®

Check for
updates

Class Indistinguishability for Outsourcing
Equality Conjunction Search

Weipeng Lin' ™) Ke Wang', Zhilin Zhang!, Ada Waichee Fu?,
Raymond Chi-Wing Wong?®, and Cheng Long*

! Simon Fraser University, Vancouver, Canada
{weipengl ke _wang,zhilinz}@sfu.ca
2 Chinese University of Hong Kong, Hong Kong, China
3 Hong Kong University of Science and Technology, Hong Kong, China
4 Nanyang Technological University, Singapore, Singapore

Abstract. Searchable symmetric encryption (SSE) enables a remote
cloud server to answer queries directly over encrypted data on a client’s
behalf, therefore, relieves the resource limited client from complicated
data management tasks. Two key requirements are a strong security
guarantee and a sub-linear search performance. The bucketization app-
roach in the literature addresses these requirements at the expense of
downloading many false positives or requiring the client to search rele-
vant bucket ids locally, which limits the applicability of the method. In
this paper, we propose a novel approach CLASS to meet these require-
ments for equality conjunction search while minimizing the client work
and communication cost. First, we generalize the standard ciphertext
indistinguishability to partitioned data, called class indistinguishability,
which provides a level of ciphertext indistinguishability similar to that of
bucketization but allows the cloud server to perform search of relevant
data and filtering of false positives. We present a construction achiev-
ing these goals through a two-phase search algorithm for a query. The
first phase finds a candidate set through a sub-linear search. The second
phase finds the exact query result using a linear search applied to the
candidate set. Both phases are performed by the server and are imple-
mented by plugging in existing search methods. The experiment results
on large real-world data sets show that our approach outperforms the
state-of-the-art.

Keywords: Searchable encryption + Equality conjunction search -
Sub-linear search

1 Introduction

The current trend towards cloud-based Database-as-a-Service (DaaS) as an alter-
native to traditional on-site relational database management systems has largely
been driven by the perceived simplicity and cost-effectiveness. On one hand, the
sensitive and confidential nature of data requires that outsourced data need to be

© Springer Nature Switzerland AG 2019
D. Da Silva et al. (Eds.): CLOUD 2019, LNCS 11513, pp. 253-270, 2019.
https://doi.org/10.1007/978-3-030-23502-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-23502-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-23502-4_18

254 W. Lin et al.

stored in encrypted form to preserve the privacy. On the other hand, outsourcing
encrypted data precludes the client from delegating query processing tasks that
depend on plaintext data information to the remote cloud server (or server for
short), thus, induces inefficiency. Apparently, sending the whole encrypted data
to the client for each query is impractical for most applications that deal with a
large amount of data.

A promising solution to the above problem is searchable symmetric encryp-
tion (SSE) that allows the server to answer search queries directly over encrypted
data on a client’s behalf while protecting the confidentiality of plaintext data
and queries, for example, in the sense of ciphertext indistinguishability 7,9]. Like
most works [5,7,9], we focus on concealing plaintext data and queries but allow
the disclosure of “access pattern”, which refers to the set of (encrypted) records
retrieved by each query as a result of granting the server the search capacity.
For hiding access patterns, please refer to private information retrieval [25] and
Oblivious RAM [21] techniques.

1.1 Motivation

A key challenge for SSE is dealing with two conflicting goals: a strong security
guarantee, e.g., ciphertext indistinguishability (more details later), and a sub-
linear search performance for computing a query. Ciphertext indistinguishability
requires that the adversary cannot distinguish two histories of interacting with
the system having the same trace that includes everything observed by the adver-
sary during the interaction other than encrypted data and queries, such as the
database size and the result size. Unfortunately, this level of indistinguishability
is difficult to satisfy if we want the server to perform a sub-linear search that
entails distinguishing the records that do not need to be searched from those
that do.

In some practical scenarios, it suffices to maintain indistinguishability among
a small number of individuals. For example, k-anonymity [22] ensures that each
individual cannot be distinguished from (k — 1) other individuals, where k is
a security parameter, which protects each individual by the indistinguishabil-
ity within a group of size k. Another scenario is that not all individuals care
about indistinguishability and indistinguishability is needed only for those who
care. For example, suppose that Alice and Bob care about indistinguishability
between them but Cat and Dog do not, it suffices to partition the domain into
three classes go = {Cat}, g1 = {Dog}, go = {Alice, Bob} and enforce ciphertext
indistinguishability within each class. On the other hand, such class indistin-
guishability would allow us to prune irrelevant classes for a query, which is
impossible for the standard ciphertext indistinguishability.

Enforcing class indistinguishability is not new. The bucketization [11-13] can
be considered as a construction of class indistinguishability. In this approach,
records in the database are partitioned into buckets (i.e., classes) according
to a specified partitioning of attribute domains and the records in a bucket
are retrieved using the bucket id whereas plaintext data are encrypted using
traditional techniques and stored on the server. To answer a query, the client

Class Indistinguishability for Outsourcing Equality Conjunction Search 255

first maps the query to relevant bucket ids using a local index and submits
the bucket ids to the server. The server returns encrypted data according to the
received bucket ids. The client recovers the query result after decrypting returned
data and filtering false positives. Sub-linear search performance is supported by
retrieving only the data in relevant buckets for a query.

However, bucketization suffers from two main drawbacks. One is that the
client needs to search locally for relevant bucket ids for a query, referred to as
query translation processing in [11-13]. This requires additional overheads on
the resource limited client for storing and maintaining the translation informa-
tion (i.e., the information for all buckets) for dynamic data, but the powerful
server only needs to retrieve encrypted data through bucket ids computed by
the client. Another drawback is that false positives are communicated to the
client because they can only be filtered by the client. These are indicated by the
boxes named “Search” and “Filtering” on the client side in Fig.1(A). A finer
bucket granularity will increase client’s search work due to the increased num-
ber of buckets (especially for multi-dimensional data) whereas a coarser bucket
granularity will increase the communication cost increased false positives. Since
client resources and network bandwidth are limited, this approach’s application
will be limited.

Trusted client Untrusted server Trusted client Untrusted server
True Candidate © True Encrypted CandigjateC
result Decrypt set M result 5) result sef
ilteri i Dat: ted | | Decrypt Ertor
r Filtering| cansd;?ate ?);sigﬁzjy;: r sl @ —
@ Bucket encryption and @ Encrypted Encrypted
—fGearch o] | o g oy our SSE
Query . Query query
A (B)

Fig. 1. (A) Bucketization [11-13]: The client searches for relevant bucket ids, the server
returns all records in the buckets, and the client filters false positives; (B) Proposed
scheme: The client encrypts the query predicate, the server searches for a candidate
set and filters false positives, and the client decrypts the query result

1.2 Contributions

A preferred solution is pushing the “Search” and “Filtering” tasks to the server
as in Fig. 1(B) where search for the relevant buckets and filtering of false pos-
itives are done by the server; the client only needs to encrypt the query and
decrypt the query result. This approach calls for a new encryption scheme that
would enable the server to perform search and filtering tasks. In this work, we
present a novel scheme called CLASS to meet these requirements. We consider a
relational database D = {Py,--- , Pp|} containing |D| records with d attributes
{4y, -, Aq}, where each A; has a discrete domain dom(A;). A numeric domain
can be discretized into a small number of intervals. We consider equality

256 W. Lin et al.

conjunction queries containing one or more equalities A; = v with v € dom(Ay),
and Att(Q) denotes the set of attributes on which a query @ has an equality.
Each record has a unique record ID and RID(D, @) denotes IDs for the records
in D satisfying a query). Note that the database may contain other attributes
that do not occur in any query. Our contributions are as follows.

— (Sect.3) We formalize a relaxed notion of ciphertext indistinguishability,
called class indistinguishability, that achieves a level of indistinguishability
similar to that of bucketization.

— (Sect. 4) We propose a novel SSE scheme, called CLASS. CLASS is the first
SSE scheme for equality conjunction queries that meets class indistinguisha-
bility and supports sub-linear search while pushing search and filtering tasks
to the server as in Fig. 1(B). CLASS can be implemented by plugging in
existing search methods without designing specialized methods.

— (Sect.5) We formally prove class indistinguishability of CLASS.

— (Sect.6) We present an empirical study to evaluate the practical efficiency
of CLASS on large and real life databases. Our results show that CLASS
outperforms the state-of-the-art.

2 Related Work

This work is at the intersection of cryptography (for formal security notion) and
database (for high performance query computing).

Cryptography. Most works on SSE consider single keyword queries and a linear
search [4]. [2,10] pioneered the construction of conjunctive keyword search with a
linear search. A few recent works consider sub-linear search for conjunctive key-
word search, for example, [5,15]. These schemes relax the notion of ciphertext
indistinguishability by capturing certain disclosures (using a leakage function)
caused by a sub-linear search process. One problem with these approaches is
that it is a daunting task to capture the full extent of such low-level disclosures
that are specific to the design of the index structure and the sub-linear search
algorithm. In fact, the real-world consequences of such low-level disclosures are
poorly understood, which was highlighted as an important open question [7,26].
Conjunctive keyword search is also studied based on Hidden Vector Encryp-
tion (HVE) [16], which suffers from prohibitive computation and communication
costs.

Database. The research in database traditionally focused on scalability for large
databases by adopting ad hoc security definitions. Examples are order preserv-
ing encryption [3] and distance preserving encryption [18], which makes index-
ing easy but discloses order and proximity information of plaintext. CryptDB
[19] enables the DBMS server to execute SQL queries on encrypted data, using
deterministic encryption for equality checks, group by, and equality-joins, and
order preserving encryption for order checks. It is well known that deterministic
encryption does not provide sufficient protection in practice. Asymmetric scalar-
product preserving encryption (ASPE) [24] is suitable for designing a sub-linear

Class Indistinguishability for Outsourcing Equality Conjunction Search 257

search algorithm for equality conjunction search, but can not provide sufficient
security [17]. Bucketization [11-13] provides a trade-off solution to security and
sub-linear search performance. As discussed out in Sect.1.1, this approach
requires either significant client work or a high communication cost.

3 Proposed Security

In this section, we propose the notion of class indistinguishability. We consider
the “honest-but-curious” adversary (i.e., the server) who follows all protocols
honestly but may passively attempt to learn the plaintext information.

3.1 Classes

We assume that for an attribute A; (1 <t¢ < d), the domain of A, is partitioned
into I; disjoint value classes, {gf,- - >glt,,—1}' Typically, the class partitioning
for each attribute is specified by the data owner and is public. In the following
definition, we assume that the class partitioning for each attribute is given; we
will discuss the specification of class partitioning after the definition. Given the
class partitioning for every attribute, we can define the classes of records, queries,
databases, and histories naturally as follows.

Definition 1. Let {gf,--- ,g],_,} be the class partitioning for A;, 1 <t < d.

— A record class is a set of records H?:l g§, where g;» is a value class for A;. In
other words, a record class consists of all records P; whose Pi[t]s are in the
same value class for every attribute A;.

— A database class consists of all databases D such that for any database D’ in
the class, there is a bijection n from D to D’ such that for each record P; in
D, P; and n(P;) are in the same record class.

— A query class consists of all queries Q such that for any query Q' in the class,
Att(Q) = Att(Q’) and for each A; € Att(Q), Qlt] and Q'[t] are in the same
value class.

— A history class consists of all histories H = (D,Q = {Q1, - ,Qm}) such
that for any history H' = (D', Q" = {Q},---,Q.,}) in the class, D and D’
are in the same database class, and for 1 < j < m, Q; and Q;- are in the
same query class. O

Intuitively, a database class consists of all databases obtained by replacing
each record with a record from the same record class; a query class consists
of all queries obtained by replacing each specified value with a value from the
same value class; a history class consists of all histories obtained by replacing
the database with a database from the same database class and replacing each
query with a query from the same query class. One extreme case is a singleton
record class that contains a single record, which corresponds to a singleton value
class on every attribute. Another extreme case is that there is a single class that
contains all domain values for every attribute. In this case, all records (databases,

258 W. Lin et al.

queries, and histories) belong to the same class. Our class indistinguishability
(Definition 3) ensures ciphertext indistinguishability for the members from the
same class. Therefore, the size of value classes becomes a security parameter
because a larger size leads to more members in a class that are indistinguishable
from one another. The data owner can specify class partitioning through the
size of value classes for each attribute. In this case, any grouping of value classes
of the specified size suffices. In other cases, the data owner may want to group
certain domain values into the same class, which can be done by enumerating
the domains values in each value class.

In the rest of discussion, whenever it is clear from the context, we use the
term “class” for any of record class, database class, query class, and history class.

3.2 Class Indistinguishability

Simply put, class indistinguishability is ciphertext indistinguishability of any
two histories from the the same class. Formally, we can define this notion by a
probabilistic game (or experiment) between an adversary and a challenger. We
first borrow the definition of SSE from [7] as follows.

Definition 2 (Symmetric Searchable Encryption (SSE) [7]). A SSE scheme is a
collection of four polynomial-time algorithms (KeyGen, Enc, Enc,, Search) such
that,

- K « KeyGen(1¥): a probabilistic algorithm run by the client to initialize the
secret key K for the scheme. The input is a security parameter k.

- (I,c) <« Enc(K,D): a probabilistic algorithm run by the client to encrypt the
database D = {Py,--- , Pp|}. The output is the ciphertexts c of records and
the encrypted structure I for query testing.

-t « Ency(K,Q): an algorithm run by the client to encrypt a query Q). The
output is called the trapdoor for query testing.

- X « Search(1,t): a deterministic algorithm run by the server to search for
the records in D that satisfy Q with the input I and t. The output is a set of
record IDs.

A SSE scheme is correct if for all k € N, for all K output by KeyGen(1¥),
for all D C Hf’:l dom(A:), for all T output by Enc(K, D), for all t output by
Ency(K,Q), the output of Search(I,t) is the set of IDs for the records in D
satisfying Q. a

One common technique for defining ciphertext indistinguishability is the proba-
bilistic game [7]. We adopt this technique for defining class indistinguishability.
Consider a history H = (D,Q = {Q1, -+ ,Qm}), which specifies a database
and a sequence of queries. The access pattern induced by H is the tuple
a(H) = (RID(D,Q1), -+, RID(D,Qy,)). The search pattern induced by H is
the symmetric binary matrix o(H) such that for 1 < 4,5 < m, the element
in the i-th row and j-th column is 1 if ¢); = @;, and 0, otherwise. The trace
induced by H is 7(H) = (|D|,a(H),o(H)). Two histories Hy and H; have the

Class Indistinguishability for Outsourcing Equality Conjunction Search 259

same trace if there is a renaming p of RIDs such that |Dy| = |D1|, a(Hy) =
pla(Hy)),0(Ho) = o(Hy). For b € {0,1}, let |[Dy| = n, Dy = {Pp1, -, Pon}
and let Q = {Qp1, -+, Qom}-

Definition 3 (Class indistinguishability). Assume that the class partitioning
{g0," " ,qi-1} is given for every atiribute A;. Let SSE = (KeyGen, Enc,
Encg, Search) and A = (A1, Az) be an adversary. Consider the following proba-
bilistic experiment:

Indssg, (k)

1. K « KeyGen(1%) 8 for1<ji<m

2. (StéA?H()yHl) — Al(lk) 9. tb,j — _E?’ch(_K—7 Qb,j)

j- b~ {?{71} (s,) 10. let ty = (ty1,- - tom)
. parse b as by b /

5. fO’f‘lS’iSTL 11. b TAQ(StA,Imtb)

6. spi — Enc(K,P,;) 12. if b’ = b, output 1

7. let Iy = (Sp,1,°* ,Sbn) 13. otherwise output 0

subject to two restrictions: (i) Hy and Hy have the same trace, (ii) Hy and H,
are from the same class. st4 is a string that captures Ay’s state after choosing
the plaintext. We say that SSE ensures class indistinguishability if for all
polynomial-size adversaries A = (A1, As),

PrlEndssi a(k) = 1]~ 3| < negi(h) (1)

where the probability is taken over the choice of b and the coins of KeyGen,
Enc, Encq. We say that SSE ensures strict class indistinguishability if

PrlIndssia(k) = 1] = % 2)

O

In the above game, the adversary chooses two histories Hy and H; (line
2), and the challenger makes a choice b € {0,1} uniformly at random (line 3)
and encrypts the data and queries in Hy and return the result I, and t; to the
adversary (lines 4-10). The adversary then guesses the value of b based on I,
and t;, (lines 11-13). Pr[Indsgg, 4(k) = 1] is the probability of the correct guess.
Eq. (1) states that this probability is negligibly different from 1, and Eq.(2)
states that the adversary’s guess is a random guess. Note the difference from
ciphertext indistinguishability in [7]: the additional condition (ii) restricts Hy
and Hi to be from the same history class, therefore, the indistinguishability is
required only for the members from the same history class.

Remark 1. Class indistinguishability ensures that any two histories from the
same class cannot be distinguished by the server given their ciphertexts and the
search result (captured by traces). The standard ciphertext indistinguishability

260 W. Lin et al.

is the extreme case of a single value class containing all domain values of A; for
every attribute Ay, which produces the maximum number of histories in the class,
thus, the maximum level of indistinguishability. This extreme class partitioning
would lead to ineffective pruning in computing queries because the single class
contains all records is relevant to every query. Class indistinguishability offers
a trade-off between the level of indistinguishability and the effectiveness of sub-
linear search through the specification of a more general class partitioning for
each attribute, because classes containing no query result will not be searched.

The above definition considers a non-adaptive adversary in that all queries
are chosen by the adversary before receiving any encrypted data or queries. In
Sect. 5, we will show that our approach achieves class indistinguishability for an
adaptive adversary as well.

4 Construction

In this section, we construct CLASS to meet two important goals: achieve class
indistinguishability, and support a sub-linear search for equality conjunction
queries through pushing the tasks of searching for relevant data and filtering
false positives to the server as in Fig. 1(B).

4.1 Overview

At the high level, CLASS consists of two SSEs: SSE; = (KeyGeng, Encs,
Ency s, Searchs) for s € {1,2}. The client encrypts each record P; in D as
Enc(P;) = (Enci(P;), Enca(P;)) and uploads Enc(D), i.e., the collection of
Enc(P;), to the server. Enci(D) and Ence(D) denote the projection of Enc(D)
onto Ency (P;) and Enca(PF;), respectively. At the query time, the client encrypts
a query Q; into Ency(Q;) = (Encg,1(Q;), Ency2(Q;)) and submits Ency(Q;) to
the server.

The search for the query answer proceeds in two phases given in Algorithm 1.
In the Candidate Phase, a sub-linear time Searchy is applied to Enc(D) to
compute a candidate set Cand that contains all records from the classes rele-
vant to the query. This phase prunes all classes irrelevant to the query. In the
Filtering Phase, a linear time Searchs is applied to Cand to filter false pos-
itives. The precision based (i.e., false positive free) Searchy is expensive but is

Algorithm 1. Search(Enc,1(Q;), Ency2(Q;))

Require: The server has Enc(D)
Candidate Phase:

Cand «— Searchi (Enc(D), Encg,1(Q;))
Filtering Phase:

Results «— Searcha(Cand, Encg 2(Q;))

Class Indistinguishability for Outsourcing Equality Conjunction Search 261

applied to the small candidate set Cand. These two phases correspond to the
Search and Filtering in Fig. 1(B), respectively. With a small Cand, any exist-
ing SSE with a linear search such as [9,10] can serve as SSE>. Therefore, our
discussion below focuses on the construction of SSE;.

4.2 Construction of SSE;

Consider the class partitioning {go, -+ ,g—1} for an attribute A;, 1 < ¢ < d,
where the domain values in each class g, are arranged in any order. The intuition
of our encryption scheme is modeling the equivalence of the domain values in
the same class g, by encoding each domain value into an angle and by exploiting
the periodicity of circular functions sin and cos over such angles. Let v be the
domain value v at the z-th position in the class g,. We encode v by the angle
computed by

a() =yT +(@—Dr (3)

where 1 < z < |g,] and 0 < y < [— 1. In other words, the class label y
determines the initial angle y7 for the class and each next value in the class adds
an additional angle m. To compute a(v), we need to choose an assignment of class
labels to classes and the order of values in a class, but any such assignment and
order will do. The next lemma follows because any two values from the same
class have the same first term y7.

Lemma 1. For any two values (v,v") in the domain of A, (a(v) — a(v')) is a
multiple of ™ if and only if v and v’ are from the same class of A;.

Below, we construct each component of SSE;. KeyGen, (1) outputs the
secret key K = M, where M is a (2d x 2d) invertible matrix (i.e., M 1M is
equal to the (2d x 2d) identity matrix) randomly chosen. The key size ki is
implicitly specified by the data dimensionality d. If necessary, dummy attributes
can be added to increase d. For simplicity, we omit K7 in the following discussion.

Algorithm 2. Enc (P;)
Require: The client has the secret key (M)

1. for 1 <t<d
(a) er; < [~U,~L]U[L,U], (0< L <U)
(b)

Lit] = evisin(ac(Pi[t])) , Li[t]a = €, cos(au (Pi[t])) (4)

2. I = (L)1, Li[l]2, -, Li[d]1, Li[d]2)
3.

Ency(P) = M 'L (5)

[M—11;]

262 W. Lin et al.

Algorithm 3. Encg,1(Q;)
Require: The client has the secret key (M), Att(Q;) # @

1. for1 <t<d
(a) if A¢ is in Att(Q;)
(i) pey < [~U,—L]U[L,U), (0< L < U)
(ii)
Tj[t]h = pue,j cos(m —au(Qj[t])) 5 Tj[tle = pue,5 sin(m —u(Qj[t])) (6)
(b) if A; is not in Att(Q;)
Tj[th = Tj[t]2 =0

2. T; = (Tj[l]lv Tj[l]Qv"' 7Tj[d]17Tj[d]2)
3.

T,
Encg1(Qj) = % v

Data Encryption. The detail of Enc;(F;) is presented in Algorithm 2. Step 1
encodes each entry P;[t] into a pair (I;[t]1, I;[t]2), where a(P;[t]) is the angle in
Eq. (3) and €;; is a noise randomly sampled from [-U,—L] U [L, U] for ¢ and 1,
0 < L <U. This (¢,1)-specific noise is chosen independently for each record and
each attribute. Step 2 assembles such pairs into a randomized 2d-dimensional
vector I;. Step 3 blends all dimensions together using the private matrix M and
produces Enci(P;) as a point on the 2d-dimensional unit sphere centered at the
origin. Note that the location of the point is randomized by the random noise

€t,i-

Query Encryption. Algorithm3 gives the details for Ency1(Q;). Step 1
encodes each specified Q;[t] into a pair (T}[t]1,T;[t]2) using the angle (7 —
a(Q;[t])), and encodes each unspecified @Q,[t] into (0,0). Step 2 creates a ran-
domized 2d-dimensional vector T} and Step 3 blends all dimensions together and
produces Encgy1(Q;) as a randomized point on the 2d-dimensional unit sphere
centered at the origin.

Search Function. Search; computes the candidate set of the query @);, denoted
by Cand(Q;), as the set of Ency(P;) such that (Enci(P;), Ence(P;)) is in Enc(D)
and P;[t] is in the same class as Q;[t] for every A, € Att(Q;). Cand(Q;) con-
tains the query result and possibly false positives. The next lemma gives the
computation of Cand(Q;). By “P; is in Cand(Q;)”, we mean “Ency(F;) is in
Cand(Q;)”.

Lemma 2. If P; is in Cand(Q;), Ency1(Q;)T Enci(P;) = 0. If P; is not in
Cand(Q;), Ency1(Q;)T Enci(P;) = 0 holds with an exceedingly small probability.

Class Indistinguishability for Outsourcing Equality Conjunction Search 263

Proof. From Egs. (5) and (7), we have

T TJ'TIi
Ency1(Qj)" Enci(P;) = [T M| (8)
j i

where the superscript 7' denotes a transpose operation. Encg1(Q;)T Enci(P;) =
0 holds if and only if T']T]; = 2;1:1(]1 [t]lTj[th + Il[t]QT] [t]z) = 0. Since Tj [t]l =
Tj[t]2 = 0 for all A; which are not in Att(Q;), from Egs. (4) and (6), we have

ETIZ = Z €t,ilbt,5 SiH(At) (9)
A€ Att(Q5)

where A, = (7 + o (Bi[t]) — o (Q,[t])). If P, is in Cand(Q;), P;[t] and Q;[t] are
in the same class for every A; € Att(Q;), so A is a multiple of 7 (Lemma 1)
and sin(4;) = 0. In this case, Ency1(Q;)T Enci(P;) = 0 holds. If P; is not in
Cand(Q;), P;[t] and Q;[t] are not in the same class for some A; € Att(Q;), and
Ay is not a multiple of 7 (Lemma 1), so sin(A;) # 0. In this case, the chance that
TjTIi = 0 holds in a small probability because noises €’s and u’s are randomly
chosen. O

From Lemma 2, the server can compute Cand(Q;) by computing the hyper-
plane query defined by Enc, 1(Q;)*V = 0 for a 2d-dimensional point V. There-
fore, computing the candidate set is transformed into a hyperplane query in the
ciphertext space, which enables any existing sub-linear methods for hyperplane
queries to be deployed by the server, such as R-Tree [20], M-Tree [6] and halfs-
pace queries [23]. As these methods are well studied, we do not further discuss
their details.

Remark 2. Tt is interesting to compare our approach with the bucketization app-
roach [11-13]. Our candidate set is similar to the result retrieved using the bucket
ids of the query in bucketization. The difference is that bucketization requires
the client to perform local search of bucket ids for a query, whereas the client in
our approach only needs to encrypt the query. Bucketization requires the client
to filter false positives, whereas our approach filters false positives by the server
(through SSE5). Finally, bucket ids in bucketization are static, thus, directly
tell what records are in the same bucket, whereas our encryption functions are
probabilistic thanks to fresh random noises for each encryption.

4.3 Constructing Class Partitioning

While we expect that the class partitioning X; = {go,--- ,gi—1} for an attribute
Ay is specified by the data owner, the class partitioning can also be constructed
to minimize a cost metric for a given class size |g,|, 1 < y < ! — 1, which is
useful if the data owner has no preference except that each class must have a
minimum size. Below, we give a construction of X; = {go,- - ,¢;—1} to minimize
the number of false positives in the candidate set, thus, the search cost of the
linear time Searchs.

264 W. Lin et al.

The cost metric is minimized with respect to a chosen query workload. For
simplicity, we consider only queries with a single equality. For each attribute
Ay, the query workload is denoted by {Q1,---,Q)a,|} Where Q;, 1 < j < |4y,
denotes the query with the single equality A, = v;. We assume that the frequency
for Q;, 1 < j < |A|, denoted by f;, is known. Let O;, 1 < j < |Ay|, be the
number of records in the database D having A; = v;. Consider a value class
gy ={v1, -+ , v} for A;. For a query @), all records having a value vy € g, — v,
are false positives, so the cost of false positives is Cost(gy, Q;) = Yv,cg,—v; Orf;
(recall that each false positive is returned f; times). The cost of false positives
related to g, for all queries is Cost(g,) = Evjeg?, Cost(gy,@;), and the cost of

all false positives is Cost(X;) = 22—210 Cost(gy)-

Definition 4 (Optimal s-sized class partitioning). Given a class size k > 1
N A

such that |Ay| is divisible by r and | = 24 (Oy,--- Oya,)) and (f1,---, fia,)

specified above, find a class partitioning for the attribute Ay, Xy = {go, - ,g1—1},

such that Cost(Xy;) is minimized and all g, have the size k.

This problem can be solved as an instance of the following r-way equipartition
problem for which a branch-and-cut algorithm exists [14]: divide the vertices
of a weighted graph G = (V, E) into r equally sized sets, so as to minimize
the total weight of edges that have both endpoints in the same set. To solve
the optimal class partitioning problem, we can define the graph G = (V, E) as
follows: V = {1,--- ,|A¢|} and E = {(3,5) | 1 <4 < j < |As|}, where for each
edge (i,j) € E, the weight w(; ;) = Oif; + O;fi. Let r =1 = %. Intuitively,
w(;,5) is the total number of false positives for queries (); and Q; if i and j are
grouped into the same class. It can be shown that Xy = {go, - ,g1—1} is an
optimal k-sized class partitioning if and only if A} is an optimal solution to the
r-way equipartition problem for G = (V, E).

5 Security Analysis

We formally prove that SSE = (SSE;, SSE,) presented in Sect.4 achieves class
indistinguishability (Definition 3). In other words, the adversary can not win the
probabilistic game defined in Definition 3 with significantly greater probability
than an adversary who must guess randomly. Intuitively, this is achieved by the
same probability of the records (queries) from the same class given the observed
ciphertext of a record (query) produced by SSE; (as shown in Lemma 3) so that
the adversary can not distinguish two histories in the probabilistic game which
are restricted to the same history class.

Lemma 3. (i) For any 2d-dimensional vector V, Pr[Enc;(P;) = V] =
Pr[Enci(P]) = V] holds for any records P; and P} from the same record class. (ii)
For any 2d-dimensional vector V, Pr[Enc,1(Q;) = V] = Pr[Enc,1(Q}) = V]
holds for any queries QQ; and Q;- from the same query class.

Class Indistinguishability for Outsourcing Equality Conjunction Search 265

Proof. We give a brief proof for (i) only; the proof of (ii) is similar. Since P; and
P! are from the same class, in Eq. (4), each a(F;[t]) and a(P/[t]), 1 < t < d,
differ by a multiple of 7 according to Lemma 1. This means sin(oy(P/[t])) =
0 sin(ay (P;[t])) and cos(ay(P/[t])) = 0 cos(a(P;[t])) where 6 is either + or - sign.
The random noises € from the symmetric distribution would cancel the effect of
0, that is, for any (vi,ve), Pr[(L;[t]1, Ii[t]2) = (vi,v2)] equals Pr[(I/[t]1, I![t]2) =
(v1,v2)]. Therefore, Pr[Enci(P;) = V] = Pr[Enc, (P)) = V].

In the following, we first show that SSF; ensures strict class indistinguisha-
bility and then show that SSFE composed by SSE; and SSE, achieves class indis-
tinguishability.

Theorem 1. SSE; constructed in Sect. 4.2 meets strict class indistinguishabil-
ity, i.e., Pr[IndSSEl,A(kl) = 1] = %

Proof. Consider two histories Hy and H; chosen by the adversary in Definition 3.
Hy and H; are from the same class and have the same trace. The challenger
randomly chooses b € {0,1} to encrypt (Dy, Qp) with Enc; and Enc,; and
sends the results to the adversary. From Lemma 3, Hy and H; are equally likely
to be the underlying history based on the observed ciphertexts. This remains
true even if the adversary is allowed to compute the candidate set Cand(Qy,;),
1 < j < m, because Cand(Qo ;) and Cand(Q: ;) have the same size. Finally,
any index structure I constructed using Enci(Pp;), 1 < i < n, discloses no
more information than Enc; (P, ;) does. So the adversary gains no advantage in
guessing the value of b from accessing I, and t;, computing the queries. O

Theorem 2. Let SSE; be constructed in Sect. /.2 and let SSEy be any scheme
meeting ciphertext indistinguishability (say [7]). Then SSE = (SSEy, SSE3)
meets class indistinguishability, that is, |Pr[Indssp,a(k1, k) = 1]— 1| < negl(ks)
where ko is the security parameter of SSEs.

Proof. Consider the two histories Hy = (Do = {Po1, -, Pon}, Qo = {Qo,1, cee
Qom}) and Hy = (D1 = {Pi1,-++, Pin}, Q1 = {Q11, -+ ,Q1,m}), chosen by
the adversary for SSE;. Unlike SSE; alone, the adversary also has access to
Ency(Py;) and Encg2(Qs,;), as well as Cand(Qy;), 1 < j < m, computed by
SSFE1. The ciphertext indistinguishability assumption of SSFE; implies that the
advantage in guessing the value of b from accessing Ency (P, ;) and Encg 2(Qs,;)
is negligibly different from the probability % This remains so even in the access
to Cand(Qp;), 1 < j < m, because Cand(Qo ;) and Cand(Q1 ;) have the
same size. Finally, this advantage is unaffected by running the game of SSE;
because the adversary gains no advantage in the game of SSFE; according to
Theorem 1. O

So far, we considered a non-adaptive adversary in Definition 3 where the
adversary chooses all queries in the query sequences Qp and Q; before receiv-
ing the encryption of any record or query. An adaptive adversary can choose
adaptively the next query pair (Qo,;,@1,;) in the query sequences after receiv-
ing the encrypted records and encrypted queries for the previous queries

266 W. Lin et al.

{Qv1, -+ ,Qp 1} The strict class indistinguishability in Theorem1 allows us
to extend Theorems 1 and 2 to an adaptive adversary: the strict class indistin-
guishability implies that receiving the ciphertexts of previous queries does not
give the adversary any advantage of guessing the value of b.

6 Evaluation

In this section, we evaluated CLLASS presented in Sect. 4.

Data Sets. We used the US Census data set [1] which was collected from
2006 to 2011 with d = 3 categorical attributes: Race (237), PlaceOfBirth (531)
and City (1134), with the domain size indicated in the bracket. Diy, Dion,
Dsons and Digoas, denote four samples containing the first 1, 10, 50, and 100
million records, respectively.

Queries. We generated a query pool QW = Q' U---U Q? using D; ;. For each
integer ¢ € [1,d], Q7 contains 100 g-equality queries generated as follows. Let
Q¥ contain all g-equality queries that have a non-empty result in Dy . Let Selg
denote the selectivity of a query @, defined as the percentage of records in the
data that satisfy the query. We picked 100 queries @ from Q%. The probability
of picking a query @ is modeled by the beta distribution Beta(w, 3) of the
selectivity selg [8]. In general, with a fixed 8 a smaller « leads to a higher
probability for a query with a smaller selectivity. We set & = 0.5 and 8 = 3, which
assigns a higher probability to a query having a smaller selectivity, modeling the
typical scenario that more queries retrieve more specific information.

Competing Methods. For CLASS, we implemented the sub-linear method
Searchy for hyperplane queries by M-Tree [6] and the linear method Searchy
by Secure Index [9]. Since [9] deals with only single-keyword search, we convert
equality conjunction queries to single-keyword search by treating each conjunc-
tion up to the maximum number of equalities in a query as a new keyword.
We used the method in Sect.4.3 to construct the class partitioning for each
attribute for a given class size x with the single equality queries Q! as the input.
By default, we set the class size as kK = 6, and the bounds for the noise interval
as L = 1000 and U = 1100.

We consider two baselines. We provide brief outlines of the baselines as fol-
lows to keep the paper self-contained. Please refer to the references for more
details. The first baseline is OXT, the state-of-the-art sub-linear search for con-
junctive keywords queries [5]. OXT uses a disk-resident data structure TSet to
locate the documents containing the least frequent keyword in the query, called
s-term, and uses a RAM-resident data structure XSet to filter the result using the
remaining keywords in the query, called x-terms. The second baseline, denoted
by Sl, is Secure Index [9] applied to the full database following the same strategy
of converting equality conjunction queries to single-keyword search as described
above for Searchs in CLASS. We wrote all codes in C++ and leveraged OpenSSL
library to implement cryptographic primitives. We simulated both the server and
the client by a Linux machine with a single Intel Core i7 CPU with 2.3 GHz and
16 GB RAM.

Class Indistinguishability for Outsourcing Equality Conjunction Search 267

6.1 Setup Cost

At system initialization, there is a one-time setup cost. Here, we focus on the
storage overhead. For D), the storage overhead of SI, CLASS and OXT are
16 MB, 139 MB and 1.2 GB, respectively. The storage overhead for other sample
sizes scales up linearly. These structures were stored on the server side, thus,
there is no client side storage overhead. Since these structures were generated
by the client, they also represent the upload communication cost at setup. OXT
uses most storage and Sl uses least storage.

6.2 Query Cost

For each query, We focus on query computing time (averaged over the queries
in QW). Note that we omit the comparison on communication cost because
our method has the minimum communication cost by filtering false positives on
the server side. Figure2 reports query time in log scale vs four different data
cardinality. For Diggpr, we could not get OXT’s query time due to long database
encryption time. In fact, OXT hides the entries on an inverted list by storing
them in random locations on disk, which results in a large number of random
I/0 accesses during index construction and query process. As expected, the
query time of Sl grows linearly with data cardinality. However, SI took about
1000s on Dyggps which is too slow for large databases. It is clear that CLASS
outperforms Sl and OXT.

|EfcLass Edsi [oxT

Query Time (second)
3

102 2 ;
™M 10M 50M 100M

Fig. 2. Query time vs data cardinality

The efficiency of CLASS relies on the sub-linear Candidate Phase to reduce
the search space of the linear Filtering Phase to a small candidate set. We mea-
sure this effectiveness by two metrics:

| Cand]) | Test]
search_size =

candidate_size = ,
D] D|

where Cand denotes the candidate set computed by Candidate Phase and Test
denotes the set of records that are searched in Candidate Phase to compute Cand.
search_size measures the reduction of search space in Candidate Phase whereas
candidate_size measures the reduction of search space in Filtering Phase. In all
data sets tested, candidate_size is no more than 0.1% and search_size is no more

268 W. Lin et al.

than 4%. For example, the average total query time of CLASS on Dsgys is less
than 6s. In the following, we study the effect of other factors to the efficiency of
CLASS based on Dsgypy.

] Candidate Size [N Candidate Phase
K Search Size = Filtering Phase
4% 210
3
8 3% g 81
8 o 64
c 20/0 o o "q
Eil s §
a2 1% %’ 2 ﬁ § ‘
0% 6 14 18 R 1218

Fig. 3. Query time of CLASS vs value class size x (50M Records)

] candidate Size [N Candidate Phase
Search Size = Filtering Phase
16% "é 25
3,12%1 Ei 201
£ g9 | e 154
s = 10
o/ | >
& 4% 2 5
0% +—=—3 & ol L[

i 10 100 100010000 110 100 100010000
(A) (B)

Fig. 4. Query time of CLASS vs nosize interval (U — L) (50M Records, L = 1000)

Effect of Class Size. The class size k of a class partitioning plays a role in
balancing the level of indistinguishability and the sub-linear search performance.
We studies the effect of the class size k € {2, 6,10, 14,18} (z-axis) on query time.
As shown in Fig. 3, a larger leads to larger search_size and candidate_size due to
more data tested in Candidate Phase and more false positives in the candidate
set Cand. Despite this trend, even for k = 18, Cand is 0.2% of the full data
set. This significantly reduces the time of Filtering Phase that is applied to the
candidate set, as shown in Fig. 3(B). In all cases, the total average query time of
the two phases is no more than 8s. This study clearly shows that the sub-linear
Candidate Phase is highly effective in pruning the search space.

Effect of Random Noises. Fig.4 examines the impact of the interval
[-U,—L] U [L,U] for drawing random noises ¢, (4t in Enc; and Encg 1. We fixed
the lower limit L = 1000 and varied the size (U — L) (z-axis). A larger (U — L)
leads to more random noises injected, thus less effective indexed search in Candi-
date Phase as shown by the larger search_size. However, even with the maximum
(U—L) = 10000, candidate_size remains very small, which suggests that restrict-
ing Filtering Phase to the candidate set is highly effective. In general, Filtering

Class Indistinguishability for Outsourcing Equality Conjunction Search 269

Phase employs crypto primitives for producing the exact query result, therefore,
it is more important to reduce the search space in this phase. Our two phase
search exactly achieves this goal.

7 Conclusion

A key challenge of outsourcing data management is providing a provable secu-
rity guarantee (e.g., ciphertext indistinguishability) while supporting a sub-linear
search performance for dealing with large databases. The existing bucketization
approach partially addresses this requirement at the cost of client performing
search or increased communication cost of transmitting false positives. We pro-
posed a novel SSE scheme, called CLASS, that provides a similar level of security
to that of bucketization and pushes the work of search and false positive filtering
tasks to the server. CLASS is a “framework” of sub-linear search through a two-
phase search in which the search algorithms in both phases can be instantiated
by existing methods.

Acknowledgments. This work was partially supported by a Discovery Grant from
Canada’s NSERC.

References

1. IPUMS US census data set. https://www.ipums.org

2. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunctive keyword
searches over encrypted data. In: Qing, S., Mao, W., Lépez, J., Wang, G. (eds.)
ICICS 2005. LNCS, vol. 3783, pp. 414-426. Springer, Heidelberg (2005). https://
doi.org/10.1007/11602897-35

3. Boldyreva, A., Chenette, N., Lee, Y., O'Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224-241.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9-13

4. Bosch, C.T., Hartel, P.H., Jonker, W., Peter, A.: A survey of provably secure
searchable encryption. ACM Comput. Surv., 1125-1134 (2014)

5. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Rogu, M.-C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 353-373.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_20

6. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity
search in metric spaces. In: VLDB (1997)

7. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: improved definitions and efficient constructions. In: CCS (2006)

8. Falls, L.W.: The beta distribution: a statistical model for world cloud cover. J.
Geophys. Res. 79, 1261-1264 (1974)

9. Goh, E.J.: Secure indexes. IACR (2003)

10. Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over
encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS,
vol. 3089, pp. 31-45. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24852-1_3

https://www.ipums.org
https://doi.org/10.1007/11602897_35
https://doi.org/10.1007/11602897_35
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-40041-4_20
https://doi.org/10.1007/978-3-540-24852-1_3
https://doi.org/10.1007/978-3-540-24852-1_3

270

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

W. Lin et al.

Hacigtimis, H., Iyer, B., Li, C., Mehrotra, S.: Executing SQL over encrypted data
in the database-service-provider model. In: SIGMOD (2002)

Hore, B., Mehrotra, S., Canim, M., Kantarcioglu, M.: Secure multidimensional
range queries over outsourced data. VLDB 21, 333-358 (2012)

Hore, B., Mehrotra, S., Tsudik, G.: A privacy-preserving index for range queries.
In: VLDB (2004)

Ji, X., Mitchell, J.E.: Branch-and-price-and-cut on the clique partitioning problem
with minimum clique size requirement. Discrete Optim. 4, 87-102 (2007)
Kamara, S., Moataz, T.: Boolean searchable symmetric encryption with worst-case
sub-linear complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10212, pp. 94-124. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56617-7_4

Li, M., Yu, S., Cao, N., Lou, W.: Authorized private keyword search over encrypted
data in cloud computing. In: ICDCS (2011)

Lin, W., Wang, K., Zhang, Z., Chen, H.: Revisiting security risks of asymmetric
scalar product preserving encryption and its variants. In: ICDCS (2017)

Oliveira, S.R., Zaiane, O.R.: Privacy preserving clustering by data transformation.
In: SBBD (2003)

Popa, R.A., Redfield, C., Zeldovich, N., Balakrishnan, H.: CryptDB: protecting
confidentiality with encrypted query processing. In: SOSP (2011)

R-Tree. https://en.wikipedia.org/wiki/R-tree

Stefanov, E., et al.: Path ORAM: an extremely simple oblivious ram protocol. In:
CCS (2013)

Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 10, 557-570 (2002)

Wang, P., Ravishankar, C.V.: Secure and efficient range queries on outsourced
databases using R-tree. In: ICDE (2013)

Wong, W.K., Cheung, D.W.L., Kao, B., Mamoulis, N.: Secure kNN computation
on encrypted databases. In: SIGMOD (2009)

Yi, X., Kaosar, M.G., Paulet, R., Bertino, E.: Single-database private information
retrieval from fully homomorphic encryption. TKDE, 1125-1134 (2013)

Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: the power
of file-injection attacks on searchable encryption. Usenix (2016)

https://doi.org/10.1007/978-3-319-56617-7_4
https://doi.org/10.1007/978-3-319-56617-7_4
https://en.wikipedia.org/wiki/R-tree

	Class Indistinguishability for Outsourcing Equality Conjunction Search
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Related Work
	3 Proposed Security
	3.1 Classes
	3.2 Class Indistinguishability

	4 Construction
	4.1 Overview
	4.2 Construction of SSE1
	4.3 Constructing Class Partitioning

	5 Security Analysis
	6 Evaluation
	6.1 Setup Cost
	6.2 Query Cost

	7 Conclusion
	References

