ℓn2 +mn) O(mn2ℓ2)

Our ROS Construction O(n2) O(n2) O(mn2)

is the product of two large random primes
2
, and the secret key is

the least common multiple of these primes. In this paper, both the

client and server have the public key but only the client has the

secret key. Let ZN denote the integers mod N and Z∗N 2
denote the

integers coprime to N 2
. Paillier cryptosystem encrypts a plaintext

x ∈ ZN to a ciphertext [x] ∈ Z∗N 2
with the public key and some

randomness, so that encrypting the same plaintext multiple times

yields different indistinguishable ciphertexts due to using different

randomness each time. The exact encryption/decryption can be

found in [29]. We focus on the following homomorphic properties

that are essential to our construction later.

Let xi ,yi ∈ ZN , ®x = (x1, · · · , xn ), ®y = (y1, · · · ,yn )
T
, and ®x · ®y

be the dot product of ®x and ®y.

(1) Homomorphic addition

[x1 + x2] = [x1] × [x2] mod N 2

(2) Homomorphic multiplication

[x1 × x2] = [x1]
x2

mod N 2

(3) Homomorphic dot product/matrix multiplication

Let [®x] = ([x1], · · · , [xn ]). Then we have the following equation

from 1) and 2):

[®x] ⊙ ®y
def

=
(
[x1]

y1 ) × · · · × (
[xn ]

yn )
mod N 2

= [®x · ®y]
(1)

Since each homomorphic multiplication [xi ]
yi

is computed as

repeated homomorphic additions of [xi ] to itself, this homomor-

phic dot product essentially computes a series of homomorphic

additions using all ciphertexts in [®x].

Considering that multiplicationM1 ·M2 of two matricesM1,M2

is given by computing the dot product between each row ofM1

and each column ofM2. In this paper, we also use the notation

⊙ to represent the “homomorphic matrix multiplication” be-

tween a ciphertext matrix [M1] element-wisely encrypted using

2
The actual public key of Paillier cryptosystem is (N , д) with д being a random

number in Z∗
N 2

, e.g. д = 1 + N .

Paillier cryptosystem and a plaintext matrix M2 by repeating

the homomorphic dot product computation defined in Eqn (1),

i.e.

[M1] ⊙ M2 = [M1 ·M2] (2)

3.2 Computational Primitives
3.2.1 Matrix-based Data Shuffling. Any shuffling of n data blocks

B = (B1, · · · ,Bn ) can be executed by the matrix multiplication B ·π ,
for some n×n permutation matrix π . For example, the computation

with π =
(
0 1

1 0

)
would swap the two blocks in B = (B1,B2):

B · π = (B1,B2) ·
(
0 1

1 0

)
= (B2,B1) (3)

Assuming there are η ≥ 1 consecutive shuffles over B where

the i-th shuffle permutes output of the i-1-th shuffle according

to permutation matrix π (i), for all 1 ≤ i ≤ η. Then, the final

result of these η shuffles would be given by B · πη , where πη is the

permutation matrix accumulating all η shuffles, i.e.

πη = πη-1 · π (η) = π (1) · π (2) · · · π (η) (4)

For consistency, we define π 0
as the n×n identity matrix so that

π 1 = π 0 · π (1) = π (1).

3.2.2 Matrix-based Data Scaling. Given n blocks B = (B1, · · · ,Bn )
and an n×n diagonal matrix C , the matrix multiplication B · C
scales each block Bi with C(i, i), for all 1 ≤ i ≤ n. For example, if

B = (B1,B2) and C =
(
2 0

0 3

)
, then we have

B ·C = (B1,B2) ·
(
2 0

0 3

)
= (2B1, 3B2) (5)

4 OUR CONSTRUCTION
From Definition 2, it is seen that a repeatable oblivious shuffle

(ROS) protocol must fulfill two requirements: (repeatability) any

shuffling of n encrypted blocks [B] = ([B1], · · · , [Bn ]) does not
move these blocks to the client or increase their encryption layers,

and (obliviousness) each shuffling is oblivious. In this section, we

start by building a shuffling method that satisfies repeatability but

violates obliviousness.We explore the nice properties of this method

and then give out our final ROS construction.
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4.1 Basic Construction
As shown in Eqn (3), shuffling n blocks of B according to a permuta-

tion π is achieved by the matrix multiplication B · π . If outsourced
blocks [B] = ([B1], · · · , [Bn ]) are encrypted using Paillier cryp-

tosystem, [B] can be shuffled as follows: the client uploads any

desired permutation π to the server, then the server can shuffle [B]
by computing the “homomorphic matrix multiplication” defined in

Eqn (2) between [B] and π , i.e. [B] ⊙ π = [B · π ].
Clearly, this shuffling method is not “oblivious” because the

server learns the actual permutation π . However, the construction
has some very nice properties: for each shuffling, the client’s job is

to pick an n×n permutation matrix π and upload it to the server, at

the expense ofO(n2) client cost and communication cost, while the

shuffling result preserves the single encryption layer. In this sense,

the construction is “repeatable”.

These nice properties are given by the fact that the client “guides”

the server to perform the shuffling homomorphically by sending the

server some plaintext “helper instruction" that encodes the desired

permutation π (here, π itself is sent). With such helper instruction

and [B], the server’s main job will be to trivially run “homomorphic

matrix multiplication" operations.

4.2 Overview
To retain the nice properties above as well as make the shuffling

oblivious (that is, build a complete ROS), the key is to prevent the

server from learning the actual permutation π from the helper in-

struction. To achieve this purpose, we propose to accompany every

shuffling of blocks illustrated in Eqn (3) by a scaling of these blocks

illustrated in Eqn (5). We refine the ROS notation in Definition 2 to

capture such mix of shuffling and scaling as below:

Definition 3 (Refined ROS). Consider n blocks B = (B1, · · · ,Bn ).

For any η ≥ 1, given a permutation matrix π (η) and a scaling matrix

C(η), the repeatable oblivious shuffling of outsourced data blocks

[B(η-1)] is an operation denoted by

[B(η)] ← ROS(π (η),C(η), [B(η-1)])

that permutes/scales [B(η-1)] = [B · C(η-1) · πη-1] into [B(η)] =

[B ·C(η) · πη ] on the server, without disclosing permutation matrix

π (η) and scalingmatrixC(η) to the server (πη = πη-1 ·π (η) is defined
in Eqn (4)).

Example 1. Let B = (B1,B2) and [B(η-1)] = [B · C(η-1) · πη-1]
w.r.t current scaling C(η-1) =

(
2 0

0 3

)
and accumulated permutation

πη-1 =
(
0 1

1 0

)
. Given a permutation matrix π (η) =

(
0 1

1 0

)
and a

scaling matrix C(η) =
(
5 0

0 4

)
, ROS outputs [B(η)] = [B ·C(η) · π (η)]

that permutes [B(η-1)] according to π (η) and updates the scaling

with C(η). For example, B2 is moved to position 2 and scaled by

4 because π (η)(1, 2) = 1 and C(η)(2, 2) = 4. Table 2 shows the

outcomes of such mixed shuffling and scaling. □

Table 2: Illustration of our ROS construction

[B(η-1)] = ([3B2], [2B1])

[B(η)] ← ROS(π (η),C(η), [B(η-1)]) [B(η)] = ([5B1], [4B2])

To address the challenge of hiding π (η) andC(η) from the server

while allowing the client to guide the server to perform shuf-

fling/scaling as specified, we propose the following strategy. For

any η ≥ 1, the client constructs helper instructionsH (η) in plaintext

and [H
(η)
A ] in ciphertext, and sends them to the server. Then the

server generates encrypted auxiliary blocks [B
(η)
A ] through “homo-

morphic matrix multiplication” between [H
(η)
A ] and some initial

auxiliary blocks B
(0)

A . H (η) and B
(η)
A jointly encode π (η) and C(η)

in such a way that any π (η) and any C(η) can be encoded using the
same H (η) but different B(η)A . In this way, the server is unable to

learn the actual π (η) and C(η) from H (η) alone as B
(η)
A is unknown

to the server due to the encryption. The server, however, is still able

to perform shuffling/scaling through “homomorphic matrix mul-

tiplication” between ([B
(η)
A ], [B

(η-1)]) and H (η). The next example

illustrates this idea.

Example 2. To encode π (η) and C(η) in Example 1, let

H (η) =

(
3 0

0 1

1 1

4 -1

)
and

[B
(η)
A ] =

[
(B1,B2) ·

(
-1 2

-1 1

) ]
= ([-B1-B2], [2B1+B2]).

Then, the server can obliviously permute

[B(η-1)] =[B ·C(η-1) · πη-1]

=
[
(B1,B2) ·

(
2 0

0 3

)
·
(
0 1

1 0

) ]
=
[
(B1,B2) ·

(
0 2

3 0

) ]
= ([3B2], [2B1])

into

[B(η)] =[B ·C(η) · πη ] = [B ·C(η) · πη-1 · π (η)]

=
[
(B1,B2) ·

(
5 0

0 4

)
·
(
0 1

1 0

)
·
(
0 1

1 0

) ]
=
[
(B1,B2) ·

(
5 0

0 4

) ]
= ([5B1], [4B2])

by computing
3

[B(η)] = ([B
(η)
A ], [B

(η-1)]) ⊙ H (η)

or equivalently

Y[
(B1,B2)·

(
5 0

0 4

) ]
=

X[
(B1,B2)·

(
-1 2

-1 1

0 2

3 0

)]
⊙

H (η)(
3 0

0 1

1 1

4 -1

)
(6)

In the LHS of Eqn (6), the matrix Y = C(η) · πη = C(η) · πη-1 ·

π (η) specifies the target shuffling/scaling. In the RHS, the first two

columns of the matrix X specify each block Bi ’s coefficient in B
(η)
A

(these coefficients are randomly picked by the client. The details

will be descried in Section 4.3) and the last two columns specify

their coefficients in B(η-1). Since the coefficient matrix X and the

helper instruction H (η) jointly make the equation hold, H (η) and

B
(η)
A jointly encode π (η) and C(η). □

3
All computations are over the ring ZN .
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Example 2 illustrates the following key ideas that underpin our

ROS construction based on Y = X · H (η).

• Correctness: In the client’s behalf, for any π (η) and C(η), there

is always a solution to H (η) for encoding them. In Eqn (6), π (η)

and C(η), accompanied by accumulated permutation πη-1 so far,

determine the target shuffling/scaling specified by the matrix Y .
The client also knows the first two columns of X by tracking

the generation of [B
(η)
A ] and its last two columns by tracking the

previous shuffling/scaling in [B(η-1)]. Therefore, the client can

always find a solution to H (η), because it is an underdetermined

linear system.

• Obliviousness: From the server’s perspective, [B
(η)
A ] and H (η)

discloses no information about π (η) and C(η). In fact, for any
choice of π (η) andC(η) (i.e. any possible choice ofY ), there always
exists solutions to X that make Eqn (6) hold, subject to the same

H (η), due to the system being underdetermined. However, the

server cannot distinguish the actual π (η) and C(η) from these

choices because the actual X are hidden in [B
(η)
A ] and [B

(η-1)],

and thus unknown to the server.

• Repeatability: In this example, the client’s job is to generate and

upload the helper instruction H (η), the size of which depends

solely on the block number n. Importantly, as we shall see in

Section 4.3, the auxiliary blocks [B
(η)
A ] are generated by the server

itself, using another helper instruction [H
(η)
A ] of size O(n

2) from

the client. Therefore, the shuffling is purely conducted in the

server without moving any blocks to the client. Moreover, the

shuffling result [B(η)] remains in a single encryption layer.

4.3 Algorithm
4.3.1 Initialization. Recall that n is the number of blocks in B and

N is the public key of Paillier cryptosystem. Initially, the client

randomly chooses an n×n diagonal matrix C(0) over Z∗N , an n×n

invertible full matrix S(0) over ZN , and computes B(0) and B
(0)

A by

B(0) = B ·C(0) mod N (12)

B
(0)

A = B · S(0) mod N (13)

Then the client encrypts B(0) to [B(0)]with Paillier cryptosystem,

and uploads {[B(0)],B
(0)

A } to the server. Table 3 summarizes all

notations used throughout the rest of the paper. We say that a full

matrix is over ZN or Z∗N if all its elements are in that ring, and a

diagonal matrix is over Z∗N if all its diagonal elements are in Z∗N .

4.3.2 Main Protocol. Algorithm 1 describes the details of our ROS

construction. For any η ≥ 1, with inputting an arbitrarily cho-

sen n×n permutation matrix π (η) and n×n scaling matrix C(η)

(that is, a diagonal matrix over Z∗N ), the algorithm obliviously per-

mutes/scales [B(η-1)] to [B(η)] in two phases.

Algorithm 1 [B(η)] ← ROS(π (η),C(η), [B(η-1)])

Require: The client has S(0), C(η-1), and πη-1; the server has B
(0)

A
and [B(η-1)]

Phase 1 (Client):

1: randomly pick S(η) as an n×n full matrix over Z∗N and compute

H
(η)
A = (S(0))−1 · S(η) mod N (7)

2: compute

H (η) =
©­«
H
(η)
1

H
(η)
2

ª®¬
as H

(η)
1

is an n×n diagonal matrix over Z∗N satisfying

C(η) · πη-1 · π (η) − S(η) · H
(η)
1

is over Z∗N (8)

and H
(η)
2

is an n×n full matrix over Z∗N satisfying

C(η) · πη-1 · π (η) − S(η) · H
(η)
1
= C(η-1) · πη-1 · H

(η)
2

mod N (9)

3: encrypt H
(η)
A , send [H

(η)
A ] and H

(η)
to the server

4: πη ← πη-1 · π (η)

Phase 2 (Server):

5: generate auxiliary blocks by computing

[B
(η)
A ]

T = [H
(η)
A ]

T ⊙ (B
(0)

A )
T

(10)

6: perform the shuffle by computing

[B(η)] =
(
[B
(η)
A ], [B

(η-1)]
)
⊙H (η) (11)

• Phase 1. The client generates an n×n random matrix S(η), com-

putes an n×n matrix H
(η)
A (line 1) and an 2n×n matrix H (η) (line

2), encryptsH
(η)
A to [H

(η)
A ] element-wisely with Paillier cryptosys-

tem and sends {[H
(η)
A ],H

(η)} to the server (line 3). The client also

updates the accumulated permutation matrix πη (line 4). In this

phase, S(η), H
(η)
1

, and H
(η)
2

are over Z∗N to make them invertible

in the plaintext domain ZN .

• Phase 2. The server computes [B
(η)
A ] using {[H

(η)
A ],B

(0)

A } (line 5),

where [H
(η)
A ] is the helper instruction for guiding the server to

generate [B
(η)
A ]. Then the server computes [B(η)] from [B(η-1)]

using {[B
(η)
A ],H

(η)} (line 6).

We should highlight that each calling of ROS is independent. For

any η ≥ 1, the client can arbitrarily choose the permutation matrix

π (η) and scaling matrix C(η) to determine target shuffling/scaling

in any possible way. For another thing, the scaling introduces no

error to data blocks because the client knows current scaling matrix

C(η) and can trivially remove such scaling factors after decrypting

encrypted blocks.
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4.3.3 Complexity Analysis. During the η-th calling of ROS for shuf-

fling n encrypted blocks (each of sizem), the client generates an

2n×n matrix H (η), an n×n matrix [H
(η)
A ], and sends them to the

server. The client cost and the communication cost are bounded

by the size of these matrices, i.e. O(n2). The server cost involves
two homomorphic matrix multiplication with O(mn2) cost each to

compute [B
(η)
A ] and [B

(η)] (lines 5, 6), so the total cost is O(mn2).
As for space overhead, the client use O(n) space for storing the

information in C(η-1) and πη-1, and O(n2) space for S(0). On the

server, the space required is O(mn) for storing B
(0)

A and [B(η-1)].
These spaces are not accumulated over different calls of ROS be-

cause they are reused by every call.

4.4 Correctness Analysis
Theorem 1. For any η ≥ 1, Algorithm 1 produces [B(η)A ] = [B ·

S(η)] and [B(η)] = [B ·C(η) · πη ].

Proof. Let us consider the proof for [B
(η)
A ] first. [B

(η)
A ] is com-

puted by Eqn (10) as follows,

[B
(η)
A ]

T = [H
(η)
A ]

T ⊙ (B
(0)

A )
T

⇒[(B
(η)
A )

T ] = [(H
(η)
A )

T · (B
(0)

A )
T ] (a)

⇒[B
(η)
A ] = [B

(0)

A · H
(η)
A ] (b)

⇒[B
(η)
A ] = [B · S

(0) · (S(0))-1 · S(η)] (c)

⇒[B
(η)
A ] = [B · S

(η)] (d)

(a) follows from homomorphic matrix multiplication defined in Eqn

(2). By removing the matrix transpose of (a), we get (b). (c) follows

from Eqn (13) and Eqn (7). (d) holds because (S(0))-1 is the inverse

of S(0). This shows [B
(η)
A ] = [B · S

(η)].

The proof for [B(η)] is by induction on η. The basis is [B(0)] =

[B ·C(0) · π 0], which comes from Eqn (12) by noting that π 0
is the

identity matrix. Assume

[B(η-1)] = [B ·C(η-1) · πη-1] (14)

We show [B(η)] = [B ·C(η) · πη ]. From Eqn (11), we have

[B(η)] = ([B
(η)
A ], [B

(η-1)]) ⊙ H (η)

⇒[B(η)] = [B
(η)
A · H

(η)
1
+ B(η-1) · H

(η)
2
] (a)

⇒[B(η)] = [B · (S(η) · H
(η)
1
+C(η-1) · πη-1 · H

(η)
2
)] (b)

⇒[B(η)] = [B ·C(η) · πη-1 · π (η)] (c)

⇒[B(η)] = [B ·C(η) · πη ] (d)

Recall thatH (η) consists ofH
(η)
1

andH
(η)
2

. (a) comes from computing

homomorphic matrix multiplication of Eqn (11). (b) is obtained from

Eqn (14) and B
(η)
A = B · S(η) shown in the first part. (c) is obtained

from Eqn (9). Finally, (d) holds as πη-1 · π (η) = πη . □

The next theorem shows the existence of H (η).

Theorem 2. For any η ≥ 1, H (η) constrained by Eqns (8) and (9)

always exists.

Proof. Eqn (8) simply generates H
(η)
1

as an invertible diagonal

matrix (i.e. over Z∗N ). Thus, H (η) is mainly constrained by Eqn (9).

Typically, C(η) · πη-1 · π (η) specifies the target shuffling/scaling as

[B(η)] = [B ·C(η) · πη ]; S(η) specifies the coefficient of each block

Bi in the auxiliary blocks [B
(η)
A ] as [B

(η)
A ] = [B · S

(η)]; C(η-1)·πη-1

specifies the coefficient of each Bi in the current outsourced data

[B(η-1)] as [B(η-1)] = [B · C(η-1) · πη-1]. In a similar spirit to Eqn

(6), Eqn (9) is an underdetermined linear system with H (η)’s en-
tries being unknown variables: the matrix computation in Eqn (9)

defines n2 linear equations (every entry of the n × n matrices de-

fines a equation) but there are n2 + n unknown variables in H (η)

(diagonal matrix H
(η)
1

has n unknowns and full matrix H
(η)
2

has n2

unknowns). Thus, a solution for H (η) always exists. Appendix A

gives the complete proof. □

5 SECURITY ANALYSIS
5.1 Security of η-th Calling of ROS
For any η ≥ 1, from the server’s perspective, the current calling of

Algorithm 1 involves the following

• observed data

1) encrypted data:

Enc(η) = {[B(η-1)], [B(η)], [B
(η)
A ], [H

(η)
A ]}

2) non-encrypted data:

Non_Enc(η) = {B
(0)

A ,H
(η)}

• non-observed data

Θ0 = {B, S
(0)},Θ

(η)
1
= {C(η), πη-1, π (η)},Θ

(η)
2
= {S(η),C(η-1)}

To claim the security of our construction during the current

calling, we show that the observed data discloses no information

about the non-observed data. We first show that encrypted data

Enc(η) observed by the server discloses nothing in Section 5.1.1,

then complete our security analysis by showing that non-encrypted

data Non_Enc(η) also discloses no information about Θ0, Θ
(η)
1

, and

Θ
(η)
2

in Section 5.1.2.

5.1.1 Security of Enc(η). The data in Enc(η) is either encrypted
and uploaded by the client, or computed by the server through

homomorphic matrix multiplication operations defined in Eqn (2).

Thanks to the semantic security of Paillier cryptosystem (i.e. any

ciphertext discloses nothing about corresponding plaintext) and its

homomorphic properties (i.e. any computation through homomor-

phic operations preserves the privacy of original data and computed

results), the privacy of all data in Enc(η) is guaranteed.

Oblivious shuffling also requires [B(η)] to be a re-encryption

of [B(η-1)] using different randomness, so that the server cannot

track the permutation from the ciphertexts. Next, we show that our

construction indeed achieves such re-encryption for outsourced

blocks. Recall that homomorphic addition of Paillier cryptosystem

propagates the randomness of both inputs [x1] and [x2] into the

output [x1+x2] [29]. As homomorphic dot product defined in Eqn
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Table 3: Parameters and notations in the ROS construction (η ≥ 1)

Notation Meaning

B n blocks of sizem, B = (B1, · · · ,Bn )

[B(η)] shuffling result of η-th calling, [B(η)] = [B ·C(η) · πη ]

B
(0)

A initially outsourced auxiliary blocks, B
(0)

A = B · S(0)

[B
(η)
A ] auxiliary blocks used by η-th calling, [B

(η)
A ] = [B · S

(η)]

H (η) helper instruction for computing [B(η)]

[H
(η)
A ] helper instruction for computing [B

(η)
A ]

C(η) scaling matrix of η-th calling

π (η) permutation matrix of η-th calling

πη accumulated permutation of η callings, πη = πη-1 · π (η)

S(0) coefficient matrix of B
(0)

A

S(η) coefficient matrix of B
(η)
A

(1) is composed of multiple homomorphic additions involving each

element of [®x], it propagates the randomness of all ciphertexts of

[®x] into the result. During the η-th calling of Algorithm 1, the client

generates a newly encrypted matrix [H
(η)
A ] with fresh randomness.

These fresh randomness are propagated into the ciphertexts [B
(η)
A ]

first due to computing the homomorphic matrix multiplication of

Eqn (10) (essentially computing homomorphic dot products be-

tween columns of [H
(η)
A ] and rows of B

(0)

A ), and finally propagated

into the ciphertexts [B(η)] due to computing the homomorphic ma-

trix multiplication of Eqn (11). Thus, [B(η)] is a re-encryption of

[B(η-1)] with fresh randomness.

5.1.2 Security of Non_Enc(η). The rationale behind Non_Enc(η)

disclosing no information about non-observed data Θ0, Θ
(η)
1

, and

Θ
(η)
2

is that there are many different choices of non-observed data

to produce the same Non_Enc(η) but the server is unable to identify
the true choices as they are unobserved.

Theorem 3. Given Non_Enc(η), for any choice of Θ̃(η)
1
=

{C̃(η), π̃η-1, π̃ (η)}, there exists a choice of Θ̃(η)
2
= {S̃(η), C̃(η-1)} such

that Eqn (8) and (9) remain to hold if {Θ(η)
1
,Θ
(η)
2
} is replaced with

{Θ̃
(η)
1
, Θ̃
(η)
2
}.

Proof. By replacing {Θ
(η)
1
,Θ
(η)
2
} with {Θ̃

(η)
1
, Θ̃
(η)
2
}, Eqn (9) be-

comes

C̃(η) · π̃η-1 · π̃ (η) − S̃(η) · H
(η)
1
= C̃(η-1) · π̃η-1 · H

(η)
2

mod N

This equation is a generalized form of Eqn (6). Similar to the

argument of “Obliviousness" in Example 2, for any choice of Θ̃
(η)
1

and the given H (η), this linear system is underdetermined with

Θ̃
(η)
2
={S̃(η), C̃(η-1)} being unknown variables: the matrix compu-

tation above defines n2 equations but there are n2 + n unknowns

(full matrix S̃(η) has n2 variables and diagonal matrix C̃(η-1) has

n variables). So a solution for Θ̃
(η)
2

letting Eqn (9) remain to hold

always exists.

Next, to satisfy Eqn (8), the above C̃(η-1) and π̃η-1 should also

enforce that C̃(η-1) · π̃η-1 · H
(η)
2

is over Z∗N . This condition indeed

holds according to [11] because C̃(η-1) is a diagonal matrix over Z∗N ,

H
(η)
2

is a full matrix over Z∗N , and C̃(η-1) · π̃η-1 ·H
(η)
2

corresponds to

permute/scale the rows ofH
(η)
2

using π̃η-1 and C̃(η-1). The complete

proof is given in Appendix B. □

5.2 Security of All η Callings of ROS
In Section 5.1, we show that the security is preserved during the

current (the η-th) calling of ROS, for any η ≥ 1. Now, we show that

the security is still preserved when the sequence of all η callings

so far are examined. The intuition is that each individual calling

is oblivious (as π (i), C(i) is private to the server, 1 ≤ i ≤ η) and

independent (as π (i), C(i) is arbitrarily chosen). Note that all en-

crypted data Enc(i) (1 ≤ i ≤ η) disclose nothing, as discussed in

Section 5.1.1. Our focus is to show that no information about non-

observed Θ0, Θ
(η)
1

, Θ
(η)
2

is disclosed even if the server has access to

all Non_Enc(i) from all η callings, 1 ≤ i ≤ η.

Corollary 1. Even if the server has access to Non_Enc(i) for all
1 ≤ i ≤ η, the server is still unable to infer Θ0,Θ

(η)
1
,Θ
(η)
2

.

Proof. Theorem 3 shows that, for any Θ̃
(η)
1

, we can find a Θ̃
(η)
2

to

satisfy Eqns (8) and (9), given observedNon_Enc(η). Since π̃ (η), C̃(η)

in Θ̃
(η)
1

are arbitrarily chosen and the server cannot distinguish

{Θ
(η)
1
,Θ
(η)
2
} from {Θ̃

(η)
1
, Θ̃
(η)
2
}, the server cannot infer the true per-

mutation π (η) and true scaling C(η) from the η-th calling of ROS.

This {Θ̃
(η)
1
, Θ̃
(η)
2
} explicitly gives {C̃(η-1), π̃η-1}.
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Let Θ̃
(η-1)
1

= {C̃(η-1), π̃η-2, π̃ (η-1)} w.r.t. the above {C̃(η-1), π̃η-1}

and π̃η-2 be an arbitrary permutation, repeating the argument of

Theorem 3 for the (η − 1)-th calling, we can find a Θ̃
(η-1)
2

. This

argument can be repeated for all 1 ≤ i ≤ η, in the order of i =

η,η−1, · · · , 1. Note that the observed Non_Enc(η), · · · ,Non_Enc(1)

are preserved through all these replacements. Therefore, the server

cannot infer Θ
(η)
1

and Θ
(η)
2

from these Non_Enc(i).
Lastly, to see that Θ0 cannot be inferred, consider any choice

of an n×n invertible matrix S̃(0) over ZN (the inverse is (S̃(0))−1)
and define B̃ = B · S(0) · (S̃(0))−1 mod N . Then we have B̃ · S̃(0)

mod N = B · S(0) mod N ; that is, B
(0)

A is preserved (Eqn (13)) after

replacing Θ0 = {B, S
(0)} with Θ̃0 = {B̃, S̃

(0)}. Therefore, the server

cannot distinguish Θ0 = {B, S
(0)} from Θ̃0 = {B̃, S̃

(0)}. Although

such replacement will affect B(η), B
(η)
A , and H

(η)
A , these data are

encrypted and thus can not help the server’s attacks. □

6 PERFORMANCE EVALUATION
This section reports the empirical evaluation of our ROS construc-

tion by comparing it with the competitors discussed in Section 2.

All methods are implemented in C with OpenMP parallel program-

ming on a server machine 96 Intel Core i7-3770 CPUs at 3.40 GHz,

and a client machine with 2 Intel Core e7-4860 CPUs at 2.60 GHz.

Both run a Linux system.

The empirical comparisons are based on applying each OS algo-

rithm to permute n encrypted blocks of sizem. The implementation

details of each OS algorithm in the experiments are summarized as

below:

• ClientShuffle. Different client-side shuffling algorithms have sig-

nificantly varied implementations but commonly permute out-

sourced data in multi-rounds and each round downloads and

permutes a small portion of the data on the client. To unify di-

verse client-side shuffling algorithms in our experiments, we

adopt a simplified single-round implementation for client-side

shuffling that downloads all encrypted blocks to the client, re-

encrypts these blocks, and uploads them to the server in the

permuted order. This simplification is in favor of client-side shuf-

fling algorithms by reducing their shuffling costs, because every

block is downloaded and re-encrypted only once while their

original multi-round implementations involve downloading and

re-encrypting each block multiple times. We follow the same

encryption setting as [38] to implement such simplified client-

side shuffling through encrypting the blocks with AES-128 from

Crypto++ Library [8] (each encryption unit contains 128-bit data).

• LayeredShuffle: Layered Shuffle [2, 10] is the sole server-side

shuffling algorithm but must peel off extra encryption layers

after every ℓ shuffles, where ℓ is usually a small number due

to the higher shuffle cost associated with the increased ℓ. Let

LayeredShuffle (ℓ = 2) and LayeredShuffle (ℓ = 10) denote layered

shuffle with ℓ being 2 and 10. Layered shuffle is implemented by

adopting the library of Damgard-Jurik cryptosystem in [37] with

1024-bit key size for encryption (each encryption unit contains

1024-bit data).

• ROS. Our ROS construction (Section 4) is implemented by adopt-

ing the library of Paillier Cryptosystem in [37] with 1024-bit key

size for encryption (each encryption unit contains 1024-bit data).

As different OS algorithms adopt encryption schemes that vary

the size of an encryption unit, the block sizem in the experiments

indicates the size of a plaintext block in MB, instead of the number

of encryption units for holding a block.

6.1 Effect of Block Size
We first conduct an experiment to examine the performance of

different OS algorithms for shuffling a fixed number (n = 4) of

blocks with varying the block sizem from 0.1 MB (e.g. a LOB of a

document file) to 1,000 MB (e.g. a LOB of a video file). We evaluate

them with three measurements: communication cost (in MB), client
computation cost (in second), and server computation cost (in second).
The settings ofm,n are justified in Section 1.

As shown in Figure 1(a) and 1(b), the communication and client

computation cost of both client-side shuffling and layered shuffle

grow linearly to the block sizem, while those of our ROS construc-

tion stay at a constant around 6 KB for communication and 0.05

second for client computation. ROS successfully achieves our de-

sign goals for eliminating the effect of the block sizem on these

two costs, because of strictly limiting the outsourced data blocks

to the server and only communicating “helper instruction" of size

O(n2)with the server. In contrast, client-side shuffling incurs an un-

bounded increase in communication and client computation costs

due to downloading all outsourced data to the client’s local storage

and re-encrypting them; layered shuffle has the same drawback

due to downloading all outsourced data of ℓ + 1 encryption layers

for peeling off extra layers after every ℓ shuffles. These results are

consistent with the asymptotical superiority of ROS in Table 1.

In Figure 1(b), we observe that client-side shuffling outperforms

layered shuffle in client cost. This seems counterintuitive as they

have similar client cost complexity (m ≫ n holds in our setting and

ℓ is a small constant, thus from Table 1 the client costs of both algo-

rithms are dominated byO(mn)). The reason is that client-side shuf-

fling does not require any homomorphic operation and thus adopts

the secret key cryptosystem AES for fast encryption/decryption,

while layered shuffle adopts the public-key Damgard-Jurik cryp-

tosystem for allowing additively homomorphic but having much

slower encryption/decryption. The same reason also explains why

client-side shuffling may beat ROS in client cost when the block

sizem is sufficiently small (e.g. ≤ 1 MB).

Figure 1(c) presents our results on server computation cost. Al-

though both ROS and layered shuffle show a linear increase with

the block sizem, ROS outperforms layered shuffling on all settings

ofm. The costs of ROS are independent of the number of shuffles

performed so far due to ROS never increasing encryption layers

of outsourced data. However, layered shuffle adds an extra encryp-

tion layer after every shuffle and thus leads to the increase of the

shuffling costs (especially the client and server computation costs)

with the number ℓ of consecutive shuffles before a peeling-off. Nev-

ertheless, layered shuffle is inapplicable to the scenarios in which

shuffling is intensively involved.
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Figure 1: Shuffle cost w.r.t. block sizem (MB) (n = 4, ClientShuffle has no server computation and thus not reported)
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Figure 2: Shuffle cost w.r.t. block number n (m=10 MB, ClientShuffle has no server computation and not reported)

6.2 Effect of Block Number
We also compare the performance of different OS methods with

respect to varied number n of blocks while fixing the block size

m = 10 MB (e.g. a LOB of an image file).

As shown in Figure 2, all algorithms exhibit an increase in com-

munication cost and client computation cost. ROS grows slightly

faster than client-side shuffling. The major reason is that the two

costs of ROS (O(n2)) increase quadratically to the block number n
due to generating/uploading helper instructions of size O(n2) by
the client, while those of client-side shuffling (O(mn)) are linear
to the block number n, as summarized in Table 1. In this sense,

the saving of the communication cost and client computation cost

using ROS becomes more significant for small n. Fortunately, our
motivated scenario in Section 1 indeed hasm ≫ n.

6.3 Summary
Through the experiments, we can see that ROS evidently outper-

forms existing OS algorithms when a small number of large-sized

blocks are shuffled (i.e. m ≫ n) because its communication and

client costs grow with the square of n but independent ofm. On the

other hand, client-side shuffling becomes a better option if a large

number of small-sized blocks are shuffled (i.e. n ≫m) because its

communication and client costs are linear to bothm and n. Lastly,
layered shuffling can only be used when the outsourced data is shuf-

fled by a limited number of times; otherwise, expensive peeling-off

operations are frequently involved that introduce overwhelming

communication and client costs.

7 CONCLUSION
In this paper, we study the problem of oblivious algorithms for

shuffling outsourced data blocks. We introduce repeatable oblivi-

ous shuffling (ROS), a fine-grained notation of oblivious shuffling

that eliminates the effect of block size on the communication and

client computation costs. ROS provides a tailored OS solution for

the scenario of shuffling a small number of large-sized blocks to

overcome the typical network bandwidth bottleneck and client re-

source limitation in outsourced environments. We present the first

practical ROS construction using Paillier cryptosystem. According

to experimental results, our construction significantly outperforms

the state-of-the-art OS algorithms in the motivated scenarios.
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A PROOF OF THEOREM 2
In this part, we prove Theorem 2. The reader is referred to Table 3

for descriptions of all involved matrices. We first prove a lemma.

Lemma 1. Let N = pq for two primes p, q. Consider an integer
a ∈ Z∗N and any integer b. There are at least pq − 2(p +q − 1) choices
of x ∈ Z∗N such that b − ax ∈ Z∗N .

Proof. Let

ϒ1 = ZN \ Z
∗
N

ϒ2 = {x | x ∈ ZN ∧ (b − ax) < Z
∗
N }

Then the set of all valid x is given by

ZN \ (ϒ1 ∪ ϒ2) = {x | x ∈ Z
∗
N ∧ (b − ax) ∈ Z

∗
N }

We claim |ϒ1 | = p + q − 1 and |ϒ2 | ≤ p + q − 1. Together with
|ZN | = pq, |ZN \ (ϒ1 ∪ ϒ2)| ≥ pq − 2(p + q − 1) holds.

Recall thatN = pqw.r.t. two primesp andq.ZN = {0, 1, · · · ,pq−
1}. ϒ1 is the subset of ZN without containing the integers that are

relatively prime toN , i.e. ϒ1 = {0, p, 2p, · · · , (q−1)p, q, 2q, · · · , (p−
1)q}. This shows |ϒ1 | = p + q − 1.

Let υ = b − ax mod N and rewrite the equation into

ax = b − υ mod N (15)

b−ax ∈ Z∗N iffυ is relatively prime toN . From [25], ifb−υ is divisible
byдcd(a,N ), Eqn (15) hasдcd(a,N ) solutionsx ∈ Z∗N .Witha ∈ Z∗N ,

дcd(a,N ) = 1, b −υ is always divisible by дcd(a,N ) = 1, so for each

υ < Z∗N , Eqn (15) has a unique solution x ∈ Z∗N . Since there are

p + q − 1 choices of υ ∈ ZN \ Z
∗
N because of |ϒ1 | = p + q − 1, there

are at most p +q − 1 solutions x such that b −ax < Z∗N . This shows

|ϒ2 | ≤ p + q − 1. □

Theorem 2. For any η ≥ 1, H (η) constrained by Eqns (8) and (9)

always exists.

Proof. H (η) is found by solving an underdetermined linear sys-

tem specified by Eqn (9) while fulfilling the constrains over Z∗N
specified in Eqn (8).

First, H
(η)
1

is an n × n diagonal matrix over Z∗N satisfying Eqn

(8). Thus, finding H
(η)
1

is equivalent to solve{
H
(η)
1
(j, j) ∈ Z∗N , for all 1 ≤ j ≤ n

X (i, j) ∈ Z∗N , for all 1 ≤ i, j ≤ n
(16)

where

X = C(η) · πη − S(η) · H
(η)
1

with πη = πη-1 · π (η), in which πη permutes the columns of C(η)

and H
(η)
1

scales the columns of S(η) because πη is a permutation

matrix and H
(η)
1

is a diagonal matrix. WLOG, assume that the j-

th column of C(η) · πη is the j ′-th column of C(η). Then, for any
1 ≤ i, j ≤ n,

X (i, j) = C(η)(i, j ′) − S(η)(i, j) · H
(η)
1
(j, j) (17)

Let a = S(η)(i, j), b = C(η)(i, j ′), and x = H
(η)
1
(j, j). Solving Eqn (16)

corresponds to find x ∈ Z∗N such that b −ax ∈ Z∗N while a is in Z∗N

(due to S(η) being over Z∗N ). From Lemma 1, H
(η)
1
(j, j) satisfying

this constraint exists.

Next, H
(η)
2

is an n × n full matrix over Z∗N satisfying Eqn (9).

With the H
(η)
1

found above, we obtain X defined in Eqn (16) and

reformulate Eqn (9) into

C(η-1) · πη-1 · H
(η)
2
= X mod N (18)

Since C(η-1) is a diagonal matrix over Z∗N , its inverse (C(η-1))-1

is also a diagonal matrix over Z∗N [24]. Moreover, the inverse of

permutation matrix πη-1 is its transpose. Thus, we can find H
(η)
2

satisfying Eqn (9) by

H
(η)
2
= (πη-1)T · (C(η-1))−1 · X mod N

where the RHS corresponds to scale/permute the rows of X . Since

X is over Z∗N , [11] implies that the RHS is over Z∗N ; thus, the found

H
(η)
2

is over Z∗N . □

B PROOF OF THEOREM 3
Theorem 3. Given Non_Enc(η), for any choice of Θ̃(η)

1
=

{C̃(η), π̃η-1, π̃ (η)}, there exists a choice of Θ̃(η)
2
= {S̃(η), C̃(η-1)} such

that Eqn (8) and (9) remain to hold if {Θ(η)
1
,Θ
(η)
2
} is replaced with

{Θ̃
(η)
1
, Θ̃
(η)
2
}.

Proof. For any choice of Θ̃
(η)
1

, we find Θ̃
(η)
2

by solving an un-

derdetermined linear system specified by Eqn (9) while fulfilling

the constrains over Z∗N . Note that π̃η = π̃η-1 · π̃ (η).

Constructing C̃(η-1). We first construct C̃(η-1) as an n×n diago-

nal matrix over Z∗N while fulfilling the following conditions{
C̃(η-1)(i, i) ∈ Z∗N , for all 1 ≤ i ≤ n

X̃ (i, j) ∈ Z∗N , for all 1 ≤ i, j ≤ n
(19)

where

X̃ = C̃(η) · π̃η − C̃(η-1) · π̃η-1 · H
(η)
2
.

The proof of the existence of C̃(η-1) is similar to the proof of the

existence of H
(η)
1

in Theorem 2.

Constructing S̃(η). With C̃(η-1) found above, we obtain X̃ de-

fined in Eqn (19) and reformulate Eqn (9) into

S̃(η) · H
(η)
1
= X̃ mod N (20)

Then, we construct S̃(η) as an n × n full matrix over Z∗N satisfying

Eqn (20). The proof of the existence of S̃(η) is similar to proof of the

existence of H
(η)
2

in Theorem 2.

Now, we show that the above {Θ̃
(η)
1
, Θ̃
(η)
2
} satisfies Eqn (8) and

Eqn (9), subject to the same Non_Enc(η) = {B
(0)

A ,H
(η)}. First, Eqn

(8) holds if C̃(η) · π̃η-1 · π̃ (η) − S̃(η) ·H
(η)
1

is over Z∗N . To prove it, we

replace X̃ in Eqn (19) with Eqn (20) and produce

C̃(η-1) · π̃η-1 · H
(η)
2
= C̃(η) · π̃η-1 · π̃ (η) − S̃(η) · H

(η)
1

mod N

where the LHS corresponds to permute/scale the rows of H
(η)
2

. As

C̃(η-1) is a diagonal matrix over Z∗N and H
(η)
2

is a full matrix over

Z∗N , the LHS is over Z∗N [11]. Thus, the RHS is over Z∗N and Eqn

(8) holds. Second, Eqn (9) holds because Eqn (20) is a rewriting of

Eqn (9). □
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