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ABSTRACT
We consider the following secure data retrieval problem: a client
outsources encrypted data blocks to a semi-trusted cloud server
and later retrieves blocks without disclosing access patterns. Ex-
isting PIR and ORAM solutions suffer from serious performance
bottlenecks in terms of communication or computation costs. To
help eliminate this void, we introduce “access pattern unlinkabil-
ity” that separates access pattern privacy into short-term privacy
at individual query level and long-term privacy at query distribu-
tion level. This new security definition provides tunable trade-offs
between privacy and query performance. We present an efficient
construction, called SBR protocol, using PIR and Oblivious Shuf-
fling to enable secure data retrieval while satisfying access pattern
unlinkability. Both analytical and empirical analysis show that SBR
exhibits flexibility and usability in practice.
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1 INTRODUCTION
Data outsourcing allows a cloud provider (termed server) to take
over complicated and expensive tasks of storing and managing data
for cloud users (termed client). The servers are widely considered
as “semi-trusted” or “honest-but-curious", in that they follow the
protocol honestly but may passively attempt to learn protected
information from all data observed during the execution of the
protocol. For this reason, outsourced data are crucially encrypted
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by the client. However, access patterns, referring to when and how
often outsourced data are accessed, can still disclose sensitive infor-
mation of queried data, such as keyword information of encrypted
emails [19], ordering information of encrypted values [20], and
even accurate plaintext of encrypted database [15, 25]. In particular,
these access pattern-based attacks typically work as follows. The
cloud server knows query distribution as auxiliary knowledge. Due
to access pattern disclosure, the server also knows which encrypted
data is retrieved by each encrypted query. Over time the server
learns access distribution of outsourced data and thus can infer
query contents by correlating the query distribution to the data ac-
cess distribution. Once the content of an encrypted query is known,
the server easily infers certain sensitive information of outsourced
data retrieved by this query.

Under the outsourcing scenario, hundreds of works have been
presented to enable secure query processing over outsourced data
in the cloud, see [4, 36] for example. Many of these methods serve
the common purpose of privately searching query answers and
informing the client of their locations on the server. Depending
on the query intent, there are different mechanisms to identify the
answer’s locations for a user query, such as SQL queries [16], range
query [18], nearest neighbor query [39, 41], etc. However, there
is one more step to be taken before completing the query, that is,
the client needs to privately retrieve the encrypted answers from
the server using the location information obtained. During this
step, protecting access pattern becomes a major concern because
simply accessing the identified locations immediately discloses
access patterns of the query.

To fill this critical gap between searching query answers and
retrieving the answers, this work focuses on a practical and efficient
retrieval of query answers from the cloud server while protecting
access patterns, given the locations of query answers. We assume
that the searching step is done without disclosing access patterns,
which is the focus of most existing works and beyond the scope
of this paper, and we focus on the retrieval step for fetching a
requested data given its location in the cloud.

1.1 Secure Block Retrieval
We consider a database D of τ data blocks B1, · · · ,Bτ , each of size
m. The block sizem is measured by the number of encryption units
for accommodating the data of a block. For example, assuming one
unit allows 1Kb data for encryption, a data block Bi containing 1Mb
data would have the block sizem = 1024, represented as a column
vector of length 1024 with one element per encryption unit. At
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initialization, the client will encrypt each Bi to [Bi ], and outsource
the encrypted database [D] = ([B1], · · · , [Bτ ]) to the server.

We consider the retrieval step as the following secure block
retrieval query: the client aims to retrieve a single data block Bi
from the outsourced database [D] given its block identifier i (i.e.,
the location). Our solution is designed to satisfy the following goals.

• Security goals. Data confidentiality: the server should not learn
any plaintext of D. Access pattern confidentiality: the server
should not learn the value of i , i.e., which block in D is retrieved
by the query. Data confidentiality is usually provided through
encrypting D to [D] by an encryption scheme with a strong
security guarantee such as semantic security. We focus on access
pattern confidentiality in the rest of the paper.

• Performance goals. Computing query answers and achieving
security goals involve communication cost, client computation
cost, and server computation cost. Practical secure block retrieval
requires that all three parts of query cost are reasonable small.

Developing a practical access pattern protection mechanism for
secure data retrieval is challenging. Most existing schemes don’t
protect access patterns for efficiency concerns [36]. For example,
[16, 18, 39, 41] assume a static relationship between each block Bi
and the location of [Bi ] in [D] and allow the server to identify the
query answers, which immediately discloses access patterns. Cur-
rent techniques for access pattern protection including Private In-
formation Retrieval (PIR) [5, 12, 22, 40] and Oblivious RAM (ORAM)
[10, 30] are widely considered theoretical but impractical [24, 30].
PIR replaces a single query request with a full set of requests for
the entire database, which introduces unacceptable computation
for each query. ORAM continuously shuffles the blocks in a manner
oblivious to the server as they are accessed, which leads to heavy
communication costs (due to downloading the blocks to the client
for shuffling and uploading permuted blocks to the server). For ex-
ample, the communication cost of searchable symmetric encryption
schemes using ORAM could be larger than that of simply sending
back all outsourced data stored in the server [8].

1.2 Contributions
Our contributions are summarized as follows:

Contribution 1 (Section 3). We present a new notion of ac-
cess pattern confidentiality, called access pattern unlinkability, to
address the performance bottleneck of existing techniques. This
notion divides access pattern into short-term pattern (i.e., which
block is retrieved by each query) and long-term pattern (i.e., how
often a block is retrieved over time), and thus allows specifying
different parameters to protect them according to both security and
performance impacts.

Contribution 2 (Section 4). We present a construction of secure
block retrieval that provides access pattern unlinkability, called the
SBR Protocol, using PIR and Oblivious Shuffling as building blocks.

Contribution 3 (Section 5). We analyze the complexity of two
versions of SBR designed for different application scenarios, and
compare them with state-of-the-art competitors with an in-depth
analysis.

Contribution 4 (Section 6). We show experimentally that SBR
approaches outperform state-of-the-art methods.

2 PRELIMINARIES
Our SBR Protocol adopts Private Information Retrieval (PIR) and
Oblivious Shuffling (OS) as building blocks. In this section, we re-
view existing PIR and OS schemes and explain how we choose
appropriate schemes for our solutions.

2.1 Private Information Retrieval
Private Information Retrieval (PIR) [5, 12, 22, 37, 40] is a crypto-
graphic primitive which allows a user to retrieve an item from a
server in possession of a set of items without revealing which one
is retrieved. Since PIR can hide the target of each retrieval, it is
widely used independently or as a building block for hiding access
patterns. In this paper, we consider only single-server, plaintext-
independent PIR schemes. Multi-server schemes require multiple
cloud providers and plaintext-dependent schemes [5, 22] require
the data being in plaintext. Both are not appropriate for our setting.

2.1.1 Linear PIR. Wu et al. [37] have shown that an efficient single-
server, plaintext-independent PIR can be built using the generalized
Paillier cryptosystem εs (s ≥ 1) [9]. εs is an additive homomorphic
encryption scheme providing semantic security. Let N be the public
key of εs . For any integer s ≥ 1, the encryption algorithm can
map any plaintext x ∈ ZN s to a ciphertext JxK, where ZN s =

{0, 1, · · · ,N s − 1}. By exploiting additive homomorphic property
of εs , the following homomorphic dot product is developed in [37]:

J®xK ⊙ ®y def
= Jx1Ky1 × · · · × Jxl K

yl mod N s+1

= J®x · ®yK

where xi ,yi ∈ ZN s , ®x = (x1, · · · , xl ), ®y = (y1, · · · ,yl )T .
Using homomorphic dot product, for any 1 ≤ i ≤ l , [37] imple-

ments PIR functionality of privately retrieving the i-th item of ®y on
the server without disclosing i to the server as follows:

1) GenerateQuery: the client builds a binary selector ®x =
(x1, · · · , xl ) with xi = 1 and x j = 0 for all j , i , encrypts ®x
bit-wise to [[®x]] with εs , and sends [[®x]] to the server.

2) QueryProcess: the server computes the homomorphic dot
product between [[®x]] and ®y, which outputs the query result
[[yi ]]. The server returns the result [[yi ]].

3) DecryptResult: the client decrypts [[yi ]] to obtain yi .

The client can adopt the above PIR protocol for retrieving the i-
th data block from a column of l encrypted outsourced blocks [C] =
([B1], · · · , [Bl ])

T without disclosing i to the server, that is, by letting
®y = [C], we have J®xK ⊙ ®y = J®x · ([B1], · · · , [Bl ])T K = J[Bi ]K. Note
that we use different notations for the encrypted binary selector
J®xK and the outsourced data blocks [C] because they are encrypted
using different schemes. Any existing encryption scheme can be
used for [C]; the only requirement is that the ciphertext space of
[C] is in the plaintext space of εs (i.e., ZN s ), which can be achieved
by choosing s properly (more details will be given in Section 6). We
wrap this function as the following primitive and use it directly in
the remainder of this paper.

Bi ← PIR(i, [C]) (1)



Table 1: Comparison of best oblivious shuffling schemes over n data blocks of sizem

Best OS Algorithms Communication cost Client computation cost Server computation cost

Client-side shuffling Interleave Buffer Shuffle [38] O(mn) O(mn) —

Server-side shuffling Repeatable Oblivious Shuffle [42] O(n2) O(n2) O(mn2)

Due to the security properties of PIR, the client can use the primitive
in Eqn (1) to privately retrieve any block Bi from [C] without
disclosing its location i and the content to the server.

Considering that [C] contains l data blocks of sizem, the cost of
PIR operation in Eqn (1) includes: O(l) and O(m) client computa-
tion for preparing the query [[®x]] and decrypting the result [[[Bi ]]],
O(l) and O(m) communication for uploading the query [[®x]] and
downloading the answer [[[Bi ]]], and O(ml) server computation for
computing homomorpic dot product between [[x]] and [C]. There-
fore, each call of this PIR operation incurs O(m + l) client cost,
O(m + l) communication cost, and O(ml) server cost.

2.2 Oblivious Shuffling
Oblivious shuffling is a cryptographic primitive which moves out-
sourced data blocks around in the server’s storage in a fashion that
disallows the server to correlate the previous physical locations
of the blocks with their new locations. In other words, oblivious
shuffling enables the client to permute a row of n outsourced data
blocks [R] = ([B1], · · · , [Bn ]) in the server according to a permuta-
tion π chosen by the client without disclosing π to the server. We
wrap this function as the following primitive and use it directly in
the remainder of this paper.

[R · π ] ← OS(π , [R]) (2)

Existing oblivious shuffling falls into two general categories.
Client-side shuffling depends on data movements to perform

shuffle operations. To be specific, existing schemes in this category
[13, 14, 26, 28, 38] commonly work in a multi-round manner. In
each round, the client downloads a small portion of outsourced
data to its local storage, shuffles it after decryption, re-encrypts the
data and writes it back to the server. The best current practice of
client-side shuffling is Interleave Buffer Shuffle [38].

Server-side shuffling leverages server computation to perform
shuffle operations. Layered Shuffle [1, 10] achieves server-side shuf-
fling through computing homomorphic matrix multiplication be-
tween outsourced data and encrypted permutation matrix on the
server. However, it adds one more encryption layer to the out-
sourced data after every shuffle. To avoid unbounded increase of
shuffling cost (as well as data size) due to layer explosion, Layered
Shuffle still depends on data movements to periodically, say after
every k shuffles, download outsourced data for peeling off extra
encryption layers.

Repeatable Oblivious Shuffle [42] is recently proposed to com-
pletely eliminate the movement of outsourced data between the
client and the server. This scheme essentially depends on the server
to compute homomorphic dot products between outsourced data
and some helper instructions that encode a target permutation,

without increasing the encryption layer. Repeatable Oblivious Shuf-
fle is currently the most efficient server-side shuffling scheme.

Table 1 summarizes the comparisons between the best client-
side shuffling method (Interleave Buffer Shuffle [38]) and the best
server-side shuffling method (Repeatable Oblivious Shuffle [42]) for
shuffling n data blocks of sizem. Interleave Buffer Shuffle involves
no server computation, but its client cost and communication cost
depend on both the block sizem and the block numbern, i.e.,O(mn),
which is only acceptable when the block sizem is small. In contrast,
Repeatable Oblivious Shuffle eliminates the effect ofm on the com-
munication and client computation costs, but incurs a quadratic
cost in n. Therefore, it suits the situation in which the sizem of
outsourced data block is large in relation to the number of blocks n.

3 ACCESS PATTERN UNLINKABILITY
To eliminate the drawbacks of existing techniques, we explore
possible directions of access pattern protection and propose a new
access pattern privacy definition that well balances the security
and performance requirements in this section.

Considering block retrieval queries in Section 1.1, access pat-
terns refer to the client’s behaviors of accessing outsourced data
blocks. To hide access patterns, a straightforward way is to hide
the target block among all outsourced blocks whenever a retrieval
query is requested. However, this strategy incurs prohibitive query
cost. For example, PIR suffers from heavy server computation and
ORAM suffers from heavy communication, as discussed in Section
1.1. To alleviate this performance bottleneck, one strategy is to
hide the target block among only a group of outsourced blocks for
each query. This, however, leads to uneven accesses to different
outsourced blocks and opens up possibilities for attacks. To exam-
ine the security implication of these different strategies for access
pattern protection, we separate access patterns at individual query
level and at query distribution level: the short-term pattern tells
which data block is retrieved by a particular query, and the long-
term pattern shows how frequently a particular block has been
retrieved (i.e., access distribution of the blocks over time).

Due to short-term pattern disclosures, the server may infer the
information of an outsourced block, by correlating a known query
with a subsequent observation of retrieving this block. To prevent
such attacks, we simply hide the target of each query among a group
of indistinguishable blocks. That is, if any block Bi is requested,
a group of outsourced blocks containing [Bi ] are accessed in an
indistinguishable way. Let the size of the group be some integer
l > 1. The server would have only 1

l probability to infer which
accessed block is actually retrieved by the query. Since enforcing
such strict protection is expensive and it is widely assumed that the
server is unable to acquire known queries [21, 34, 41], the group
size l can be sufficiently small for promoting practical performance.



Due to long-term pattern disclosures, the server can launch more
realistic attacks such as [15, 19, 20, 25] for inferring sensitive in-
formation. Recalling that these attacks are commonly executed by
mapping the query distribution known as background knowledge to
the access distribution over outsourced data. The latter is observed
by the server. The successful linking critically relies on the server’s
observing a skewed (actual) access distribution. To prevent such
attacks, it is sufficient to break the mapping by ensuring that ob-
served accesses to outsourced blocks follow a uniform distribution
from the server’s perspective.

It is notable that enforcing the uniform observed access distri-
bution over the whole database for hiding long-term pattern is
unnecessary and outrageously expensive, especially when the total
number of blocks is huge. For each outsourced block, assuming
the server observes a uniform access distribution over a group of
r encrypted blocks (including itself), then the server’s probability
of mapping this block to a known query distribution through its
observed access frequency would be bounded by 1

r and the proba-
bility of mapping all these r blocks correctly would be bounded by
1
r ! . By choosing a sufficiently large r , the inference attacks using
long-term patterns (e.g., [15, 19, 20, 25]) can be effectively avoided
with improved performance. Moreover, different from short-term
pattern protection, enforcing a uniform observed access distribu-
tion over a group of r blocks does not require accessing the entire
group for each query. This provides an opportunity to amortize the
cost of protecting long-term pattern among multiple queries for
better performance (more details will be given in Section 4).

The next definition formalizes our ideas of practical access pat-
tern protection discussed above.

Definition 3.1 ((l, r )-Access Pattern Unlinkability). Let r > l > 1.
We say that a block Bi has an unlinkable access pattern w.r.t. (l, r )
if the following conditions hold:

1. Short-term privacy: If Bi is retrieved by a query, a group of l
blocks containing Bi are accessed indistinguishably.

2. Long-term privacy: At any time, Bi belongs to a group of r
blocks whose observed access distribution O is a random sample
of uniform distribution U , noted as O = U .

Our security goal is that every block Bi in the database has an
unlinkable access pattern. □

Intuitively, short-term privacy bounds strictly the probability
of breaching short-term pattern to be ≤ 1

l , and long-term privacy
bounds statistically that of breaching long-term pattern to be ≤ 1

r .
This idea of bounding the inference probability by hiding the target
among a group of candidates is shared by well known privacy mea-
sures such as k-anonymity [35] and l-diversity [23]. We stress that
our definition makes no assumption about the query distribution;
even if query distribution is highly skewed, it cannot be linked to
the observed access distribution over outsourced data because the
latter is a random sample of uniform distribution and every block
could be a candidate.

We believe that limiting the risk of short-term and long-term
pattern disclosure with two separate parameters l and r would
provide a more practical solution to reconcile the security and
performance goals. The key consideration in choosing l and r is the

trade-off between security and efficiency: a larger l immediately
increases each query’s cost for better short-term privacy, whereas
a larger r leads to a higher cost for better long-term privacy that,
however, can be amortized over multiple queries. Motivated by the
observation that long-term privacy outweighs short-term privacy,
performance and privacy can be trade-offed by choosing a small l
and a large r .

It is interesting to note that PIR and ORAM correspond to the
extreme case of setting l to τ , the total number of blocks in the
database; in this case, short-term privacy implies long-term privacy
(i.e., r = l) because the target of every query is indistinguishable
from all other blocks in the outsourced database. Since PIR and
ORAM do not differentiate privacy concerns on short-term and
long-term patterns, but hide them with the same level of protection,
the amortized cost is equal to the worst-case cost. Unfortunately,
the requirement that hiding the target of each query (i.e., short-term
pattern) among a large group of data blocks is often impractical,
especially for the group as large as the whole database.

4 OUR APPROACH
We now present our solution, called SBR to the secure block re-
trieval problem in Section 1.1, which achieves access pattern un-
linkability in Definition 3.1.

4.1 Main Ideas
Given the security parameters (l, r ), for simplicity we assume that
r is divisible by l and let n = r

l . The outsourced database [D]
is partitioned into buckets of r encrypted blocks each. Since each
bucket is considered independently, our discussion below focuses
on a single bucket. We organize the r encrypted blocks in a bucket
as an l×n matrix. For any query aiming at a target block [Bt ] in this
bucket, SBR involves the following three components to retrieving
Bt , while enforcing the access pattern unlinkability in Definition
3.1 w.r.t. the parameters (l, r ).

1) Query Answering: This component retrieves the target block
Bt from the server while providing short-term privacy. To re-
trieve Bt , the client first determines the position (i, j) of [Bt ]
within the bucket of r data blocks stored in the server, and sends
j to the server. The server extracts the j-th column of the bucket
currently containing [Bt ], say [C]. Since the i-th block of [C]
is the target block [Bt ], the client can adopt the PIR primitive
described in Eqn (1) to privately retrieve Bt without disclosing i
to the server, i.e.,

Bt ← PIR(i, [C])

During this operation, the server learns j for extracting the
column [C]. However, the server does not learn i due to the
property of PIR that the client privately retrieves Bt from [C]
without disclosing its position i in [C]. Therefore, short-term
privacy is provided.

2) Privacy Checking: Through the query answering, the server
learns that some block in column j was retrieved by the query.
The client must evaluate if long-term privacy still holds (Defini-
tion 3.1) in the presence of this disclosure. This can be done
by the chi-square test for goodness of fit [11, 17]. Let O =



𝐵𝐵1 𝐵𝐵2 𝐵𝐵3 𝐵𝐵4
𝐵𝐵5 𝐵𝐵6 𝐵𝐵7 𝐵𝐵8
𝐵𝐵9 𝐵𝐵10 𝐵𝐵11 𝐵𝐵12

𝐶𝐶

Client

𝐵𝐵2 𝐵𝐵1 𝐵𝐵4 𝐵𝐵3
𝐵𝐵8 𝐵𝐵7 𝐵𝐵6 𝐵𝐵5
𝐵𝐵11 𝐵𝐵12 𝐵𝐵9 𝐵𝐵10

Server

𝑖𝑖 = 2

𝐵𝐵6 ← 𝑃𝑃𝑃𝑃𝑃𝑃 𝑖𝑖, 𝐶𝐶

𝑃𝑃1 :
𝑃𝑃2 :
𝑃𝑃3 :

(a) Query Answering (c) Privacy Restoration

𝑃𝑃1 � 𝜋𝜋1 :
𝑃𝑃2 � 𝜋𝜋2 :
𝑃𝑃3 � 𝜋𝜋3 :

𝜋𝜋1 = 1 2 3 4
2 1 4 3

𝜋𝜋2 = 1 2 3 4
4 3 2 1

𝜋𝜋3 = 1 2 3 4
3 4 1 2

𝑃𝑃𝑘𝑘 � 𝜋𝜋𝑘𝑘 ← 𝑂𝑂𝑂𝑂 𝜋𝜋𝑘𝑘 , 𝑃𝑃𝑘𝑘 , k=1,2,3

(b) Privacy Checking

Observed distribution O

Chi-square test 𝐻𝐻0: O = U

Uniform distribution U

replace𝑙𝑙 = 3

𝑛𝑛 = 4

𝑖𝑖, 𝑗𝑗 ← 𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛(𝑝𝑝)

𝑗𝑗 = 2

(2)

(1)

(3)

(4)

(5)

Figure 1: SBR (r = 12 and l = 3): (a) the client uses PIR to privately retrieve the 2nd (i=2) block (B6) from the 2nd (j=2) column
[C] of the bucket; (b) the client performs chi-square test to check if current observed access distribution O remains uniform;
(c) the client uses oblivious shuffling to privately permute all l = 3 rows of the bucket independently.

{O(1), · · · ,O(r )} be the observed accesses to the r blocks in
the bucket with

∑r
k=1 O(k) = o, and U = {U (1), · · · ,U (r )}

be the uniform distribution with U (k) = o
r for all 1 ≤ k ≤ r .

The null hypothesis H0 states that O and U come from the same
underlying distribution, or equivalently, O is a random sample
of U , denoted by

H0 : O = U .

The chi-square statistic χ2 is defined by

χ2 =
∑r

k=1
(O(k) −U (k))2

U (k)

Let pv be the p-value of the above χ2 statistic. According to the
literatures [11, 17], the chi-square test fails to reject H0 at the
significance level α if

pv ≥ α . (3)

Otherwise, it rejects H0 at this significance level, which means
that the two distributions are different. In this case, we consider
that long-term privacy is violated. The condition for applying
chi-square test is that the average accesses per block is at least 5,
i.e., o ≥ 5r . The “warm-up period" refers to the period before this
condition is met. During this period, we consider that long-term
privacy holds trivially as the number of observations is too small
to meaningfully reject H0.

The above chi-square test involves two types of errors: (Type I
error) the null hypothesis H0 is rejected when H0 is true; (Type
II error) H0 fails to be rejected when H0 is false. These two error
types are inextricably linked such that a reduction in one error
increases the other. The choice of α depends on the focus of

Type I or Type II error. Given the significance level α , there is a
α chance of making Type I error if H0 is rejected. To limit Type
I error, a small significance level (e.g., α = 0.05) is commonly
used in the literature. In our context, we want to limit Type II
error that corresponds to missing the detection of long-term
privacy violation. In order to do this, as suggested in [11, 17],
the significance level should be a large value so that the null
hypothesis can be rejected quite easily. In other words, the null
hypothesis is accepted only in those circumstances where the
data conforms very closely with the claim of H0. So we choose
a large α , e.g., α = 0.95.

3) Privacy Restoration: If H0 is rejected during the above test,
this component is activated to restore long-term privacy. In
particular, for each row [Rk ] of the bucket in the server, 1 ≤
k ≤ l , the client randomly picks a permutation πk and adopts
the oblivious shuffling primitive in Eqn (2) to privately permute
[Rk ] according to πk while keeping πk secret from the server,
i.e.,

[Rk · πk ] ← OS(πk , [Rk ]), 1 ≤ k ≤ l

After this operation, the block [Bt ] at position (i, j) is moved to
position (i, πi (j)) after privacy restoration, therefore, to retrieve
[Bt ] subsequently, the client would request the block at position
(i, πi (j)) in the bucket. To support these operations, the client
can store a position map, such that (i, j) ← position(t) means
that block Bt currently locates at (i, j) of the bucket. After the
shuffling, the client updates position for all r blocks of the bucket
according to πk , 1 ≤ k ≤ l . The space for storing position map is
linear to the number of blocks in the bucket, but is independent



of block size. Since position map is commonly used in existing
access pattern protection techniques, we omit describing it in
detail here and refer readers to the literature [10, 33].

Long-term privacy is provided because any violation of long-
term privacy, tested by rejecting H0, leads to oblivious shuffling
of every row [Rk ] of the bucket and the shuffling resets the
access distribution of blocks in the bucket because the access
information cannot be accumulated due to the hidden correspon-
dence of the positions before and after the shuffling. Before the
restoration being triggered, the long-term privacy is trivially
guaranteed because the server cannot distinguish observed ac-
cess distribution from uniform distribution as long as H0 is still
accepted.

We use the next example to explain how SBR retrieves a block
from a bucket of outsourced blocks while enforcing access pattern
unlinkability.

Example 4.1. Consider the bucket of 12 outsourced blocks [B1],
· · · , [B12] represented by a 3 × 4 matrix in Figure 1, where l = 3
and r = 12. The upper part represents information known by the
client and the lower part represents information kept by the server.
The following steps are involved to retrieve the block B6.

Query Answering (Figure 1(a)): The client first finds the cur-
rent position (2, 2) of the query target B6 in the outsourced bucket
(step 1) and sends the column position j = 2 to the server (step 2).
Next, the server extracts [C] as the 2nd column of the bucket, i.e.,
[C] = ([B2], [B6], [B10])T . Then, the client launches a PIR operation
to retrieve the 2nd block B6 of [C] from the server (step 3). Since
PIR hides the row position i = 2 of B6 among l = 3 candidates, the
short-term privacy is guaranteed.

PrivacyChecking (Figure 1(b)): Through the operations above,
the server learns that query result must be one of l = 3 blocks in [C].
To evaluate implication of such leakage for long-term privacy, After
the above query, the client updates the observed access distribution
O and tests if the null hypothesis H0 : O = U still holds w.r.t the
uniform distribution U (step 4). If the chi-square test rejects H0, a
violation of long-term privacy is detected.

Privacy Restoration (Figure 1(c)): If there is a privacy viola-
tion detected by privacy checking, for each row [Rk ] of the bucket,
the client launches an oblivious shuffling for the n = 4 blocks
in [Rk ] according to a random permutation πk , 1 ≤ k ≤ 3 (step
5). For instance, the 1st row ([B1], [B2], [B3], [B4]) is changed into
([B2], [B1], [B4], [B3]). Since all l = 3 rows are randomly permuted
and all permutations are hidden from the server, the observed ac-
cess information O becomes invalid. Thus, the long-term privacy
is restored. The new contents of the bucket is illustrated in Figure
1(c). □

4.2 Algorithm
Algorithm 1 summarizes the SBR protocol for retrieving a target
block Bt , 1 ≤ t ≤ r . The protocol is executed jointly by the client
and the server. The server maintains the bucket of r outsourced
data blocks as an l × n matrix, for n = r

l . The client maintains the
position map position to track current locations of all r blocks in
the bucket, and maintains the observed access distribution O of
these blocks. Initially, O is all-zeros. The steps are as follows.

Algorithm 1 Bt ← SBR(t)

Require: The client has O and position; the server has [Rk ], 1 ≤
k ≤ l

1: Client: (i, j) ← position(t); send j to the server

2: Server: [C] ← j-th column of the bucket

3: Client and Server: Bt ← PIR(i, [C])

4: Client: update O and perform the chi-square test

5: if the chi-square test rejects H0 then
(a) for 1 ≤ k ≤ l do

- Client: randomly choose πk
- Client and Server: [Rk · πk ] ← OS(πk , [Rk ])

(b) Client: O ← ®0; update position

Line 1: The client finds the position (i, j) of Bt in the bucket using
the position map, and sends the column position j to the server.

Line 2: The server extracts [C] as the j-th column of the bucket.

Line 3: The client and server work collaboratively to retrieve the
i-th block of [C], i.e., Bt , using PIR without disclosing the value
i to the server.

Line 4: The client updates the observed access distribution O of
the bucket by increasing the access of all blocks in [C] by 1. If
the warm-up period is over, the client performs the chi-square
test using O .

Line 5: If the chi-square test rejects H0, the client and the server
collaboratively shuffle each row [Rk ] of the bucket using obliv-
ious shuffling. The client resets O and update the position map
position.

4.3 Discussion
The promising performance of SBR is contributed by several factors.
First, our access pattern unlinkability applies to each individual
bucket of r blocks, instead of the entire database (containing τ
blocks), which significantly reduces the overhead for enforcing
access pattern protection. The idea of partitioning a large database
into multiple buckets and employing access pattern protection over
individual buckets for gaining better performance was previously
suggested in [3, 31, 32], where the bucket size r =

√
τ was suggested.

The other contributing factor is the division of short-term privacy
and long-term privacy so that we pay only a small overhead for
short-term privacy associated with each query, and reduce the over-
head for a stronger long-term privacy by amortizing this overhead
among multiple queries. We demonstrate these performance gains
analytically in Section 5 and empirically in Section 6.

5 ANALYTICAL EVALUATION
This section analytically evaluates the performance of the SBR pro-
tocol presented in Section 4, and reports the analytical comparison
of SBR with state-of-the-art competitors.



5.1 Complexity Analysis
For each query, the SBR protocol in Algorithm 1 is applied to the
bucket of r outsourced blocks that contains its result. As shown in
Figure 1, the bucket is organized as an l ×n matrix, with n = r

l . We
measure SBR’s query cost by

query cost = retrieval cost +
1
nq
× shuffling cost (4)

nq is the number of queries answered between two consecutive
privacy restorations over the bucket, so the second term represents
the amortized shuffling cost per query.

The retrieval cost is incurred by applying a PIR primitive to the
column [C] of l blocks (line 3, Algorithm 1). In this paper, we adopt
Linear PIR [37] for SBR. Thus, the retrieval cost includes O(m + l)
client cost, O(m + l) communication cost, and O(ml) server cost
(refer to Section 2.1 for cost analysis of Linear PIR).

The shuffling cost is incurred by applying an oblivious shuffling
method to each of the l rows in the bucket (line 5(a), Algorithm
1). As discussed in Section 2.2, Interleave Buffer Shuffle [38] and
Repeatable Oblivious Shuffle [42] are the best client-side/server-
side shuffling scheme, respectively. Since SBR can work with both
of them, we develop two versions of SBR in this paper: we call the
SBR implementation adopting Interleave Buffer Shuffle as “SBR-IBS”
and the implementation adopting Repeatable Oblivious Shuffle as
“SBR-ROS”. Table 1 reports the cost of two schemes for shuffling one
row. Thus, the total cost of SBR-IBS and SBR-ROS for shuffling l
rows is l times more. That is, SBR-IBS incursO(lmn) client cost and
O(lmn) communication cost, while SBR-ROS incurs O(ln2) client
cost, O(ln2) communication cost, and O(lmn2) server cost. This
shuffling cost is amortized over the nq queries.

The complete query cost of each version of SBR is given by
the sum of retrieval cost and corresponding amortized shuffling
cost. We summarize query cost of SBR-IBS and SBR-ROS in Ta-
ble 2. We can observe that SBR-ROS outperforms SBR-IBS (i.e.,
less communication cost) if the sizem of outsourced data block is
large in relation to the number of blocks n; otherwise, SBR-IBS is
a better choice. Thus, depending on specific application scenarios
(small-sized blocks vs. large-sized blocks), we make choices be-
tween SBR-IBS and SBR-ROS. For both SBR, a large nq is effective
for diminishing the effect of amortized shuffling cost on the total
query cost. In this case, the actual query cost of SBR is approxi-
mated by its retrieval cost. We will study nq empirically in the next
section.

5.2 Analytical Comparisons
As mentioned previously, there are traditionally two ways to hide
a user’s access pattern: PIR and ORAM. We compare SBR with
state-of-the-art PIR and ORAM for showing its advantages. Note
that SBR involves only one bucket to answer a query. To ensure
fair comparison, we develop the baselines by partitioning the out-
sourced database into buckets as SBR and applying PIR and ORAM
to each bucket (instead of the entire database). Typically, we have
the following baselines that enable secure block retrieval:

• The PIR baseline is built by applying a single-server plaintext
independent PIR method to the bucket containing the target
block of a query, which achieves (l,r)-access pattern unlinkability

Table 2: Comparison of query cost (a bucket has r blocks of
sizem, r > l and n = r

l )

Protocol Communication cost Client cost Server cost

SBR-IBS O (m + l + lmn
nq ) O (m + l + lmn

nq ) 0

SBR-ROS O (m + l + ln2
nq ) O (m + l + ln2

nq ) O (ml + lmn2
nq )

PIR O (m + r ) O (m + r ) O (mr )

Path ORAM O (m log r ) O (m log r ) 0

with l = r . Because PIR guarantees that the retrieval of any
block within the bucket (of r blocks) is indistinguishable from
the retrievals of other blocks.
Since the current best bound of single-server plaintext indepen-
dent PIR is achieved by Linear PIR [37], we adopt it in this baseline.
That is, we treat the entire bucket as a column vector of size r
and input it to Eqn (1). Therefore, the query cost is the cost
of Linear PIR over r blocks, i.e., O(m + r ) client cost, O(m + r )
communication cost, and O(mr ) server cost.

• The ORAM baseline is built by applying an ORAMmethod to the
bucket containing query target, which also achieves (l, r )-access
pattern unlinkability with l = r as ORAM completely conceals
the actual access to each block within the bucket. We consider
Path ORAM [33] in this baseline as it has the best performance
among all ORAM constructions (according to [7]).
Path ORAM [33] organizes the server storage as a binary tree of
nodes containing Z blocks each, with log r levels. Z is a constant,
i.e., 4. For each query, the client retrieves all of O(log r ) blocks
along the path containing the target, permutes and re-encrypts
these blocks, and writes them back to replace the original path
on the server. It incursO(m log r ) client cost andO(m log r ) com-
munication cost per query.

Table 2 summarizes the comparison of SBR and the baseline
methods. From the table, we can observe that both baselines suffer
from serious drawbacks in query performance. PIR has low com-
munication cost by downloading only the target block, but incurs
heavy server computation (O(mr )) due to computing over the entire
bucket for each query. Path ORAM avoids server computation at
the cost of heavy communication (O(m log r )) since each query in-
volves downloading log r blocks to the client and uploading another
log r blocks to the server. In contrast, our SBR approach balances
the goals of reducing communication and computation costs. First,
SBR incurs limited retrieval cost. SBR takes advantage of PIR’s
low communication cost for query answering, while at the same
time it limits the application of PIR over one column of l blocks
(instead of the entire bucket) to reduce server computation. Sec-
ond, the separation of short-term and long-term pattern protection
provides SBR the opportunities to amortize shuffling costs over a
large number of queries (i.e., large nq ). Thus, it effectively reduces
the contribution of amortized shuffling cost in the total query cost
(in Table 2, large nq makes the terms having nq trivial). The joint
effects of limited retrieval cost and amortized shuffling cost enable
SBR to achieve practical query performance. We will evaluate this
advantage empirically in the next section.



Table 3: Parameters in the experiments

Range Default setting
Block number τ 220

Privacy parameter l 23, 24 24, 26, 27 25

Privacy parameter r 28, 29, 210, 211, 212 210

Law parameter δ 0.6, 0.8, 1.0, 1.2, 1.4 1.0
Block sizem (MB) 10−3, 10−2, 10−1, 1, 10 1

6 EXPERIMENTAL EVALUATION
This section reports our empirical evaluation of four methods dis-
cussed in Section 5. All methods are implemented in C++ with
OpenMP parallel programming on a server machine 96 Intel Core
i7-3770 CPUs at 3.40 GHz, and a client machine with 2 Intel Core
e7-4860 CPUs at 2.60 GHz. Both run a Linux system.

The empirical comparisons are based on partitioning the out-
sourced database into buckets (each has r encrypted data blocks)
and then applying different secure retrieval methods to each bucket
for retrieving the blocks within this bucket, which enforces (l, r )-
access pattern unlinkability (Definition 3.1). The implementation
details of each method are summarized as below:

• SBR. Two SBR methods adopt different oblivious shuffling algo-
rithms, which depend on different schemes to encrypt outsourced
data and thus have varied ciphertext spaces. To enable query an-
swering with the PIR primitive in Eqn (1) (i.e., Linear PIR [37]),
the ciphertext space of outsourced data must be in the plaintext
space of Linear PIR, which is achieved by choosing the proper
parameter s for Linear PIR.

SBR-IBS adopts Interleave Buffer Shuffle [38]. We follow the same
setting as [38] to implement IBS, which encrypts data blocks with
AES-128 and produces 128-bit ciphertext space. To implement
Linear PIR, we choose 1024-bit key size by following [37] and
let s = 1. The resulted 1024-bit plaintext space of Linear PIR is
sufficient to hold the 128-bit ciphertext space of outsourced data.

SBR-ROS adopts Repeatable Oblivious Shuffle [42]. We follow
the same setting as [42] to implement ROS, which encrypts data
blocks with Paillier Cryptosystem [27] using 1024-bit key size and
produces 2048-bit ciphertext space. For Linear PIR, we choose
1024-bit key size as above but let s = 2. It produces 2048-bit
plaintext space for Linear PIR to hold the 2048-bit ciphertext
space of outsourced data.

• PIR. As the PIR baseline is built from the straightforward applica-
tion of Linear PIR. It can be implemented by following the same
settings as SBR-IBS. That is, the data blocks are encrypted by
AES-128, while Linear PIR is implemented by choosing 1024-bit
key size and s = 1.

• Path ORAM [33]. We adopt the open source library SEAL-ORAM
[6] for the Path ORAM baseline, which encrypts outsourced data
with AES-128.

Table 4: nq of SBR w.r.t. privacy parameter l
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Figure 2: Query cost w.r.t. privacy parameter l (Path ORAM
has no server computation and thus not reported in (c))

6.1 Experiment Setup
In the experiments, we first evaluate query performance of SBRwith
respect to its privacy parameters, i.e., short-term privacy parameter
l and long-term privacy parameter r . Next, according to Eqn (4),
SBR’s query cost is also affected by nq , the number of queries
processed between two consecutive privacy restorations. nq largely
depends on the underlying query distribution. We simulate query
distribution by the power law distribution, as commonly assumed
in literature [2, 29]. That is, the frequency of retrieving the i-th
block Bi in the database {B1, · · · ,Bτ } is proportional to 1/iδ . We
evaluate the effect of varied δ on the query cost. Finally, since both
data transmission and query computation are affected by the block
sizem, we also evaluate the effect of variedm on query cost1.

The default values for some key parameters are as follows. We
set the number τ of data blocks in the database to 220 (the same
as earlier studies in [24]). We set the long-term privacy parameter,
r , to

√
τ = 210 as explained in Section 4. We set δ , the skewness

parameter of query distribution, to 1.0 (the same with the setting
in [2] and [7]). Finally, we set the block sizem to 1.0 MB as [24].

Table 3 summarizes the ranges of these key parameters and
their default settings used in the experiments. For each specified
setting of (l, r , δ ,m), we generate a sequence of ten million queries
randomly sampled from the underlying query distribution and
report the average query cost. The reported nq counts only the
queries after the warm-up period of chi-square test; therefore, the
actual count is larger than the value reported here. The significance
level α for chi-square test is fixed at 0.95; we observe little difference
in SBR’s query cost for varying α from 0.80 to 0.99.

6.2 Experiment Results
1) Effect of privacy parameter l : A larger l offers stronger short-
term privacy. Figure 2 reports the query cost w.r.t. l , while all other
parameters are fixed at default. As l increases, the retrieval cost
of SBR increases (because of more data blocks involved in query

1As different retrieval methods adopt different encryption schemes that vary the size
of encryption units (e.g., one unit of SBR-IBS has 128-bit data but one unit of SBR-ROS
has 1024-bit data), the block sizem in the experiments is the size of a plaintext block
in MB, instead of the number of encryption units in one block.



Table 5: nq of SBR w.r.t. privacy parameter r

r 28 29 210 211 212
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Figure 3: Query cost w.r.t. privacy parameter r (Path ORAM
has no server computation and thus not reported in (c))

answering) but the amortized shuffling cost decreases (mainly be-
cause of larger nq ). To balance these two components of query
cost, a moderate l is recommended for optimal query performance.
For example, with increasing l , SBR-IBS incurs reduced communi-
cation but enlarged server computation, while SBR-ROS exhibits
first a decrease in query cost and then an increase (Figure 2 (c)).
Both achieve better (or more balanced) query performance with
l =
√
r = 25.

From Figure 2, we can observe that our SBR approaches signifi-
cantly outperform the baselines with balanced communication and
computation costs. To retrieve one block of 1 MB data, Path ORAM
involves 80 MB data transmission and PIR involves approximately
200 seconds server computation. Thus, both are impractical for real
applications. In contrast, with l = 25, SBR-IBS transmits only 4
MB data and computes the result within 15 seconds on the server.
Similarly, SBR-ROS transmits 3 MB data and takes 28 seconds for
computation by the server. As for the client’s computation, the
costs of all four methods are reasonably small (less than 30 sec-
onds). These costs aremostly contributed by the decryption of query
results. Note that Path ORAM has the highest client computation
complexity (O(m log r ) as shown in Table 2) but involves less time
for computation. The reason is that Path ORAM does not require
any server computation and thus adopts AES-128 as the encryption
scheme, which enables fast decryption. In general, there results
demonstrate the advantages of SBR. That is, SBR enables practical
secure block retrieval by eliminating bottlenecks of the baselines
(either prohibitive communication or server computation).

Considering that large nq is essential for SPR’s good query per-
formance, we report the exact nq with varied l in Table 4. Clearly,
larger l leads to larger nq . Such increased nq is resulted from much
smoother observed access distribution for two reasons. First, in-
creased l achieves more balanced query accesses among different
columns of the bucket. Second, the PIR-based query processing
ensures that the accesses to more blocks within the same column
are indistinguishable.

2) Effect of privacy parameter r : A larger r provides stronger
long-term privacy but increases the row size n = r

l , thus, increases
the shuffling cost of SBR. Figure 5 reports the query cost w.r.t.
r , while other parameters are fixed at default. As r increases, the

Table 6: nq of SBR w.r.t. law parameter δ

δ 0.6 0.8 1.0 1.2 1.4
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Figure 4: Query cost w.r.t. law parameter δ (Path ORAM has
no server computation and thus not reported in (c))

communication and client costs of PathORAM increase, contributed
by the O(log r ) blowup in their cost complexity in Table 2 (i.e., the
term m log r ). The query cost of PIR also significantly increases
(especially the server cost) because it computes over all r blocks
for answering each query. For SBR, although a larger r leads to a
larger shuffling cost (e.g., increased communication in SBR-IBS and
increased server computation in SBR-ROS) due to a larger row size
n, the amortized shuffling cost remain reasonably small due to a
large nq shown in Table 5. This explains why both SBR still exhibit
balanced communication and computation components in query
cost and thus outperforms the baselines.

3) Effect of law parameter δ : A larger δ leads to a more skewed
query distribution, therefore, triggers more frequent shuffles in SBR
to enforce a uniform observed access distribution for long-term pri-
vacy. Figure 4 reports the query cost w.r.t. δ , while other parameters
are fixed at default. In general, more skewed query distribution leads
to increased query cost for SBR because of increased amortized
shuffling cost. Typically, larger δ leads to the increase of commu-
nication cost in SBR-IBS and the increase of server computation
cost in SBR-ROS, due to the adoption of communication-intensive
(Interleave Buffer Shuffle) and server computation-insensitive (Re-
peatable Oblivious Shuffle) shuffling algorithms, respectively. How-
ever, skewed query distribution (e.g., δ = 1.2, 1.4) does not destroy
the balance between SBR’s communication and computation costs.
In contrast to Path ORAM and PIR (with static but expensive query
cost), another advantage of SBR is that it can benefit from less
biased query distribution (δ ≤ 1.0) for better performance.

4) Effect of block sizem: A largerm indicates more data contained
in each data block, thus, increases the query cost. Figure 5 reports
the query cost w.r.t.m, while other parameters are fixed at default.
As expected, all methods show an increase in query cost. In term
of communication cost and client cost, SBR-IBS has better query
performance than SBR-ROS with smallm, whereas SBR-ROS out-
performs SBR-IBS with largem. The reason is that Interleave Buffer
Shuffle used in SBR-IBS suits for small-sized blocks but Repeatable
Oblivious Shuffle used in SBR-ROS suits for large-sized blocks, as
discussed in Section 2.2. The results verify the flexibility of SBR
under different application scenarios.
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no server computation and thus not reported in (c))

7 CONCLUSION
Efficient block retrieval from an outsourced database while pro-
tecting access patterns is a challenging problem. Existing PIR and
ORAM solutions suffer from prohibitive computation or commu-
nication cost, and thus are impractical. To fix these performance
bottlenecks, we present a new security definition, access pattern
unlinkability, for measuring the protection of access patterns. This
novel definition separates access pattern privacy into short-term
privacy at individual query level and long-term privacy at query
distribution level, which provides the flexibility to reconcile access
pattern protection and query performance. Based on existing PIR
and oblivious shuffling methods, we present the construction of
the SBR protocol for secure block retrieval with access pattern un-
linkability guarantees. Under different application scenarios, SBR
can adopt different shuffling algorithms to have better query per-
formance. Both analytical and empirical analysis demonstrate the
flexibility and usability of SBR in practice.
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