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Abstract— The importance of dominance and skyline analysis Pa;;(age D'Stan(:?ego'beaCh F;r(')coe

has been well recognized in multi-criteria decision makingappli-
. : . ; P2 4.0 350
cations. Most previous studies focus on how to help customefind

: 1.0 500
a set of “best” possible products from a pool of given producs. zi 3.0 500
In this paper, we identify an interesting problem, finding top-k TABLE |

profitable products, which has not been studied before. Give
a set of products in the existing market, we want to find a set PACKAGES IN THE EXISTING MARKET
of k “best” possible products such that these new products are

not dominated by the products in the existing market. In this

problem, we need to set the prices of these products such that Package| Distance-to-beach Price | Cost
the total profit is maximized. We refer such products as topk @ 5.0 ? 100
profitable products. A straightforward solution is to enumerate q2 4.5 ? 200
all possible subsets of sizé: and find the subset which gives a3 05 ? 400
the greatest profit. However, there are an exponential numlreof TABLE ||

possible subsets. In this paper, we propose solutions to firithe

top-k profitable products efficiently. An extensive performance
study using both synthetic and real datasets is reported toerify

its effectiveness and efficiency.

POTENTIAL PACKAGES IN THE NEW TRAVEL AGENCY

and gs. In this table, attribute distance-to-beach and attribute
cost of each package are given. However, attribute price is t
Dominance analysis is important in many multi-criterige determined by the agency.
decision making applications. Example 2 (Profitable Price with One Package): Suppose
Example 1 (Skyllne) Consider that a customer is |00|fhat we select 0n|y)ne new package, saysg;. What price
ing for a vacation package to Hannover using some travehould we set for packagg? If we set the price of; to be
agencies like Expedia.com and Priceline.com. The custon¥ino, since the cost af; is $100, theprofit of ¢; is equal
uses two criteria for choosing a package, nampfice and to $100-$100 = $0. In other words, we cannot earn any
distance-to-beactwhereprice is the price of a package and profit. If we set the price to b&400, although we can earn
distance-to-beacis the distance between a hotel in a packagg400-$100 = $300, this new package, is dominated by,
and a beach. For two packaggsand g, if p is better than jn the existing market. In other words, it is likely that no
g in at least one factor, and is not worse thanin any customer will select; sinceps is better thang;. However, if
other factors, therp is said to dominateq. Table | shows e set the price to b&300, not only can we eari300-$100
four packagespi, p2, p3 and ps. We know that lower price = $200 but alsog; is not dominated by any packages in the
and shorter distance-to-beach are more preferable. Thys, existing market. We say th&B00 is aprofitableprice of ¢
dominateg, becauses has lower price and shorter distance-pyt $100 and$400 are not profitable prices af;.
to-beach tharp,. Howeverp; does not dominatp, because | et us consider another example that we want to select only
p1 has lower price tharps. Similarly, p; does not dominate one new package. (instead ofg;). Similarly, if we set the
p3 becauseps has shorter distance-to-beach. O  price to be$200, the profit is0. If we set the price to b$400,
g%is dominated by,. However, if we the price to bg300,
we can earn$100 andg- is not dominated by any packages

|I. INTRODUCTION

A package which is not dominated by any other packag
is said to be a&kyline packager it is in theskyline Recently, . - X : .
skyline analysis has received a lot of interest in the lttem in the existing market. Thu£300 is a profitable price of
[10], [6], [14], [5], [9], [15]. The packages in the skylingea PUt$200 and$400 are not. 0
the best possible tradeoffs among the two factors in questio Unfortunately, how we set the price of a new package may
In Example 1ps is in the skyline because it is not dominatedffect how we set the price of another new package.
by p1, p2 andp,. However,p, is not in the skyline because it Example 3 (Profitable Price with Two Packages): Suppose
is dominated byps. that we are interested in selectiiggo new packages, says

Consider that a new travel agency wants to start soraed ¢o, instead of only one new package. From Example 2,
new packages from a pool of potential packages as shownfirwe set both the price of; and the price of¢g; to be
Table Il. Table Il shows three potential packages, namgly,  $300 separately then we can earn some profits and they



are not dominated by any packages in the existing market. and the efficiency of our proposed approaches. The
However, after we set these prices, the new packagé experimental results show that finding tépprofitable
dominated by another new packagge An alternative price products is interesting.

setting/assignment is that the price @f is set to$250 and  The rest of the paper is organized as follows. In Section I,
the price ofg, is set to$300. In this assignment, it is easy towe formally define our problem. In Section Iil, we describe
verify thatg, (¢2) is not dominated by not only any packagegn algorithm for finding the sum of the profits given a set of
in the existing market but also another new packagéq:). k selected packages. The dynamic programming approach is
Besides, the profit of; and the profit ofg> are $150 and developed in Section IV while the greedy approaches are pre-
$100, respectively. The sum of these profits is equ#2&0. sented in Section V. In Section VI, we give some discussions
O of the proposed approaches. A systematic performance study

In this paper, we study the following problem: Given a sé? reported in Section VII_. In Section VIII, we _describe some
P of packages in the existing market and a @eof potential related work. The paper is concluded in Section IX.
new packages, we want to selécpackages frond) such that Il. PROBLEM DEEINITION
the sum of the profits of the_selected p_ackages 1S maX|m|zec{Ne first describe the background about skyline in Section Il-
and each selected package is not dominated by any packa&eﬁ_hen we give some notations used in our problem in
in the existing market and any selected new packages Whgf(ee}ction I'I-B and our problem in Section II-C
k is a positive integer and is a user parameter. We call this '
problemfinding bp-k profitable poducts (TPP)For example, A. Background: Skyline

kis equal to 1 in Example 2 whilis equal to 2.in Example 3. A skyline analysis involves multiple attributes. The vaue

b f sizd f lcul h  th 6 ]ﬁl each attribute can be modeled by a partial order on the
subsets of sizé& from @, calculate the sum of the profits o attribute. A partial order < is a reflexive, asymmetric and

each possible subset, and choose the subset with the areqiSisitive relation. A partial order is also a total orderfaf

sum. However, this approach is not scalable because thereaﬁ{y two values: andov in the domain. eithet, < v or v < u
an exponential number of all possible subsets. This m(a!s'wawe write w < v if u < v andu % v ' - -

us to propose efficient algorlthms for problem TPP. By default, we consider tuples in an-dimensional space
Although how we set the price of a new package may affegtﬁ 2%+ - -x2,. For each dimension;, we assume that there

how we set _the price of anothe_r new package and Fhere £ partial or total order. For a tup}e p.x; is the projection
an exponential number of possible subsets, interestingly, on dimensionz;. For dimensionz;, if p.a; < q.z;, we also
' 71 Ly D Ly

propose alynamic programmingpproach which finds aop-  giqy b1y \write p <, ¢. We can omitz; if it is clear from the
timal solution when there are two attributes to be consider ntext -

However, we show that this problem is NP-hard when there areq, tuplesp andg, p dominates; with respect tc, denoted

more than two attributes to be considered. Thus, we propqigp < ¢, if for any dimensionz; € S, p <., ¢, and there
) 3 1 —Z; 1

two greedy algorithms for this problem. One greedy alganith .\ ;i< 5 dimensiom,, € S such that <,. ¢. If p dominates
‘ . . % Tiy Y-
h;s a the(()jretulzal gtlrjlarantefe on the”proflt_ r_etlflrned while tq,ethenp is more preferable than.
other greedy aigorithm pertorms well empiricatly. Definition 1 (Skyline):Given a dataseD containing tuples
Finding top# profitable products is common in many reaj

. 2 . ; - . n spaceS, a tuplep € D is in theskylineof D (i.e., askyline
life applications. Other applications include finding ptalfile tuple in D) if p is not dominated by any tuples . The

laptops in a new laptop company, finding profitable de“"erskaline of D, denoted bySKY (D), is the set of skyline tuples
services in a new cargo delivery company and finding prqﬁ D. 0

itable e-advertisements in a webpage. . _
Our contribution are summarized as follows. For example, in Table | wher® = {p1,p2, p3,ps}, Since

1) To the best of our knowledge, we are the first to studg"p2 apo3 are not dominated by any tuplesin SK'Y (D)
how to find topk profitable products. Finding top- ' €442 to{p1, p2,ps}.
profitable products can help the effort of companigs Notations

to find a subset of products together with their corre- We have a set? of m tuples in the existing market,

sponding profitable prices, which cannot be addressed !
by existing methods. namely p1, ps, ..., pm- Each tuplep has! attributes, namely

2) We propose a dynamic programming approach whié 1,A2_, ..., A;. The domam. of _each attnpute . The value
can find an optimal solution when there are two af attribute 4; for tple p is given and is denoted by.4;

tributes to be considered. We show that this problem Y%h?rej < [.1’ {]. In particular, the_ last attributel, repr_esents
; attribute price and all other attributes represent thebatts
NP-hard when there are more than two attributes. Thu

We probose two areedv anproaches to solve the probl on'r]wer than price. Besides, we have a@etf n potential new
efficFi)enﬁ)Iy 9 y app P Ff'uples, namelyq, go, ..., ¢,. Similarly, each tupleg has the

3) We present a Sy_StematiC performance study USi_ng bothy, this paper, we use the termattribute’ and “dimensiofi interchange-
real and synthetic datasets to verify the effectivenessiy.



samel attributes, namel,, Ao, ..., A;. The value of attribute  Example 4 (Feasible Vectorin Example 3,k = 2. Sup-

A, for tuple ¢ is denoted by.A; wherej € [1,1]. However, pose thai)’ = {¢1,¢2}.

the value of attributed; for tuple ¢ is not given and the value Consider that we set the price gf to $300 and the price
of each of the other attributes is given. We assume that obg, to $300. The price assignment vectois (300, 300, 0).
two potential new tuples i) are identical (i.e., no two tuples v is not feasible. As described in Example 3, after we set the
in @Q have the same attribute values fax, A, ..., A;_1). In price forg; and the price foks, ¢; is not in the skyline with
addition to thesd attributes, each tuple is associated with respect toP U Q' becausey; is dominated byy,.

one additional cost attribut€'. The value of attribute” for Consider that we set the price ¢f to $250 (instead of

q is denoted byg.C. We assume that for any two tuples ir6300) and the price of, to $300. The price assignment vector
P UQ, they have at least one attribute value different among is (250, 300, 0). v’ is feasible because after we set the price
the first/ — 1 attributes. This assumption allows us to avoifor ¢; and the price foks, both ¢; and g are in the skyline
several complicated, yet uninteresting, “boundary” casks with respect toP U Q'. 0

this assumption does not hold, the proposed algorithms Cahofinition 2 (Profit of Selection)Let Q' be a set ofk

be modified ac_cordlngly. . tuples selected fror§). Let v be the price assignment vector of
In our running example,P” contains 4 tuples, namely -, in form of (vy, va, ..., v,). Theprofit of Q" with v, denoted

p1, P2, p3 andpy (Table 1), and@ contains 3 tuples, namely P ; .
q1,q2 and gz (Table IlI). Attribute A; and attributeA, are by Profit(Q',v), is defined to be

“Distance-to-beach” and “Price”, respectively. Attribut’ is > Algivi)
“Cost”. GEQ!

Since there are an infinite number of possible valueR,in 0
we assume the domain of attribute “Price” (i.4;) is defined Example 5 (Profit of Selection)n Example 3,k — 2.

to be D ={0,0,20,30,...} whereo is a real number and p
- = Suppose tha)’ = {q1,q2}.
a user parameter. If we want to have a finer granularity, we : . .
: . Consider that the selection setd¥. We set the price of
should setr to a smaller value. This assumption makes sense t0 $250 and the price o, to $300. The price assignment
in real life applications where attribute Price involvesalete 4 P 2 : P 9

. . : vectorv’ is (250, 300, 0). From Example 4, we know that this
values instead of continuous real values. For exampléatitr vector is feasible
Price has value “$500.00” and value “$1000.00” but no value N
Profit(Q’,v') is equal to

“$1000.0007". In the following, we set = 50 for our running

example. Aqr,v1) + D(gz,v2)

C. Finding Topk Profitable Products = ($250 — $100) + ($300 — $200)
A new company is interested in selectihguples from@ = $150 + $100

as the final tuples wherg is a positive integer and a user = $250

parameter. It wants to maximize thofit of this selection.
There are many possible subsets contairkirtgples from@.

Let us consider ongarticular subset)’. The price of each
of thesek tuples (represented by attributh) in Q' is to be
assigned with a value . Given a tupleg in @, after we

Consider that the selection set is stjl. We set the price
of ¢; to $150 (instead of $250) and the price @fto $300.
The price assignment vectet’ is (150,300, 0). It is easy to
verify that this vector is also feasible. Similarly, we abtthat

setq.A; to a valuev, the profit of ¢, denoted byA(q,v), is Profit(Q’,v") is equal to $200. g
defined to be In the above example, we learn that even though we
v—q.C select the same two packages (ig.andg.), different price

In our running example, if we sefi.4; to be $300, then assignment vectors give different profits. It is obviousttha

A(q1,300) is equal to $300 - $100 = $200. If we set it to bGprice assignment vectov’ is better than price assignment
3 . 1" . . .
$250, then/ (g1, 250) is equal to $250 - $100 = $150,  Vectorv” because it gives more profit.

We define aprice assignment vectasf Q’, denoted byv, G ilnce _the company wants to mﬁ.x'rr]n 1ze its |.orof|t., it warfw_ts to
in form of (v1, va, ..., un). v; is said to be the-th entry ofv. ind a price assignment vector which maximizes its profit.

If ¢; € Q' wherei € [1,7], thenv; is assigned with a value Definition 3 (Optimal Price Assignment Vectol)et Q' be
in D. Otherwise v is 57et t0 0 a set ofk tuples selected fror®. LetV be a set of all possible
Suppose thaj is selected in the final selection sgt. our feasible price assignment vectors fQf. The optimal price
objective is to make sure that after we set the price,af is assignment vectoof Q’ is defined to be the price assignment

!/
not dominated by not only the tuples in the existing mark¥gctor v, for Q" such that
(P) but also the newly selected tuples@i. That is,q should Profit(Q',v,) = max Profit(Q’,v")
be in the skyline with respect t& U Q. v'ev
A price assignment vector is said to befeasibleif after The optimal profitof Q’, denoted byProfit,(Q’), is defined
we set the price of eacl € Q' to v;, eachg; € Q' is in the tobeProfit(Q’,v,) wherev, is the optimal price assignment
skyline with respect taP U Q’. vector of Q'. 0



In Section lll, we describe an efficient algorithm to find the
optimal price assignment vector given a gEtof k selected
tuples.

We just learnt that given garticular set )/, we can
determine the optimal profit of)’. However, there are many
possible subsets @ containingk tuples. The company wants
to find a selection containing tuples from@ such that the
total profit is maximized andé tuples will be selected by some
customers.

Problem 1 (Finding Tope Profitable Products):Let Q be
the set of all possible subsets containihguples from Q.
We want to select a sef)’ of k tuples from@Q such that
Profit,(Q') = maxgreg Profit,(Q")

This problem is calledfinding bp-k profitable poducts
(TPP). B B

A naive way for this problem is to enumerate all possible
subsets of sizé& from @), calculate the optimal profit of each
possible subset, and choose the subset with the greatdist pro

Tuple
q1

f
5.0

q2 4.5
q3 0.5

TABLE Il
THE f VALUE OF EACH TUPLED € Q

e Group 2 (Inside v): Group 2 is the set of all tuples
in v(X,q). For a particular price assignment vector of
Q’, some tuples in this group may dominatavhile for
another particular price assignment vector @f, they
may not dominatey.

For example, consideg; again. Consider a price as-
signment vectorv (300, 300,0). Note thatgs is in
v(X, ¢1). After we set the prices af; andg, with vector

v, g2 dominatesy;.

Consider another price assignment vectef
(250, 300,0). After we set the prices of; and g, with

However, this approach is not scalable because there are an vectorv’, ¢, does not dominate.

exponential number of all possible subsets. This motivases

Our objective is to make sure that each tuples Q' is

to propose efficient algorithms for problem TPP which will bén the skyline with respect toX(= P U Q’). That is, each

described in Section IV and Section V.

I1l. FINDING OPTIMAL PRICE ASSIGNMENT
In this section, we present argarithm for finding the
optimal price assignment calledOPAIn O(k(log(m + n) +
N)) time given a set)’ of sizek where N << (m + n).

Suppose that)’ is a selection set. Our objective is to find

the optimal price assignment vector §f. After setting the

prices of all tuples inQ’ according to this vector, the tuplesto consider the tuples in

in Q' are in the skyline with respect t8 U ’.

Let X = PUQ'. Givenp € X andp’ € X, p is said to
quasi-dominate’ if (1) p dominateg’ with respect to the first
[—1 attributes, namelyl,, Ao, ..., A;_1, or (2) p has the same
I — 1 attribute values ag’. In our running example], = 2.
Suppose that)’ = {q1,¢2}, p2 quasi-dominates both; and
q1 sincep, dominates bothp; andg; with respect to attribute
“Distance-to-Beach”p, also quasi-dominateg. Letv(X, ¢;)
be a set containing all tuples iX which quasi-dominate
gi;- For example, suppose th&®' = {q1,¢:}. v(X,q1) =
{a2, p2. p3, pa} and (X, g2) = {p2, ps, pa}.

The following lemma gives us an intuition of how to desig
an algorithm to find the optimal price assignment vectafaf

Lemma 1:Suppose thap € X andg¢; € Q'. Consider that
we are given a price assignment vector@f equal tov =
(v1,v2, ..., v,) such that we set the price of eagh(i.e., ¢;.4;)
in Q' to v;. If p dominatesy;, thenp € v(X, ¢;). 0

According to the above lemma, we divide the tuplesXin

into two groups.

o Group 1 (Outsidev): Group 1 is the set of all tuples not
in v(X, q) (more specifically, all tuples itX — (X, q)).
The tuples in this group do not dominataegardless of
any price assignment vector 6f.

In our running example, le®’ = {q1, ¢2}. Considerg;.
Sincep; is not in (X, ¢1), we know thatp; does not
dominateq; .

n

p’, then f(p) is smaller than or equal té(p’).

tuple ¢ in Q' is not dominated by any tuple itk. This

is our goal. Consider Group 1 (Outsidg. We can achieve
the goal because all tuples in this group do not dominate
Consider Group 2 (Inside). It is possible that some tuples in
~v(X, ¢) dominateq for a particular price assignment vector.
For another price assignment vector, they do not dominate
In the above, we learn that if we want to determine the
price of ¢; in Q' such thatg; is in the skyline, we only need
(X, q).

Given a tupleq € @Q’, we know that only the tuples iX
guasi-dominating; affect the price of;. Note that the prices
of all tuples in P are given and the prices of all tuples in
Q' are to be found. Thus, according to the quasi-dominance
relationship, we design arogressivealgorithm which finds
the price of each tuple in Q' by the following principle.

Principle 1: Whenever we want to find the price of in
@', we make sure that the prices of all tuples@® quasi-
dominatingg; have already been determined.

Next, we need to determine the ordering of processing tuples
in @’ which follows the above principle.

We define the following monotonically increasing function
f which can determine the ordering. Given a tuplén Q,
function f is defined as follows.

-1
f(Q) = ZQ-Az‘
i=1

In our running example] = 2. The f value of each tuple
q € @ can be found in Table Ill. The ordering of tuples.i
i q3,q2 andq;.
With this function f, we know the following lemma.
Lemma 2:Suppose andp’ are inX. If p quasi-dominates

O

For example, since, quasi-dominateg, f(p2)(= 4) is
smaller thanf(p1)(= 7).



Algorithm 1 Algorithm AOPA(Q’) implementation is to build an R*-tree index on dataBet Q'

Input: A set@Q’ of tuples inQ according to the first — 1 attributes. If we perform a range
Output: the optimal profit assignment vector gf query with the range equal tod; < ¢;.A;” for eachi €
1 Q"0 [1,1 — 1], then we can find all tuples i® U Q' which quasi-
2: v+ (0,0,...,0) dominateq;. However, with this implementation, we have to
3: for eachq; € Q' (which is processed in the sortedbuild different indexes or? U @’ for different selection sets
ordering)do @', which is not efficient.
4. v « findOptimalincrementalPrice (¢;, @”,v) (See Another possible implementation is to build an R*-tree
Algorithm 2) index on datasePUQ (instead ofPUQ’) according to the first
5 Q'+ Q"U{g} [ — 1 attributes. Similarly, we perform a range query with the
6: return v same range as above and find all tuple®io @ which quasi-

dominateg;. In this implementation, sinc®’ C @, we can
Algorithm 2 Algorithm __ findOptimalincremental- do a post-processing step to select all tuple®ia @’ which
Price(gi, Qi—1,Vi-1) quasi-dominate;. This implementation has its advantage that

- — we only need to build an index once for any selection set. We
Input: A setQ;—1(= {q1,42,..,qi-1}), tuple ¢; in Q" and

the optimal price assignment vector ; of Q adopt this implementation in our experiment.
—1 i—1 . *_ -
Output: the optimal price assignment vecter of Q; Suppose that we are given an R*-tree index on dat&s&p

in the second implementation. We want to analyze the time
1V, «— V1

; o : P
2: find a setY” containing all tuples inP U Q' which quasi- complexny. of the step of finding all tuples it U Q" which
guasi-dominatey;. In most cases, the cost of a range query

3: go}fpliaéiqr:en is O(log(|P] + |Q|) + N) where N is the total number of
4: v  (min A)—o tuples returned in a range query. Typically, is extremely
5 else pey P-4 small compared with{|P| + |Q|). That is, N << |P| + |Q|.

) The post-processing step tak@$N) time. Thus, the step of
6: V<« 00 L - , . . .

_ , . finding all tuples inP U Q' which quasi-dominate; takes

7: set thei-th entry inv; to v .

& retum v, O(log(|P| +1Q|) + N) time.

After we analyze the time complexity of this time-
consuming operation, it is easy to verify that Algorithm 2
. _ takesO(log(|P| + |Q]) + N) time.

With the above lemma, we can first compute thealues  consider Algorithm 1. Since there at’| iterations (in
of all tuples inQ’. We sort the tuples i)’ in ascending order jines 3-5) and each iteration calls Algorithm 2 (which takes
of thesef values. Then, we determine the price of each tupl§(1og(|P| + |Q|) + N) time), the overall time complexity
¢ in Q" according to this ordering, which follows Principle 1 ¢ Algorithm 1 is O(|Q’|(log(|P| + |Q|) + N)). Sincem =

After we obtain the ordering of processing the tuples IP|,n = |Q| and k = |Q’'|, the time complexity becomes
Q’, we present an algorithm to determine the optimal pri(@(k(log(m—i—n) +N))

assignment vector af)’ incrementally.

Without loss of generality, we assume thatgs, ..., gx are IV. DYNAMIC PROGRAMMING
the tuples inQ’ sorted in ascending order of tifevalues. Let  In this section, we present a dynamic programming ap-
Qo=0.LetQ; =Q;—1U{q} where: =1,2,3, ... k. proach which finds an optimal solution for problem TPP when

Lemma 3:Suppose thap € X andg; € Q’. Consider that [ = 2.
we are given the optimal price assignment vector(if ; Considerl = 2. Without loss of generality, we assume that
equal tov;_; = (v1,ve,...,v,) Such that we set the price ofqy, o, .., q, are sorted in ascending order of thfevalues.
eachq; (i.e.,q;.4;) in Q;—1 to v;. Suppose that(X,¢;) # 0. Q(i) is defined to be a set of tuples i) such that these
Let v; be a price assignment vector equakta; except that tuples are quasi-dominated hy. Let S(i,t) denote the set
thei-th entry ofv; is set to(ming,c. (x,q,)p- A1) —0. viisthe Q" of sizet wherei € [1,n] andt e [0,k] such that
optimal price assignment vector ;. Profit,(Q') = maxgreo Profit,(Q") whereQ is the set of

By Lemma 3, we can derive a progressive algorithm adl possible subsets containimguples fromQ (i) . Let v (i, t)
shown in Algorithm 1. denote the optimal price assignment vector of $@t ¢). Let

With Lemma 3, it is easy to verify the following theorem.T'(i,¢) denote the (optimal) profit of sef(:, t).

Theorem 1:Given a setQ’ of k tuples selected frond), Let us use a symbak(g;, S, v) to represenfindOptimal-
Algorithm AOPA returns the optimal price assignment@t IncrementalPrice(g;, S, v).

In the following, we describe how to find three variables,
namelyv(i,t), T(i,t) and S(i,t). Consider two cases.

Implementation and Time Complexity: In Algorithm 2, o Case 1:¢; is included in the final selection of size
the most time-consuming operation is the step of finding By Lemma 3, the optimal price assignment vector of
all tuples in P U @’ which quasi-dominate;. One possible S(i,t), denoted byv(i,t), can be obtained from the



optimal price assignment vector §{i—1,¢—1), denoted Algorithm 3 Dynamic programming approach

by v(i —1,t —1). Input: P,Q andk

Thus, we have the following equation. Output: the final selectior®’ of sizek and the optimal price
assignment vectov of @’

V(i,t):Oé(qi,S(’L'—l,t—l),V(i—1,t—1)) (1) 1: for i =1 ton do
Thus, 2. T(i,0) =0
T(i,t)=T(G—1,t—1)4v 2 3 5300
4: for t=1to k do
wherew is thei-th entry inv(i,t). Let Toereer = T(i —  5:  T(1,¢) — a(qu, 0, (0,0, ...,0))
Lt—1)+w. 6: S(1,t) — {q}
Similarly, S(i,t) can be obtained as follows. 7-for t =1 to k do
8 fori=1ton do
S(i,t) =83 —1,t —1)U{¢} (3 9: Vselect — a(qi, S(t —1,t—1),v(i—1,t —1)
« Case 2:¢; is not included in the final selection. 10: v thei-th entry invaerec
We have 11: Tsetect — T(E—1,t—1)4+v
. . 12: TnotSelect A T(Z - 17 t)
t)=v(i—1,t 4 :
V(’L7 ) V(Z ’ ) ( ) 13 |f Tselect 2 TnotSelect then
We have 14: /I Case 1lyg; is selected
15: v(i,t) — alg, S —1,t —1),v(i —1,t — 1))
T(i,t) =T —1,t) (5) 1e: T(i,t) < Tserect
17: S(i,t) — St —1,t —1)U{¢}
and 18: else
, , 19: /I Case 2y; is not selected
S(i,t) = S(i —1,1) ®) 20 v(i,t) — v(i—1,t)
Let TnotSelect = T(Z — 1’ t) 21: i;t ¢ LnotSelect

T(i,t)
Note that we want to maximize the profit of the selectiorf S(i’t; = 8(i-11)

set of sizet. Obviously, if Tseicet > Thotsetcet, We should 2% Q" —=Q(n,t
selectg; in the selection set (which corresponds to Case 124: vV V("’,t)
Otherwise, we should not selegt(which corresponds to Case 5: return Q" andv
2).

The pseudo-code of the dynamic programming approach is
shown in Algorithm 3. new selected tuple. We call this phenomenapriae correla-

Theorem 2:Algorithm Dynamic Programming returns antion. The first version of the greedy algorithm is the algorithm
optimal solution@’ of size k for problem TPP (i.e., the setwhich selects tuples i) iteratively without considering the
Q' of size k with the greatest profit) wheh= 2. price correlation. The first greedy algorithm returns a soiu
Time Complexity: Consider Algorithm 3. Statements fromWith @ theoretical guarantee on the profit. The second weisio
line 1 to line 3 take®)(n) time while statements from line 4 to e @lgorithm which selects tuples @ iteratively considering
line 6 takesD (k-k(log(m-+n)+N)) = O(k?(log(m+n)+N)) the pnce_gorrelauon. The second greedy algorithm perorm
time. Consider statements from line 7 to line 22. There a¥ell empirically.
O(kn) iterations where the statements from line 9 to line 22 )
correspond to an iteration. It is easy to verify that eactatten A- Greedy Based Algorithm |
takesO(k(log(m +n) + N) +n) time. Thus, statements from  The first version of the greedy algorithm is the algorithm
line 7 to line 22 takesD(kn(k(log(m + n) + N) +n)) = which selects tuples i iteratively without considering the
O(k*n(log(m 4+ n) + N) + kn?) time. price correlation.

V. GREEDY ALGORITHM For each tupley in @, we first define the optimal profit

of the selection set containingonly. We call this profit the

In the previous section, we described a dynamic progral

ming approach which finds an optimal solution whiea: 2 Standalone profio .
However, whenl > 2, we show that the problem is NP-hard Definition 4 (Standalone Profit)Given a tupleg in @, the

standalone profitof ¢, denoted bySP(q), is defined to
e Freorem 3:When > 2, problem TP is NP-hard Profit,({a})-
eorem 3.WWhent = =, problem s NF-hard. 0 The first version of the greedy algorithm is described as
The proof can be found in the appendix. follows. Specifically, for each tupley in @, we find the
Since the problem is NP-hard, we propose two greedyandalone profit ofg. Then, we choose: tuples which
algorithms for this problem. As we described in Example 3jave the greatest standalone profits. This version is shown i
the price of a new selected tuple may affect the price of arottAlgorithm 4.



Algorithm 4 Greedy algorithm (Version 1) Algorithm 5 Greedy algorithm (Version 2)

1: v+ (0,0,...,0) 1. Q 10
2: for eachq € @ do 2: while |Q'| < k do
3. find the standalone profit af 3. for eachq; € Q do
4: Q' «— a set of thek tuples which have the greatest 4: x; — AOPA(Q' U {q:})
standalone profits 5. find the tupleg; in @ such thaly; has the greatest value
5: return Q' of x;
6 Q «—Q U{q}
7: return Q'

Although this greedy approach is a heuristical approach,
it has theoretical guarantees on the profit returned by the
algorithm. B. Greedy Based Selection Il

Suppose thap is theoptimal selection sefor problem TPP In the previous subsection, we describe the first version

(ie., th? selectiqn set V_VhiCh has the grgatest profit). hue of the greedy algorithm which does not consider the price
the optimal profit ofO is equal toProfit,(0). Recall that . alation. In this subsection, we describe the seconsiamer

er r\]/vant todma>|<|m|;ﬁ thehprof;t, dys to the heuristical naturg o greedy algorithm which select tuples @h iteratively
of the greedy algorithm, this algorithm may return a Se®Tti o idering the price correlation.

the A Lo
Q" which has a lower profit (which is equal #rofito(Q")).  Tha second version of our greedy algorithms is shown in
It is easy to verify that Algorithm 5

Profit,(Q") < Profit,(O) Time Complexity: Consider Algorithm 5. There ar®(k)
iterations where statements from line 3 to line 6 correspond

In the following, we give two theoretical results about thep an iteration. Consider an iteration. Statements from 8ro
error guarantee on the profit returned by the algorithm. Thige 4 takeO(n-k(log(m+n)+N)) = O(nk(log(m+n)+N))
first result corresponds to additive error guaranteghile the  time. Statements from line 5 to line 6 tak€n logn) time.
second one corresponds taralltiplicative error guarantee  Thus, each iteration take&3(nk(log(m+n)+N)-+nlogn) =

We first show the result about the additive error guarante@(nk(log(m+n)+ N)) time. The overall time complexity of
Theorem 4:Let O be the optimal selection set adl be Algorithm 5 isO(k-nk(log(m+n)+ N)) = O(nk?(log(m +

the selection set returned by Algorithm 4. n) + N)). Note that compared with the time complexity of
Algorithm 4 (i.e.O(k log(m+n)+ kN)), the time complexity
Profit,(O) — €4qa < Profit,(Q") of Algorithm 5 is higher.
where VI. DISCUSSION
k(k—1)
€add = 750 In problem TPP, after we set the price of each tuple in the

selection set)’, we know that each of these tuples is in the
u skyline with respect taP? U Q’. In other words, after we set
Next, we show the result about the multiplicative erroihe price of each tuple ip’, each of these tuples aneof the
guarantee. best choices for the customer to choose (because there may be
Theorem 5:Let O be the optimal selection set ang’ More than one tuple in the skyline). In order to make sure that

be the selection set returned by Algorithm 4. Suppose tHRCh tuple inQ” will be chosen by a customer in the market
Profito(Q') > 0. Let A = 3, o, SP(g;). Algorithm 4 is with a higher probability, we would like to set the price of
o ’ 4 €Q’ v

a (1 — e )-approximate algorithm. That is, each of these tuples such that not only each of these tuples is
in the skyline but also each of these tuples dominates dtieas
Profit,(Q') > (1 — €muit) Profit,(O) tuples in the existing markd® whereh is an input parameter.
This problem is called Findingp- profitable poducts (TPP)
wheree i = k(kQ_Al)". q  With the h-dominance constraint. THedominance constraint

corresponds to that each of these tuples dominates at/least
Time Complexity: Consider Algorithm 4. We need to calcu-tuples in the existing marke®.
late the standalone profit affor each tuple; € @. This step  All the formulations described in Section Il can also be
takesO(k(log(m + n) + N)) time. Then, we need to chooseused. The only change we need is the definition ééasible
the k tuples which have the greatest standalone profits, whiphice assignment vector. With thedominance constraint, a
can be done imO(klogk) time. Thus, the time complexity price assignment vector is said to befeasibleif after we set
of Algorithm 4 is O(k(log(m + n) + N) + klogk). Since the price of eachy; € Q' to v;, eachg; € Q' is in the skyline
k = O(m + n), the complexity become®(k(log(m + n) + with respect taP U )’ and eachy; € @)’ dominates at least
N)) = O(klog(m +n) + kEN). tuples inP.



Algorithm 6  Algorithm  findOptimallncremental- Uskyline = (MiNpey(x,q,) P-A1) — 0.

Price(qi, Qi—1,vi—1) with the h-dominance constraint « The h-dominance Constraint: Let #(¢;) be the set
Input: A set@;—1(= {¢1,42,---,¢i-1}), tuple ¢; in Q' and containing all tuples inP which are quasi-dominated by
the optimal price assignment vecter ; of Q; 1 qi- Suppose that(g;) # (. Let vgonm, be theh-th greatest
Output: the optimal price assignment vectey of @Q; with price (i.e.,4;) among all tuples inz.
the h-dominance constraint Let v; be a price assignment vector equahkta ; except that
vy = v the i-th entry of v, is set tomin{vskyiine, Vaom }- vi is the
2: /I Skyline constraint optimal price assignment vector 6f;. 0
3: find a setY” containing all tuples inP U Q" which quasi- . . . o
dominateg; Note that this problem with the-dominance constraint is a

~if Y # 0 then general problem of problem TPP. Since problem TPP is NP-

g Uskyline — (Minpey p.A)) — o hard, this problem is also NP_—hard. _ _
6 else Theorem 7:The problem with theh-dominance constraint
7 Uskyline — 00 is NP-hard. 0
8: // The h-dominance constraint All the proposed algorithms, namely the dynamic approach
o: find a setZ containing all tuples in” which are quasi- and the two version of the greedy approach, can also be

dominated byg; adopted except that we need to call a new version of algorithm
10: if [Z| > h then findOptimallncrementalPrice (Algorithm 6). Details can be
11:  vgom < the h-th greatest price (i.e.4;) among all found in [13].

tuples inZ

12: else VIlI. EMPIRICAL STUDIES
131 Vgom — —00 We have conducted extensive experiments on a Pentium
14: /I Combining the above two constraints IV 2.4GHz PC with 4GB memory, on a Linux platform.
15: v «— min{Uskyiine, Vdom We implemented all algorithms we proposed, namBly,
16: set thei-th entry inv; to v GR1andGR2 DP corresponds to our dynamic programming
17: return v; approach whileGR1and GR2 correspond to the first version

and the second version of the greedy algorithms. We also
implemented a naive (or brute-force) algorithm described i

Problem TPP with theh-dominance constraint is moreSection Il. We name it aBF. All the program are implemented

general than problem TPP without thedominance constraint. in C++- In the following, we consider problem TPP with the

This is because if we sét= 0, then the new problem becomedlominance constraint discussed in Section VI since it isemor
problem TPP without thé-dominance constraint. general than problem TPP without thedominance constraint.

After we consider the additiondl-dominance constraint, Y& measured the algorithms with four measurements,

the price assignment vector of a selection set may also amely (1)Executior_1 Time(2) Preprogess_ing Timg3) Mem-
affected. ory Costand (4)Profit. (1) The execution time of an algorithm

In this new problem, we only need to modify Algorithm 2 tocorresponds to the time it takes to find the final selectioh. (2
Algorithm 6. Algorithn’1 6 is nearly the same as Algorithm 2The preprocessing of an algorithm corresponds to the time it

Algorithm 6 involves three major parts. The first part congai builds a R*-tree index for quasi-dominance checking. (33 Th

the statements related to tekyline constrainivhich can be memory cost of an algorithm is the memory occupied by the

found from Line 2 to Line 7. The second part contains th%lgorithm. (4) The profit of an algorithm corresponds to the

statements related to thedominance constraintvhich can profit returned by the algorithm.
be found from Line 8 to Line 13. The third part containg, Dataset Description

the statements related to combining the above two contrain
which can be found from Line 14 to Line 16.

: \.Nith the following theorem (which is similar o Lemma _3)’ 1) Real Dataset:For the real datasets, same as [12], we
It is easy to prove the correctness Of_ Algorithm 6 (i-eq19in real datasets from Priceline.com and Expedia.com.
und_er theh-dommance constraint, Alglorlthm 6 retums the £o the website of Priceline.com, we obtained all packages
optimal price aSS|gnme|jt velctor a; given a Se,tQi—l ~onJan 15, 2009 for a round trip traveling from San Francisco
{41, a2, - gi-1}, tupleg; in Q" and the optimal price assign-, New York for a period from March 1, 2009 to March
ment vector ofQ;_1). 7, 2009. We have 149 packages. These packages form the

Theorem 6:Suppose thap € X andg; € Q'. Consider get p of existing tuples. Each package has 6 attributes,
that we are given the optimal price assignment vectdpofi  namely quality-of-room customer-hotel-gradinghotel-class

equal tov;_, = (v1,v2,...,v,) such that we set the price ofgte|-price class-of-flight no-of-stopsand price.
eachg; (i-e., ¢;. A1) In Qi1 10 v;. For the website of Expedia.com, we obtained all flights
« Skyline Constraint: Suppose thaty(X,¢;) # 0. Let and all hotels on the same day (i.e., Jan 15, 2009) for the

The experiments are conducted over real datasets and syn-
thetic datasets.



Parameter| Values

same round trip with the same travel period. We have 1014

) . P 0.5M, IM, 1.5M, 2.0M
hotels and 4394 flights. According to these hotels and these 0 0.5M . IM 2M, 3M
flights, we adopt the method proposed by [12] to generate d 0.25,0.5 0.75, 1
all competitive package®etails can be found in [12]. These ! 2,5, 10,15, 20

D . E 10, 20, 50, 100
competitive products form sef). In this dataset, we have > 50. 100,150, 200
4787 competitive packages. Similarly, each packag® imas R 0, 10,20,30

6 attributes (including attributprice). Note that each package TABLE IV
in Q is associated with an additional cost attribute. In order to
generate the cost attribute, for each packagethis package

set, we set.C to be the price of this package multiplied by a
discount ratel whered is a user parameter. Note that althoug
there are values in attribufeice in this set@, we discard all

EXPERIMENTAL SETTING

f GR1and GR2 It is nearly equal to the time foBR1and

R2to find the selection set for problem TPP. In Figure 2,
: . : the profit of DP and BF is the greatest but the profit @R1

these values in the dataset because our problem is to finel thaglngdGRZis also high. In most case§R2returns higher profit

values. . .
2) Synthetic DatasetFor synthetic datasets, we adapt thtehanGRl In Figure 3, as expecte@P occupies much more

dataset generator of [1]. We observe from the real dataaet fremory thar_l other approache_s. .
; S Since BF is not scalable, in the following, we do not
some attributes have large cardinalities but some havel smal . :
o . compare all algorithms witiBF.
cardinalities. For example, in the real datageice may have
thousands of possible values, mg-of-stopscan have only 2 C. Result over Large Synthetic Dataset

or 3 possible values. We divide the attributes into two geoup |n the previous section, we conducted experiments over
of nearly equal size. Note thdt has! attributes only while small synthetic datasets. In these experiments, althG®Rh
@ has an additional attribut€' in addition to thel attributes. and GR2 are heuristical, they also give a high profit. In
The first group contains the first half of attributes (or morgis section, we conducted experiments over large symtheti
specifically, A, ... A|;/2)) each of which has the cardinalitydatasets to study the scalability 6R1and GR2 We varied
of 10. The second group contains the second half of att@buqqaL |Ql,d, 1, k, o andh in our experiments. The values of each
(or more specificallyA|;/2)+1, - - ., A;) and attributeC’ where  parameter used in the experiments are given in Table IV where
each attribute in this group has the cardinality of 10k. the default values are in bold.
We generate” and @ in the same way except that gen- Figures 4, 5 and 6 shows some selected results. For the sake
erating P involves | attributes but generating involves the of space, we do not show some figures.
first [ — 1 attributes and attribut€’. Note that attribute4, 1) Execution time:Figures (a) show the measurement of
of @ is not considered because in our problem definitioexecution time. In all figuresGR2runs slower tharGR1 As
attribute 4; is to be found. The dataset generation procesgg discussed in Section V, the time complexity ®R2 is
is described as follows. Firstly, we used the dataset gémeraigher than that ofGR1 For factork (Figure 5(a), wherk
provided by [1] to generate an anti-correlated dataset &heficreases, the execution time 6R2increases exponentially
each attribute value is a real number in a range between @& the execution time dBR1does not change much. This is
and 1.0. Secondly, we perform a postprocessing step so thatause the time complexity GR2is quadratic with respect
each attribute in the first group has the cardinality of 10 and % but the time complexity ofSR1is not.
each attribute in the second group has the cardinality of 10k 2) Preprocessing timeFigures (b) show the preprocessing
For an attribute in the first group, it can be easily done kjme of the algorithms. This involves the step of building th
multiplying a value in this attribute by 10 and rounding it tandex. When|P|, |Q| and! increase, the preprocessing times
be an integer. We can also do a similar step for an attribud€ GR1and GR2increase.
in the second group. 3) Memory cost:Figures (c) show the memory cost of the
algorithms. Since the memory cost of ba@R1and GR2is
the memory occupied by the spatial index R*-tree on dataset
It is known that a dynamic programming approach is n@g? U@, when|Q| increases an{| increases, the memory cost
scalable to large datasets. Besides, this dynamic progiggnmincreases, as shown in Figures 4.
approach solves problem TPP whénr= 2. In this section,  4) Profit: Figures (d) show the profit returned by the
we conducted some experiments to compare all proposddorithms. In most case§R1and GR2gives similar profits.
algorithms over a small two-dimensional synthetic datasEbr factor k (Figure 5(d)), whenk increases, the profits of
where|P| = 10,000 and |Q| = 10,000. We set the default GR1 and GR2 increase because more tuples are selected
parameters a8 = 5,d = 0.5 and o = 200. to contribute the profit of the final selection. For factor
We vary k to study the performance of the proposed algdFigure 6(d)), wherh increases, the profits of both algorithms
rithms. Figures 1, 2 and 3 are the results for execution timggcreases. This is becausé ifs larger, then the price of each
profit and the memory cost of each algorithm, respectively.selected tuple in the final selection should be set lowerdeor
In Figure 1, the execution time dBF is very large and that each of tuples dominates at leastuples in the existing
is very unscalable. Note theREPis the preprocessing time market.

B. Result over Small Synethetic Dataset



100000

35000

50000
10000
% 1000 40000
£ 100
= 30000
< 10 =
2 s
L 1 © 20000
5 0.1
0.01 10000
0.001

30000
25000
20000
15000
10000

5000

Memory Cost (Bytes)

Fig. 1. Execution time of all algorithms (small . ] . Fig. 3.
9 9 ( Fig. 2. Profit of all algorithms (small dataset) 9
dataset) dataset)
10000 T T T 2000 T T T T 10 T T T T
GR1 === 1800 GR1 === GR1 ——
GR2 mwwwm w GR2 mwwwm GR2 mwwmm
@ 1600 5
© 1000 £ 1400 = -
£ E, 1200 3 3
< 5 1000 Lé =
g 800 S
g 1o é 600 § o
ol S 400 =
& 200
10
500 1000 1500 2000 500 1000 1500 2000 500 1000 1500 2000
1Q (x 1K) QI (x 1K) Q1 (x 1K)
(a) (b) (©)
Fig. 4. Effect of|Q| (the number of potential new tuples)
100000 iggg T T le T 10 T T ‘GF\'l T
o GR2 mwwwws GR2 s
& S 1600 &
% 10000 E 1400 =3 <
E E, 1200 g o
5 1000 ‘% 1000 z
£ ¢ 800 g g
3 S 600 £ &
o 100 S 400 =
& 200
10
10 20 50 100
k
Fig. 5. Effect ofk (the size of the final section set)
1e+06 3000 T T T T 20 T T T T
GR1 === GR1 ——
100000 @ 2500 GR2 s GR2 mwwmm
2 10000 © o 15
£ = =
2 1000 £ 2000 < s
= g 8 =
c 100 w1500 O 10 =
2 g z §
3 0 g 1000 g &
o] 1 g 2 s
01 o 500
0.01 0 0
0 10 20 30 0 10 20 30
h h

(a) (b)

Effect ofh (the minimum number of tuples dominated by each tuple in tlection set)

Fig. 6.

15, 20, 25, 30

1000 ,20005000, 10000
0.4,0.6, 0.8, 1.0

100, 150, 200, 250

TABLE V
EXPERIMENT PARAMETERS ONREAL DATASET

T | Q|
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D. Result over Real Dataset

We also conducted experiments on real datasets. We varied
four factors, namely:, k, d and o. For the interest of space
we only show the results with two factoksandk as shown in
Figures 7 and 8, respectively. The default setting configuma
is: kK =150, h = 20, d = 0.6 ando = 50. The results for real
datasets are similar to those for synthetic datasets.

Summary: Although DP finds the optimal solution for prob-
lem TPP, it is not scalable and is limited to problem TPP when
I = 2. GR1and GR2is scalable to large datasets. It is shown
that they can find a selection g8t with high profits. In most
cases,GR1 and GR2 returns similar profits. HoweveGR2
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sometimes gives a higher profit th&R1 experimental studies, there are 10,000 competitive prisdac
a real dataset. In most cases, it is good to choose some of the
competitive products instead of all competitive produats f
Skyline queries have been studied since 1960s in the theprpmotion. One criterion is to maximize the total profit oéth
field where skyline points are known as Pareto sets asdlection set which is studied in this paper.
admissible points [4] or maximal vectors [2]. However, &arl
algorithms such as [2], [3] are inefficient when there areynan
data points in a high dimensional space. Skyline queries inin this paper, we identify and tackle the problem of finding
database was first studied by Borzsonyi [1] in 2001. top-+ profitable products, which has not been studied before.
After that, a lot of techniques were proposed to accelVe propose methods to find tdpprofitable products effi-
erate the computation of skyline and its variations. Hereiently. An extensive performance study using both syithet
we briefly summarize some of them. Some representatigrd real datasets is reported to verify its effectiveness an

VIIl. RELATED WORK

IX. CONCLUSION

methods include a bitmap method [10], a nearest neighlefficiency. As future work, finding top- profitable products
(NN) algorithm [6], and branch and bound skylines (BBSyith dynamic data and finding top-profitable products with

method [8].

additional constraints (e.g., representative propeftigg11])

Top-K queries about skyline were studied in [8], [7], [L1]are interesting topics.

[8] discussedanked skylin@nd K'-dominating queriesGiven  acknowledgements: The research is supported by HKRGC
a set of points ini-dimensional spaceanked skylinespecifies GRE 621309 and Direct Allocation Grant DAG11EGO5G.

a monotone ranking function, and returhguples in thed-
dimensional space which have the smallest (or greates@sco
according to an input function. Given a set of pointsdin
dimensional spacel{-dominating queriegetrieve K points
that dominate the greatest number of points. It is similar t&?!
the h-dominance constraint introduced in Section VI. (3]
[71, [11] studiedrepresentative skyline querieEhe problem
is to selectk points among all skyline points according to a4l
pre-defined objective function. THepoints in the output are
said to be representative. [5]
[7] was the first to introduceepresentative skyline queries 6]
[7] finds a set ofk points among all skyline points such that
the number of points dominated by this set is maximizedy7]
However, the method in [7] cannot be applied in our proble
because we consider both the profitability of products an ]
the dominance relation of products, but [7] considers the
dominance relation only. Besides, the price of each produéll
is to be found in our problem. [10]
Another definition of representative skyline queries was
proposed by [11]. In [11], representative skyline querigs {1l
to find k& points (ork representative points) among all skyline
points such that the sum of the distances between each skylin
point and its “closest” representative point is minimized. [12]
All of the above studies are to firidpoints or tuples given a ;3
singletable where all attribute values of each tuple in the table
aregiven This paper has the following differences. Firstly, we
want to findk tuples givertwo tables (one ig” and the other is [14]
Q) where one of the attribute values of each tuple in one table
(Q) is not given and is to be found. Secondly, the concept ¥
profitsis considered in this paper but not in the above studies.
The most closely related work is [12]. Given a detof
existing tuples and a number of source tables, [12] finds %!I
tuples “generated” from the source tables such that thegestu

(1]
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APPENDIX

Proof of Lemmas/Theorems

are in the skyline with respect to the tuples in the existingroof of Lemma 1: If p dominatesy;, andp ¢ (X, ¢;), then
market. Those tuples are called competitive tuples or mtsdu p does not quasi-dominatg. So, there exists at least one
Note that the set of all competitive tuples generated in [12&}tribute on whichg; is better tharp according to the quasi-
can be regarded as sét described in this paper. Howeverdominance definition. This conflicts with our premise that

in [12], too many competitive products are generated. lir thelominates;;.

O



Proof of Lemma 2: If p quasi-dominateg’, according to
the definition of f, this indicates that (1) dominates’ with
respect to the first — 1 attributes, namelyd,, A,, ..., A;_1,
or (2) p has the sameé — 1 attribute values ag’. In case
1, obviously, f(p) < f(p'). In case 2,f(p) = f(p’). Thus,
fp) < f(p') 0

Proof of Lemma 3: Suppose that we have a better assign-

ment vectorv’ of Q; in form of (v{,v},...v),
Profit(Q;,v') > Profit(Qi,v;).

Consider two case<Case 1l:v, < v;. In this casey, —
¢;-C < v; — ¢;..C. In other words,A(g;,v}) < A(gi,v;).
In addition, we know thatv,_; is the optimal price as-
signment vector ofY;_1, which meansProfit(Q;—1,v’') <
PT‘Ofit(Qi_l,Vi_l). Thus, we have

Profit(Q;,v') Profit(Qi—1,v") + N(g;, v))
Profit(Qi—1,vi—1) + &g, vi)
PT‘Ofit(Qi,Vi)

Thus, Profit(Q;,v') < Profit(Q;,v;). This leads to a

contradiction.
Case 2w, > v;. It is easy to verify thav’ is not a feasible

) such that

<

price assignment vector. For the sake of space, we do not

include the details. 0

Proof of Theorem 4: Let P be the set of existing tuples, and

@ be the set of the newly created tuples. Cebe the optimal
selection and)’ be the selection returned by Algorithm 4
GivenQ' C Q andg; € Q', we defineA,(g;, Q") = A(g;, v;)
where v; is the i-th entry of the optimal price assignmen
vector v of Q'. SupposeO = {01,02,...0x} and Q' =

{q1,92,-..qx}, whereo; andg; are sorted in ascending order>UPPOSE

of the f values described in Section Il
Let n; be the greatest possible number of tuple®irquasi-
dominatingg;. It is easy to verify that\,(¢;, Q") > SP(q;) —

n;o. Note thaty"¥  n, < 22U e derive that

Z A9, Q) > Z (SP(gi) — nio)
GEQ’ % €Q’
= Z SP(q;) — Z n;o
g E€Q’ G EQ’
k(k—1)
> P T S
> Y SP(g) 5
q:€Q’
Thus, we conclude that
k(k—1
D Ao(ei,Q) = Y SP(a) - %0’
G EQ’ % €Q’
Note that

D A(0i,0) < Y SP(0)

0, €0 0, €0
< Z SP(q:)
;i €EQ’

Therefore, we have

bk =1)

2
k(k —1)

72 g

Profit,(O) — €qdd = Z Ay (0;,0) —

0,€0

< Z SP(q;) —
¢ EQ’
S Z Ao(qiaQ/)
i €EQ’
= Profit,(Q")
O

Proof of Theorem 5: According to Theorem 4, we have that
A EE=D 5 < Profit,(Q’). By the nature of optimality, we
also haveProfit,(Q') < Profit,(O). For any tupleg € Q’,
the real profit cannot be larger than the standalone profitsTh
A - "D 6 < Profit,(Q') < Profit,(0) < A.

Therefore, if Profit,(Q’) > 0, we have

Profit,(Q’) S A— M
Profit,(O) — A
1 k(k—1)o
2A

Therefore,

Profit,(Q") > (1 — €muit) Profit,(O)

: O

lProof of Theorem 6: It is very easy to verify thav; is a

feasible assignment vector, so we only prove the optimality
thav; = (v1,v2...v,) IS not optimal. Letu :
u ...u,) be another feasible price assignment vector such
that Profit(Q;,u) > Profit(Q;,v;). Sinceq; ...q, are
sorted in ascending order ¢fq), we haveProfit(Q;,v;) =

Profit(Qi—1,vi—1) + A(gi, vi).

Consider two casesCase 1:u; < w;. In this case,
A(gi,u;)) < Algi,v;). Since v,—; is the optimal price
assignment vector ofQ;_i, thus Profit(Q;—1,vi—1) >
Profit(Q;—1,u). Therefore, we have

Profit(Qi,v;) Profit(Qi-1,vi-1) + A(gi, vi)
Profit(Qi—1,u) + A(g;, u;)
Profit(Q;,a)

which conflicts with our previous assumption.

Case 2: u; > w;. In this case, sinceuv;
min{Uskylineavdom}a Vi = Uskyline O Ui = Udom- For any
one of two cases, ifi; > v; = Vskyline OF U; > Vi = Vdom,
we can immediately verify that breaks theskyline constraint
or the h-dominance constraint 0

>



