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Abstract. Sequence data analysis has been extensively studied ietfzdure.
However, most previous work focuses on analyzing sequeaizeftbm a single
source or party. In many applications such as logistics ataark traffic analy-
sis, sequence data comes from more than one source or pdmy Multiple au-
tonomous organizations collaborate and integrate thgiiesgce data to perform
analysis, sensitive business information of individuatipa can be easily leaked
to the other parties. In this paper, we propose the notioronfpetitive privacy
to model the privacy that should be protected when carryimgdata analysis
on integrated sequence data. We propose a query restratjiorithm that can
reject malicious queries with low auditing overhead. Ekpental results show
that our proposed method guarantees the protection of diivgerivacy with
only a significantly small portion of queries being resgitt

1 Introduction

Sequence data analysis has been studied extensively int¢regure [4, 6, 2]. Most
previous work focuses on analyzing sequence data colléaied a single source or
party. However, in applications such as logistics and netwraffic analysis, some au-
tonomous enterprises may want to integrate their sequeatteeir order to carry out
joint data analysis. As a motivating example, consider tilaboration between a bus
companyB and a metro company/ in a city that has implemented RFID-based elec-
tronic transportation payment systems (e.g., WashingGis BmarTrip system). Each
passenger has an RFID-card that can be used as a form of g+footiee fare of var-
ious transportations. Each transportation company p@aties in the e-transport net-
work records a huge volume of passenger transactions eagryirdthis example, we
can view each passenger traveling history as askqaencen Figure 1a, if a passen-
ger traveled from “Airport Bus Stop” to “Downtown Bus Stopy bus, transferred from
“Downtown Bus Stop” to “Downtown Station” (via a transfert@nal in “Downtown”)
and finally traveled from “Downtown Station” to “Uptown Sian” by metro, her trav-
eling history can be represented as a data sequence (“ABpsrStop”, “Downtown
Bus Stop”, “Downtown Station”, “Uptown Station”).

Suppose thaB and M collaborate and offer discounts to passengers who traveled
from the airport to uptown using a combination of bus and métansited at Down-
town). One interesting query is to ask the number of passsngko traveled from
“Airport Bus Stop” to “Uptown Station” via the transfer teinal in “Downtown”. Fur-
thermore, during data analysis, queries are often refineliffevent abstraction levels
by the data analysts interactively. For example, if a conbégrarchy is defined for
stations/stops like the one in Figure 1b, then the aboveyguer be “rolled-up” by
the user to ask for the number of passengers who traveled‘#koport District” to
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“Uptown District” via the transfer terminal in “Downtown’All these operations can
be handled by sequence analytical systems such as [2] aeffipigntly. One way to
evaluate the analytical queries above is to have bus ana toétitegratetheir passen-
ger data, which are originallpwnedand stored separately. L&X,; be the data owned
by M and Dy be the data owned bf8. D), and D are integrated to form a new
datasetD;. In practice, however, both/ and B actually do not want to disclose their
data to their competitors, if possible. For instance, agstimat there are two services
operated by\/ and B separately from “Downtown District” to “Bay District”. Spé-
ically, M operates a service,, from “Downtown Station” to “Bay Station” whileB
operates a servicegg from “Downtown Bus Stop” to “Bay Bus Stop”. If passengers
want to travel from “Downtown District” to “Bay District”,iey may choose either,

or sg. Thus, these two serviceg, andsp arecompetitive Suppose thal/ poses a
query and observes that the total number of passengers seivigesz (operated by
B) is extremely large compared with its own servige. M may then offer discounts
to customers who use its serviggy in order to attract the customers originally using
servicesg. It is easy to see that, once there are discounts for sesyjcehe original
servicesp operated byB is definitely affected. Thus, the statistical informatidooat
the total number of passengers using servigecan be regarded as the “competitive
privacy” of party B and that should get protected during data analysis.

The objective of this paper is to support data analysis, imtiqudar, OLAP, on an
integrated sequence data set without compromising cotivegtrivacy. Informally, let
Q(sg, f) be an aggregate sequence query [2] that specifies an aggfegetionf on
all the sequences in the integrated data/3ethat matchs g and the data values i
are allowned by(or originated fron) party B (formal definitions are given in Section 2),
we say that there is a breachaafmpetitive privacyf given a real numbet, other parties
(exceptB) can infer a valuef such thatf — f(sg)| < e, wheref(sp) denotes the
answer of query). In this paper, we present a query restriction strategy ppsrt data
analysis on an integrated sequence data set without bregitiei competitive privacy of
any party. The strategy rejects a quérif its answer can lead to a breach of competitive
privacy. Existing query restriction strategies like [H] pnd [3] focus on the protection
of individual privacy or data privacy on a relational datd @&ned by a single party.
The query restriction strategy in this paper focuses on tlgeption of competitive
privacy on a sequence data set integrated from multiplenantous parties.

2 Preliminary _ _ _ _

We are given a séf of values that are associated with a concept hierarchyré&igio
shows a concept hierarchy. Nodes at the leaf level correspotine values recorded in
the data. A nodéV is said to beyroundif it is at the leaf level onon-groundf it is not.

Each value ir¥ corresponds to a node in the concept hierarchy. Without gunitlyj
in the following, the terms “nodes” and “values” are useainhangeably. Each leaf
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nodeN is associated with aownership denoted byV.T'. For example, since “Down-
town Station” and “Uptown Station” are values originateahfrthe metro company/’s
data, theownershipof these nodes ar®/. In Figure 1b, the ownership of a leaf node
is next to itself. The non-leaf nodes such as “Downtown Ristand “Urban Region”
are used for data analysis and they do not have any ownership.

Suppose there aren datasetsD = {D;,Ds,...,D,,} owned bym parties
P, P, ..., P, respectively. Each data set contains a number of sequeksesjuence
s is represented in the form @iV, N, ..., Ni,) whereN; is a ground or non-ground
value inV for | € [1, k]. We say that this sequeneds of lengthk. Implicitly, each
value N; in s is associated with a timestamp, denotedMyts, such that ifi < j,
N,.ts < Nj.ts for anyi, j € [1, k]. Each sequencein datasetD; is associated with a
unique identifier, denoted byid (e.g., the card id of an RFID card).

An integrated dataseD; can be obtained by integrating the set of databd3es
according to the timestamp of the values. SpecificallyCldie the set of sequence
identifiers inD. For eachr € C, we obtain a sef of sequences from all datasets in
D such thatS = {s € D|s.id = z}. Let N be the multi-set containing the values
of all sequences 5. We generate a new sequengeof length |\ in the form of
(N1, Na,...Nyn), such that ifi < j, Nj.ts < Nj.ts foranyi,j € [1,|N]]. The new
sequence’ will be inserted into the integrated dataget.

In this paper, we focus on aggregate sequence queries Riclf a query)(s, f),
or simply @ if the context is clear, is posed on a sequence dat® geit applies an ag-
gregate functiorf on all the sequences iy thatMATCH s, and returns a scalar value,
denoted ag(s), to a user. We remark thataTcH can be any pattern matching func-
tion. For example, it can be a sub-string matching functian, (if s is a sub-string of
a sequence’ in Dy, MATCH returnst r ue) or a sub-sequence matching function (i.e.,
if s is a sub-sequence of in D, MATCH returnst r ue). The technique in this paper
is applicable to all kinds of aggregate sequence queriesisgd in [2]. Nonetheless,
for the sake of illustration, the following discussion miginenters around theQUNT
aggregation function and the sub-string matching funcfidrerefore in the following,
unless stated otherwise, we assume a qagy, f) on D; means that for each se-
quence inD; which contains as substring (despite the number of occurrencesiof
a sequence) increments the valuef¢§) by one. A quenQ(s, f) is of lengthk if the
length of sequence specified inQ is k. We denote that byQ|. As the data is actually
integrated from multiple parties, we assume that all qgeaaie of length at least two.

As in traditional OLAP environments, users may interadyivefine their queries.
For instance, a user (of parfy}) may first issue a query to obtain the number of cus-
tomers who traveled from “Airport Bus Stop” to “Uptown Busopt and then refine
her query@ by a “pattern roll-up” operation [2] in order to obtain thember of pas-
sengers who traveled from “Airport District” to “Uptown Digct”. These concepts can
be formalized as follows.

Assume partyP; issues her first quer§; at timet = 1, second query), at time
t = 2 and so on. LeiCp, (¢) be the knowledge of part¥; at time¢. Thus, the initial
knowledge of partyP; before she issues any query on the integrated dat® setle-
noted asCp, (1), contains all aggregate valugés) for all s in D;. Further, let~ and
tT be the timemmediatelybefore and after time, i.e.,t~ is any time between time
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t — 1 and timet, andt™ be any time between timeand timet + 1. Thus, for any > 1,
Kp,(t7) = Kp,((t — 1)T). After party P; issues a query); at timet, if Q, is not
rejected,P;’s knowledgeCp, (¢ 1) is immediately updated th p, (t~) U { f(s)} (where
f(s) is the answer of);); otherwise,P;’s knowledgekp, () remains asCp, (t 7).
3 Competitive PrivacPFI _ _ _
In this section, we present the conceptompetitve privacywhich is the key element
that we should consider when supporting data analysis oguesee data set that is in-
tegrated from multiple autonomous parties. We assume lteantegrated data sél;
is located at trusted parffy and the involved parties send their querie§tarhe RFID
transport payment company can be regarded as the trustéssgar the motivating ex-
ample. Although a trusted party is involved, the privacyéshas not been resolved yet.
Specifically, in the following, we are going that formalizeetconcept of competitive
privacy and show that if a partl can pose any queries without any restriction, that will
breach competitive privacy of some party. Let us begin withdefinition ofconflicting
node setGiven a ground nod#&’, theconflicting node setf NV, denoted byC'(V), is a
set of ground nodes such that for each ndtlec C(N), N'.T # N.T. The conflicting
node set ispecifiedor givenby the multiple autonomous parties and the trusted party.

In our running example, if the metro company offers a serffiom “Downtown
Station” to “Bay Station” and the bus company offers a serfiom “Downtown Bus
Stop” to “Bay Bus Stop”, then the manager of the metro mayi§pttat the conflicting
node set of “Downtown Station” a§'Downtown Bus Stop}. Similarly, the manager
is likely to specify that the conflicting node set of “Bay $taf’ as {“Bay Bus Stop’}.
We remark that we assume the notion of conflicting node sgnisreetric in this paper.
As a result, ifC(“Downtown Station”)<“Downtown Bus Stop?}, thenC(“Downtown
Bus Stop™)={“Downtown Station’}.

Given a sequencs; in D; in the form of (V,, N,) and another sequeneg of
D; in the form of (V,., N;), s; is acompetitive sequena s;, if N, € C(N,) and
N, € C(N,). The set of competitive sequencesspfs denoted byC'(s;). For exam-
ple, lets,/=(“Downtown Station”, “Bay Station”) inD,; and sg=("Downtown Bus
Stop”, “Bay Bus Stop”) inD g. Following the example above, as “Downtown Station”
€ C("Downtown Bus Stop”) and “Bay Station® C(“Bay Bus Stop”),sas is a com-
petitive sequence ofp (and vice versa because of the symmetric property). Note tha
instead of asking the managers (which are the target us€sAP systems) to specify
the (query) views that needed to be protected as in [3], veatitnally introduce the no-
tion of conflicting node such that it is more non-technicaple friendly. For example,
rather than directly specifying; andsp as competitive sequences, it would be more
intuitive for those business people, say, the operationag@nof partyM to directly
specify “Downtown Station” and “Downtown Bus Stop” as “caciing”. Nonetheless,
of course, it is also possible for users to directly speaifinpetitive sequences as well.
Now, we can define the competitive privacy of a paPtyas follows.

Definition 1 (Competitive Privacy). The competitive privac¢P of a party P; is
defined as the statistical information of all competitivgusences inD;, i.e.,CP =
{f(s)|Vs € D; and there exists’ € D; such thatj # i ands’ € C(s)}. O

Similar to what we discussed in Section 1, the statisticlirmation of each com-
petitive sequences, namealyP, are regarded as the “competitive privacy” of a party.
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Thus, without any query restriction, a party adirectly obtain the statistical informa-
tion of the competitive sequence of the other party easityan do something bad to
the other party.

We now show that party/ can infer a value foCOUNT(s ), throughquery infer-
ences even though it only obtains the statistical informatiohestthan the value of
COUNT(sp).

Example 1 (Query Inferencedh our motivating example, both the bus (paBy and
the metro (party\/) offer services from Downtown district to Bay district. Asge that
each of the parties provide only one service from Downtovstridi to Bay district.
Initially, Kp/(17) = {COUNT(sps)}. Suppose at time 1) issues a query
Q1 (8, COUNT), wheres=("Downtown District”, “Bay District”) (where the concepti-
erarchy is the one in Figure 1b). Without any query restiictt),; can be posed op;
and thus the knowledge af can be updated t&s;(1") = {COUNT(sys), COUNT(S)}.
ASSUMECOUNT(sys) = 10,000 andCOUNT(S) = 90, 000, PartyM can infer a value for
f(sp) asCOUNT(8) — COUNT(sps) = 80,000 O

Definition 2 (Competitive Privacy Breach).Given two competitive sequenegsaind
s; obtained fromD; and D; respectively. At time, we say that there is aompetitive
privacy breactwith respect to party?; by party P; if, given a real numbee, P; can

infer a valuef (s, |KCp, (t7)) for f(s;) such that f(s;|Kp, (t7)) — f(s;)| < e based on
knowledgeCp, (7). O

4 Query Restriction
In this section, we will give a high-level description of theoposed algorithm called

CCF (mnservative ompetition-fee) to avoid any competitive privacy breach. Details
of this algorithm can be found in [7]. Intuitively, we rejesdpme queries which may
breach competitive privacy. Consider a quéryhich has sequence We reject query

Q if one of the following two conditions hold€ondition 1:There exists a competitive
sequence which is a sub-sequence.@ondition 2: There exists generalized version
of competitive sequence which is a sub-sequence. &ffe say that sequencg =
(N1, Na, ..., N;) is ageneralized versionf another sequencg = (M1, Ma, ..., M) if

N, is equal toM, or is an ancestor node @f, (in the concept hierarchy) for all €
[1,1]. In [7], we prove that our query restriction algorithm camiavany competitive
privacy breach.

5 Empirical Study

We have conducted extensive experiments on a Pentium IViz4&& with 1GB mem-
ory, on a Linux platform. The programs were implemented it C/e evaluated our
algorithm, CCF, on both synthetic and real datasets, ingesfrfour measurements:
(1) average auditing timg(2) ratio of restricted queriesand (3)storage The average
auditing time corresponds to the average time to check venetlyuery is rejected by
our proposed algorithm CCF. The ratio of restricted quasiegjual to the total number
of restricted queries by CCF over the total number of issaedom queries. The stor-
age corresponds to the memory usage to hold all competiigeences of all parties,
namelyCS. All experiments were conducted 100 times and we took thesgesfor the
results. In our experiments, we generate 10,000 batchasoieg. Each batch contains
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Fig. 2. Effect of the total number of tuples

20 queries. We randomly generate a qu@rywith sequence = (N1, Na, .., Nig,|)

as follows. For eaclV; wherei € [1,|Q:|], we randomly select a value in the concept
hierarchy. Then, we refine que€y; and generate another new qué€}y. We adopt the
refinement operations from [2]: Append, De-tail, Pre-peidd;head, Pattern-roll-up
and Pattern-drill-down. We randomly select one of the oj@ma and generate query
Q2. Similarly, we repeatedly generate quépyfrom Q;_, until i = 20.

Synthetic Dataset:The synthetic dataset is generated by a dataset generai®gdn-
erator creates sequences with 4 parameters, namely: and/, wheren is the total
number of (integrated) sequencegss the total number of parties,is the percentage
of ground competitive sequences in each party’s datasdt] anthe average length
of the data sequences. The data sequence is generated amthevay as [2] and we
randomly assigr% of sequences as competitive. We generate a generalitegicar-
chy of height 3. We partition the ground nodes into differgmups such that different
ground nodes, say andv’, wherev € C(v') (or v’ € C(v)) forms the same group.
For each group of ground nodes, we create an internal dodginally, we create a
root nodeN’ such that the parent of all internal nodes constructéd isThus, the final
hierarchy has height equal to 3. The default values ¢fium. of tuples)p (num. of
parties),c (the ratio of ground competitive sequences) afaverage sequence length)
are 500K, 4, 0.05, and 20, respectively. In the experimaevasstudy the effect of the
total number of tuples and the length of the query.

In Figure 2(a), the average audit time remains nearly urgbémvhen the dataset
size changes. The auditing time of our proposed algorithinlgndepends on the size of
CS (Details can be found in [7]). Since the sized# is fixed (Figure 2(c)), the change
in the dataset size does not affect the auditing time too mBebides, we can observe
that the average auditing time increases wiph, the length of the query. Figure 2(b)
shows that the number of restricted queries is nearly the séth different dataset size.
Similarly, since the percentage of competitive sequeneemins unchanged when the
dataset size changes, the ratio of restricted queries esains unchanged. Whéq|
increases, it is trivial that the ratio increases. Figu gfows the storage of algorithm
CCF keeps unchanged when the dataset size increases. beisigse the storage for
setCS is independent of the dataset size.

Real Dataset: The real dataset is obtained from a local transportatiomrgrgtion
called MTR in Hong Kong. It consists of passenger transastiaf 5-working-day;, all
recorded by an RFID-based electronic payment system. Tésepger transactions are
consolidated from 4 different in-city railway lanes. Eaelné corresponds to a party.
There are 63 stations in total and 6 of them are transfer teisi In particular, 5
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transfer terminals allow passengers to switch to anothre, land 1 transfer terminal
is a hub that allow passengers to switch to two other lanesexample record is like
(N1, N2, N3, N4), which denotes that there was a passenger entered theyaikta
work at stationNy, got off at stationV,, transferred to another lane at stativp and
finally left the railway network at statiotv,. All pairs of transfer terminals as defined
as conflicting. That s, in this exampl@(N2) = { N5}. All together we have 1,387,831
sequence records. The average sequence length of a re2®ddtations. According to
the locations of stations, we divide the stations into défe regions such that there are
63 leaf values and 31 non-leaf values in the concept hieyatheight 4.

We carry out experiments that are similar to the results yothetic datasets. Fig-
ure 3 shows that the experimental results are similar toetloosthe synthetic data. In
order to conduct the experiments with the variation of thenber of tuples, we ran-
domly sample a subset of tuples. The average audit timeatfteaf restricted queries
and storage remain nearly unchanged when we vary the tata@bauof tuples.

6 Conclusion _ _ _ :

Most previous works focus on privacy issues over data fromglessource. This paper
formulates a problem called competitive privacy which d¢dess privacy issues when
sequence data is integrated from more than one source. Opoged algorithm CCF
rejects queries efficiently and guarantees no competitivagy breach. In all experi-
ments, the auditing step can be achieved within 0.04s andtireof the total number
of restricted queries over the total number of queries i sisall (within 0.15).
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