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Abstract— The importance of dominance and skyline analysis
has been well recognized in multi-criteria decision makingappli-
cations. Most previous studies focus on how to help customers find
a set of “best” possible products from a pool of given products.
In this paper, we identify an interesting problem, finding top-k
profitable products, which has not been studied before. Given
a set of products in the existing market, we want to find a set
of k “best” possible products such that these new products are
not dominated by the products in the existing market. In this
problem, we need to set the prices of these products such that
the total profit is maximized. We refer such products as top-k
profitable products. A straightforward solution is to enumerate
all possible subsets of sizek and find the subset which gives
the greatest profit. However, there are an exponential number of
possible subsets. In this paper, we propose solutions to findthe
top-k profitable products efficiently. An extensive performance
study using both synthetic and real datasets is reported to verify
its effectiveness and efficiency.

I. I NTRODUCTION

Dominance analysis is important in many multi-criteria
decision making applications.

Example 1 (Skyline): Consider that a customer is look-
ing for a vacation package to Hannover using some travel
agencies like Expedia.com and Priceline.com. The customer
uses two criteria for choosing a package, namelyprice and
distance-to-beach, whereprice is the price of a package and
distance-to-beachis the distance between a hotel in a package
and a beach. For two packagesp and q, if p is better than
q in at least one factor, and is not worse thanq in any
other factors, thenp is said to dominateq. Table I shows
four packages:p1, p2, p3 and p4. We know that lower price
and shorter distance-to-beach are more preferable. Thus,p3

dominatesp4 becausep3 has lower price and shorter distance-
to-beach thanp4. However,p3 does not dominatep1 because
p1 has lower price thanp3. Similarly, p1 does not dominate
p3 becausep3 has shorter distance-to-beach.

A package which is not dominated by any other packages
is said to be askyline packageor it is in theskyline. Recently,
skyline analysis has received a lot of interest in the literature
[10], [6], [14], [5], [9], [15]. The packages in the skyline are
the best possible tradeoffs among the two factors in question.
In Example 1,p3 is in the skyline because it is not dominated
by p1, p2 andp4. However,p4 is not in the skyline because it
is dominated byp3.

Consider that a new travel agency wants to start some
new packages from a pool of potential packages as shown in
Table II. Table II shows three potential packages, namelyq1, q2

Package Distance-to-beach Price
p1 7.0 200
p2 4.0 350
p3 1.0 500
p4 3.0 600

TABLE I

PACKAGES IN THE EXISTING MARKET

Package Distance-to-beach Price Cost
q1 5.0 ? 100
q2 4.5 ? 200
q3 0.5 ? 400

TABLE II

POTENTIAL PACKAGES IN THE NEW TRAVEL AGENCY

and q3. In this table, attribute distance-to-beach and attribute
cost of each package are given. However, attribute price is to
be determined by the agency.

Example 2 (Profitable Price with One Package): Suppose
that we select onlyone new package, saysq1. What price
should we set for packageq1? If we set the price ofq1 to be
$100, since the cost ofq1 is $100, theprofit of q1 is equal
to $100-$100 = $0. In other words, we cannot earn any
profit. If we set the price to be$400, although we can earn
$400-$100 = $300, this new packageq1 is dominated byp2

in the existing market. In other words, it is likely that no
customer will selectq1 sincep2 is better thanq1. However, if
we set the price to be$300, not only can we earn$300-$100
= $200 but alsoq1 is not dominated by any packages in the
existing market. We say that$300 is aprofitableprice of q1

but $100 and$400 are not profitable prices ofq1.
Let us consider another example that we want to select only

one new packageq2 (instead ofq1). Similarly, if we set the
price to be$200, the profit is$0. If we set the price to be$400,
q2 is dominated byp2. However, if we the price to be$300,
we can earn$100 andq2 is not dominated by any packages
in the existing market. Thus,$300 is a profitable price ofq2

but $200 and$400 are not.

Unfortunately, how we set the price of a new package may
affect how we set the price of another new package.

Example 3 (Profitable Price with Two Packages): Suppose
that we are interested in selectingtwo new packages, saysq1

and q2, instead of only one new package. From Example 2,
if we set both the price ofq1 and the price ofq2 to be
$300 separately, then we can earn some profits and they



are not dominated by any packages in the existing market.
However, after we set these prices, the new packageq1 is
dominated by another new packageq2. An alternative price
setting/assignment is that the price ofq1 is set to$250 and
the price ofq2 is set to$300. In this assignment, it is easy to
verify thatq1 (q2) is not dominated by not only any packages
in the existing market but also another new packageq2 (q1).
Besides, the profit ofq1 and the profit ofq2 are $150 and
$100, respectively. The sum of these profits is equal to$250.

In this paper, we study the following problem: Given a set
P of packages in the existing market and a setQ of potential
new packages, we want to selectk packages fromQ such that
the sum of the profits of the selected packages is maximized
and each selected package is not dominated by any packages
in the existing market and any selected new packages where
k is a positive integer and is a user parameter. We call this
problemfinding top-k profitable products (TPP). For example,
k is equal to 1 in Example 2 whilek is equal to 2 in Example 3.

A naive way for this problem is to enumerate all possible
subsets of sizek from Q, calculate the sum of the profits of
each possible subset, and choose the subset with the greatest
sum. However, this approach is not scalable because there are
an exponential number of all possible subsets. This motivates
us to propose efficient algorithms for problem TPP.

Although how we set the price of a new package may affect
how we set the price of another new package and there are
an exponential number of possible subsets, interestingly,we
propose adynamic programmingapproach which finds anop-
timal solution when there are two attributes to be considered.
However, we show that this problem is NP-hard when there are
more than two attributes to be considered. Thus, we propose
two greedy algorithms for this problem. One greedy algorithm
has a theoretical guarantee on the profit returned while the
other greedy algorithm performs well empirically.

Finding top-k profitable products is common in many real
life applications. Other applications include finding profitable
laptops in a new laptop company, finding profitable delivery
services in a new cargo delivery company and finding prof-
itable e-advertisements in a webpage.

Our contribution are summarized as follows.

1) To the best of our knowledge, we are the first to study
how to find top-k profitable products. Finding top-k

profitable products can help the effort of companies
to find a subset of products together with their corre-
sponding profitable prices, which cannot be addressed
by existing methods.

2) We propose a dynamic programming approach which
can find an optimal solution when there are two at-
tributes to be considered. We show that this problem is
NP-hard when there are more than two attributes. Thus,
we propose two greedy approaches to solve the problem
efficiently.

3) We present a systematic performance study using both
real and synthetic datasets to verify the effectiveness

and the efficiency of our proposed approaches. The
experimental results show that finding top-k profitable
products is interesting.

The rest of the paper is organized as follows. In Section II,
we formally define our problem. In Section III, we describe
an algorithm for finding the sum of the profits given a set of
k selected packages. The dynamic programming approach is
developed in Section IV while the greedy approaches are pre-
sented in Section V. In Section VI, we give some discussions
of the proposed approaches. A systematic performance study
is reported in Section VII. In Section VIII, we describe some
related work. The paper is concluded in Section IX.

II. PROBLEM DEFINITION

We first describe the background about skyline in Section II-
A. Then, we give some notations used in our problem in
Section II-B and our problem in Section II-C.

A. Background: Skyline

A skyline analysis involves multiple attributes. The values
in each attribute can be modeled by a partial order on the
attribute. A partial order � is a reflexive, asymmetric and
transitive relation. A partial order is also a total order iffor
any two valuesu andv in the domain, eitheru � v or v � u.
We write u ≺ v if u � v andu 6= v.

By default, we consider tuples in anw-dimensional1 space
S = x1×· · ·×xw. For each dimensionxi, we assume that there
is a partial or total order. For a tuplep, p.xi is the projection
on dimensionxi. For dimensionxi, if p.xi � q.xi, we also
simply write p �xi

q. We can omitxi if it is clear from the
context.

For tuplesp andq, p dominatesq with respect toS, denoted
by p ≺ q, if for any dimensionxi ∈ S, p �xi

q, and there
exists a dimensionxi0 ∈ S such thatp ≺xi0

q. If p dominates
q, thenp is more preferable thanq.

Definition 1 (Skyline):Given a datasetD containing tuples
in spaceS, a tuplep ∈ D is in theskylineof D (i.e., askyline
tuple in D) if p is not dominated by any tuples inD. The
skyline ofD, denoted bySKY (D), is the set of skyline tuples
in D.

For example, in Table I whereD = {p1, p2, p3, p4}, since
p1, p2 andp3 are not dominated by any tuples inD, SKY (D)
is equal to{p1, p2, p3}.

B. Notations

We have a setP of m tuples in the existing market,
namely p1, p2, ..., pm. Each tuplep has l attributes, namely
A1, A2, ..., Al. The domain of each attribute isR. The value
of attributeAj for tuple p is given and is denoted byp.Aj

wherej ∈ [1, l]. In particular, the last attributeAl represents
attribute price and all other attributes represent the attributes
other than price. Besides, we have a setQ of n potential new
tuples, namelyq1, q2, ..., qn. Similarly, each tupleq has the

1In this paper, we use the terms “attribute” and “dimension” interchange-
ably.



samel attributes, namelyA1, A2, ..., Al. The value of attribute
Aj for tuple q is denoted byp.Aj wherej ∈ [1, l]. However,
the value of attributeAl for tupleq is not given and the value
of each of the other attributes is given. We assume that no
two potential new tuples inQ are identical (i.e., no two tuples
in Q have the same attribute values forA1, A2, ..., Al−1). In
addition to thesel attributes, each tupleq is associated with
one additional cost attributeC. The value of attributeC for
q is denoted byq.C. We assume that for any two tuples in
P ∪Q, they have at least one attribute value different among
the first l − 1 attributes. This assumption allows us to avoid
several complicated, yet uninteresting, “boundary” cases. If
this assumption does not hold, the proposed algorithms can
be modified accordingly.

In our running example,P contains 4 tuples, namely
p1, p2, p3 and p4 (Table I), andQ contains 3 tuples, namely
q1, q2 and q3 (Table II). Attribute A1 and attributeA2 are
“Distance-to-beach” and “Price”, respectively. Attribute C is
“Cost”.

Since there are an infinite number of possible values inR,
we assume the domain of attribute “Price” (i.e.,Al) is defined
to be D ={0, σ, 2σ, 3σ, ...} where σ is a real number and
a user parameter. If we want to have a finer granularity, we
should setσ to a smaller value. This assumption makes sense
in real life applications where attribute Price involves discrete
values instead of continuous real values. For example, attribute
Price has value “$500.00” and value “$1000.00” but no value
“$1000.0007”. In the following, we setσ = 50 for our running
example.

C. Finding Top-k Profitable Products

A new company is interested in selectingk tuples fromQ

as the final tuples wherek is a positive integer and a user
parameter. It wants to maximize theprofit of this selection.
There are many possible subsets containingk tuples fromQ.
Let us consider oneparticular subsetQ′. The price of each
of thesek tuples (represented by attributeAl) in Q′ is to be
assigned with a value inD. Given a tupleq in Q, after we
set q.Al to a valuev, the profit of q, denoted by4(q, v), is
defined to be

v − q.C

In our running example, if we setq1.Al to be $300, then
4(q1, 300) is equal to $300 - $100 = $200. If we set it to be
$250, then4(q1, 250) is equal to $250 - $100 = $150.

We define aprice assignment vectorof Q′, denoted byv,
in form of (v1, v2, ..., vn). vi is said to be thei-th entry ofv.
If qi ∈ Q′ wherei ∈ [1, n], thenvi is assigned with a value
in D. Otherwise,vi is set to 0.

Suppose thatq is selected in the final selection setQ′. Our
objective is to make sure that after we set the price ofq, q is
not dominated by not only the tuples in the existing market
(P ) but also the newly selected tuples inQ′. That is,q should
be in the skyline with respect toP ∪Q′.

A price assignment vectorv is said to befeasibleif after
we set the price of eachqi ∈ Q′ to vi, eachqi ∈ Q′ is in the
skyline with respect toP ∪Q′.

Example 4 (Feasible Vector):In Example 3,k = 2. Sup-
pose thatQ′ = {q1, q2}.

Consider that we set the price ofq1 to $300 and the price
of q2 to $300. The price assignment vectorv is (300, 300, 0).
v is not feasible. As described in Example 3, after we set the
price for q1 and the price forq2, q1 is not in the skyline with
respect toP ∪Q′ becauseq1 is dominated byq2.

Consider that we set the price ofq1 to $250 (instead of
$300) and the price ofq2 to $300. The price assignment vector
v
′ is (250, 300, 0). v′ is feasible because after we set the price

for q1 and the price forq2, both q1 andq2 are in the skyline
with respect toP ∪Q′.

Definition 2 (Profit of Selection):Let Q′ be a set ofk
tuples selected fromQ. Letv be the price assignment vector of
Q′ in form of (v1, v2, ..., vn). Theprofit of Q′ with v, denoted
by Profit(Q′,v), is defined to be

∑

qi∈Q′

4(qi, vi)

Example 5 (Profit of Selection):In Example 3, k = 2.
Suppose thatQ′ = {q1, q2}.

Consider that the selection set isQ′. We set the price of
q1 to $250 and the price ofq2 to $300. The price assignment
vectorv′ is (250, 300, 0). From Example 4, we know that this
vector is feasible.

Profit(Q′,v′) is equal to

4(q1, v1) +4(q2, v2)

= ($250− $100) + ($300− $200)

= $150 + $100

= $250

Consider that the selection set is stillQ′. We set the price
of q1 to $150 (instead of $250) and the price ofq2 to $300.
The price assignment vectorv′′ is (150, 300, 0). It is easy to
verify that this vector is also feasible. Similarly, we obtain that
Profit(Q′,v′′) is equal to $200.

In the above example, we learn that even though we
select the same two packages (i.e.,q1 andq2), different price
assignment vectors give different profits. It is obvious that
price assignment vectorv′ is better than price assignment
vectorv′′ because it gives more profit.

Since the company wants to maximize its profit, it wants to
find a price assignment vector which maximizes its profit.

Definition 3 (Optimal Price Assignment Vector):Let Q′ be
a set ofk tuples selected fromQ. LetV be a set of all possible
feasible price assignment vectors forQ′. The optimal price
assignment vectorof Q′ is defined to be the price assignment
vectorvo for Q′ such that

Profit(Q′,vo) = max
v
′∈V

Profit(Q′,v′)

The optimal profitof Q′, denoted byProfito(Q
′), is defined

to beProfit(Q′,vo) wherevo is the optimal price assignment
vector ofQ′.



In Section III, we describe an efficient algorithm to find the
optimal price assignment vector given a setQ′ of k selected
tuples.

We just learnt that given aparticular set Q′, we can
determine the optimal profit ofQ′. However, there are many
possible subsets ofQ containingk tuples. The company wants
to find a selection containingk tuples fromQ such that the
total profit is maximized andk tuples will be selected by some
customers.

Problem 1 (Finding Top-k Profitable Products):Let Q be
the set of all possible subsets containingk tuples fromQ.
We want to select a setQ′ of k tuples fromQ such that
Profito(Q

′) = maxQ′′∈Q Profito(Q
′′)

This problem is calledfinding top-k profitable products
(TPP).

A naive way for this problem is to enumerate all possible
subsets of sizek from Q, calculate the optimal profit of each
possible subset, and choose the subset with the greatest profit.
However, this approach is not scalable because there are an
exponential number of all possible subsets. This motivatesus
to propose efficient algorithms for problem TPP which will be
described in Section IV and Section V.

III. F INDING OPTIMAL PRICE ASSIGNMENT

In this section, we present an algorithm for finding the
optimal price assignment calledAOPA in O(k(log(m + n) +
N)) time given a setQ′ of sizek whereN << (m + n).

Suppose thatQ′ is a selection set. Our objective is to find
the optimal price assignment vector ofQ′. After setting the
prices of all tuples inQ′ according to this vector, the tuples
in Q′ are in the skyline with respect toP ∪Q′.

Let X = P ∪ Q′. Given p ∈ X and p′ ∈ X , p is said to
quasi-dominatep′ if (1) p dominatesp′ with respect to the first
l−1 attributes, namelyA1, A2, ..., Al−1, or (2)p has the same
l − 1 attribute values asp′. In our running example,l = 2.
Suppose thatQ′ = {q1, q2}, p2 quasi-dominates bothp1 and
q1 sincep2 dominates bothp1 andq1 with respect to attribute
“Distance-to-Beach”.p2 also quasi-dominatesq2. Let γ(X, qi)
be a set containing all tuples inX which quasi-dominate
qi. For example, suppose thatQ′ = {q1, q2}. γ(X, q1) =
{q2, p2, p3, p4} andγ(X, q2) = {p2, p3, p4}.

The following lemma gives us an intuition of how to design
an algorithm to find the optimal price assignment vector ofQ′.

Lemma 1:Suppose thatp ∈ X andqi ∈ Q′. Consider that
we are given a price assignment vector ofQ′ equal tov =
(v1, v2, ..., vn) such that we set the price of eachqj (i.e.,qj .Al)
in Q′ to vj . If p dominatesqi, thenp ∈ γ(X, qi).

According to the above lemma, we divide the tuples inX

into two groups.
• Group 1 (Outside γ): Group 1 is the set of all tuples not

in γ(X, q) (more specifically, all tuples inX − γ(X, q)).
The tuples in this group do not dominateq regardless of
any price assignment vector ofQ′.
In our running example, letQ′ = {q1, q2}. Considerq1.
Sincep1 is not in γ(X, q1), we know thatp1 does not
dominateq1.

Tuple f

q1 5.0
q2 4.5
q3 0.5

TABLE III

THE f VALUE OF EACH TUPLEp ∈ Q

• Group 2 (Inside γ): Group 2 is the set of all tuples
in γ(X, q). For a particular price assignment vector of
Q′, some tuples in this group may dominateq while for
another particular price assignment vector ofQ′, they
may not dominateq.
For example, considerq1 again. Consider a price as-
signment vectorv = (300, 300, 0). Note thatq2 is in
γ(X, q1). After we set the prices ofq1 andq2 with vector
v, q2 dominatesq1.
Consider another price assignment vectorv

′ =
(250, 300, 0). After we set the prices ofq1 and q2 with
vectorv′, q2 does not dominateq.

Our objective is to make sure that each tupleq ∈ Q′ is
in the skyline with respect toX(= P ∪ Q′). That is, each
tuple q in Q′ is not dominated by any tuple inX . This
is our goal. Consider Group 1 (Outsideγ). We can achieve
the goal because all tuples in this group do not dominateq.
Consider Group 2 (Insideγ). It is possible that some tuples in
γ(X, q) dominateq for a particular price assignment vector.
For another price assignment vector, they do not dominateq.

In the above, we learn that if we want to determine the
price of qi in Q′ such thatqi is in the skyline, we only need
to consider the tuples inγ(X, q).

Given a tupleq ∈ Q′, we know that only the tuples inX
quasi-dominatingq affect the price ofq. Note that the prices
of all tuples in P are given and the prices of all tuples in
Q′ are to be found. Thus, according to the quasi-dominance
relationship, we design aprogressivealgorithm which finds
the price of each tupleq in Q′ by the following principle.

Principle 1: Whenever we want to find the price ofqi in
Q′, we make sure that the prices of all tuples inQ′ quasi-
dominatingqi have already been determined.

Next, we need to determine the ordering of processing tuples
in Q′ which follows the above principle.

We define the following monotonically increasing function
f which can determine the ordering. Given a tupleq in Q,
function f is defined as follows.

f(q) =

l−1∑

i=1

q.Ai

In our running example,l = 2. The f value of each tuple
q ∈ Q can be found in Table III. The ordering of tuples inX

is q3, q2 andq1.
With this functionf , we know the following lemma.
Lemma 2:Supposep andp′ are inX . If p quasi-dominates

p′, thenf(p) is smaller than or equal tof(p′).

For example, sincep2 quasi-dominatesp1, f(p2)(= 4) is
smaller thanf(p1)(= 7).



Algorithm 1 Algorithm AOPA(Q′)

Input: A set Q′ of tuples inQ

Output: the optimal profit assignment vector ofQ′

1: Q′′ ← ∅
2: v← (0, 0, ..., 0)
3: for each qi ∈ Q′ (which is processed in the sorted

ordering)do
4: v ← findOptimalIncrementalPrice(qi, Q

′′,v) (See
Algorithm 2)

5: Q′′ ← Q′′ ∪ {qi}
6: return v

Algorithm 2 Algorithm findOptimalIncremental-
Price(qi, Qi−1,vi−1)

Input: A set Qi−1(= {q1, q2, ..., qi−1}), tuple qi in Q′ and
the optimal price assignment vectorvi−1 of Qi−1

Output: the optimal price assignment vectorvi of Qi

1: vi ← vi−1

2: find a setY containing all tuples inP ∪Q′ which quasi-
dominateqi

3: if Y 6= ∅ then
4: v ← (minp∈Y p.Al)− σ

5: else
6: v ←∞
7: set thei-th entry invi to v

8: return vi

With the above lemma, we can first compute thef values
of all tuples inQ′. We sort the tuples inQ′ in ascending order
of thesef values. Then, we determine the price of each tuple
q in Q′ according to this ordering, which follows Principle 1.

After we obtain the ordering of processing the tuples in
Q′, we present an algorithm to determine the optimal price
assignment vector ofQ′ incrementally.

Without loss of generality, we assume thatq1, q2, ..., qk are
the tuples inQ′ sorted in ascending order of thef values. Let
Q0 = ∅. Let Qi = Qi−1 ∪ {qi} wherei = 1, 2, 3, ..., k.

Lemma 3:Suppose thatp ∈ X andqi ∈ Q′. Consider that
we are given the optimal price assignment vector ofQi−1

equal tovi−1 = (v1, v2, ..., vn) such that we set the price of
eachqj (i.e., qj .Al) in Qi−1 to vj . Suppose thatγ(X, qi) 6= ∅.
Let vi be a price assignment vector equal tovi−1 except that
the i-th entry ofvi is set to(minp∈γ(X,qi) p.Al)−σ. vi is the
optimal price assignment vector ofQi.

By Lemma 3, we can derive a progressive algorithm as
shown in Algorithm 1.

With Lemma 3, it is easy to verify the following theorem.
Theorem 1:Given a setQ′ of k tuples selected fromQ,

Algorithm AOPA returns the optimal price assignment ofQ′.

Implementation and Time Complexity: In Algorithm 2,
the most time-consuming operation is the step of finding
all tuples inP ∪ Q′ which quasi-dominateqi. One possible

implementation is to build an R*-tree index on datasetP ∪Q′

according to the firstl − 1 attributes. If we perform a range
query with the range equal to “Ai ≤ qi.Ai” for each i ∈
[1, l− 1], then we can find all tuples inP ∪Q′ which quasi-
dominateqi. However, with this implementation, we have to
build different indexes onP ∪ Q′ for different selection sets
Q′, which is not efficient.

Another possible implementation is to build an R*-tree
index on datasetP∪Q (instead ofP∪Q′) according to the first
l− 1 attributes. Similarly, we perform a range query with the
same range as above and find all tuples inP ∪Q which quasi-
dominateqi. In this implementation, sinceQ′ ⊆ Q, we can
do a post-processing step to select all tuples inP ∪Q′ which
quasi-dominateqi. This implementation has its advantage that
we only need to build an index once for any selection set. We
adopt this implementation in our experiment.

Suppose that we are given an R*-tree index on datasetP∪Q

in the second implementation. We want to analyze the time
complexity of the step of finding all tuples inP ∪ Q′ which
quasi-dominateqi. In most cases, the cost of a range query
is O(log(|P | + |Q|) + N) where N is the total number of
tuples returned in a range query. Typically,N is extremely
small compared with(|P | + |Q|). That is,N << |P | + |Q|.
The post-processing step takesO(N) time. Thus, the step of
finding all tuples inP ∪ Q′ which quasi-dominateqi takes
O(log(|P |+ |Q|) + N) time.

After we analyze the time complexity of this time-
consuming operation, it is easy to verify that Algorithm 2
takesO(log(|P |+ |Q|) + N) time.

Consider Algorithm 1. Since there are|Q′| iterations (in
lines 3-5) and each iteration calls Algorithm 2 (which takes
O(log(|P | + |Q|) + N) time), the overall time complexity
of Algorithm 1 is O(|Q′|(log(|P | + |Q|) + N)). Sincem =
|P |, n = |Q| and k = |Q′|, the time complexity becomes
O(k(log(m + n) + N)).

IV. DYNAMIC PROGRAMMING

In this section, we present a dynamic programming ap-
proach which finds an optimal solution for problem TPP when
l = 2.

Considerl = 2. Without loss of generality, we assume that
q1, q2, .., qn are sorted in ascending order of thef values.
Q(i) is defined to be a set of tuples inQ such that these
tuples are quasi-dominated byqi. Let S(i, t) denote the set
Q′ of size t where i ∈ [1, n] and t ∈ [0, k] such that
Profito(Q

′) = maxQ′′∈Q Profito(Q
′′) whereQ is the set of

all possible subsets containingt tuples fromQ(i) . Let v(i, t)
denote the optimal price assignment vector of setS(i, t). Let
T (i, t) denote the (optimal) profit of setS(i, t).

Let us use a symbolα(qi, S,v) to representfindOptimal-
IncrementalPrice(qi, S,v).

In the following, we describe how to find three variables,
namelyv(i, t), T (i, t) andS(i, t). Consider two cases.

• Case 1:qi is included in the final selection of sizet.
By Lemma 3, the optimal price assignment vector of
S(i, t), denoted byv(i, t), can be obtained from the



optimal price assignment vector ofS(i−1, t−1), denoted
by v(i− 1, t− 1).
Thus, we have the following equation.

v(i, t) = α(qi, S(i− 1, t− 1),v(i− 1, t− 1)) (1)

Thus,
T (i, t) = T (i− 1, t− 1) + v (2)

wherev is the i-th entry inv(i, t). Let Tselect = T (i−
1, t− 1) + v.
Similarly, S(i, t) can be obtained as follows.

S(i, t) = S(i− 1, t− 1) ∪ {qi} (3)

• Case 2:qi is not included in the final selection.
We have

v(i, t) = v(i− 1, t) (4)

We have

T (i, t) = T (i− 1, t) (5)

and

S(i, t) = S(i− 1, t) (6)

Let TnotSelect = T (i− 1, t).

Note that we want to maximize the profit of the selection
set of sizet. Obviously, if Tselect ≥ TnotSelect, we should
selectqi in the selection set (which corresponds to Case 1).
Otherwise, we should not selectqi (which corresponds to Case
2).

The pseudo-code of the dynamic programming approach is
shown in Algorithm 3.

Theorem 2:Algorithm Dynamic Programming returns an
optimal solutionQ′ of size k for problem TPP (i.e., the set
Q′ of sizek with the greatest profit) whenl = 2.

Time Complexity: Consider Algorithm 3. Statements from
line 1 to line 3 takesO(n) time while statements from line 4 to
line 6 takesO(k·k(log(m+n)+N)) = O(k2(log(m+n)+N))
time. Consider statements from line 7 to line 22. There are
O(kn) iterations where the statements from line 9 to line 22
correspond to an iteration. It is easy to verify that each iteration
takesO(k(log(m+n)+N)+n) time. Thus, statements from
line 7 to line 22 takesO(kn(k(log(m + n) + N) + n)) =
O(k2n(log(m + n) + N) + kn2) time.

V. GREEDY ALGORITHM

In the previous section, we described a dynamic program-
ming approach which finds an optimal solution whenl = 2.
However, whenl > 2, we show that the problem is NP-hard
as follows.

Theorem 3:When l > 2, problem TPP is NP-hard.

The proof can be found in the appendix.
Since the problem is NP-hard, we propose two greedy

algorithms for this problem. As we described in Example 3,
the price of a new selected tuple may affect the price of another

Algorithm 3 Dynamic programming approach
Input: P, Q andk

Output: the final selectionQ′ of sizek and the optimal price
assignment vectorv of Q′

1: for i = 1 to n do
2: T (i, 0)← 0
3: S(i, 0)← ∅
4: for t = 1 to k do
5: T (1, t)← α(q1, ∅, (0, 0, ..., 0))
6: S(1, t)← {q1}
7: for t = 1 to k do
8: for i = 1 to n do
9: vselect ← α(qi, S(i− 1, t− 1),v(i− 1, t− 1)

10: v ← the i-th entry invselect

11: Tselect ← T (i− 1, t− 1) + v

12: TnotSelect ← T (i− 1, t)
13: if Tselect ≥ TnotSelect then
14: // Case 1:qi is selected
15: v(i, t)← α(qi, S(i− 1, t− 1),v(i− 1, t− 1))
16: T (i, t)← Tselect

17: S(i, t)← S(i− 1, t− 1) ∪ {qi}
18: else
19: // Case 2:qi is not selected
20: v(i, t)← v(i− 1, t)
21: T (i, t)← TnotSelect

22: S(i, t)← S(i− 1, t)
23: Q′ ← Q(n, t)
24: v← v(n, t)
25: return Q′ andv

new selected tuple. We call this phenomenon aprice correla-
tion. The first version of the greedy algorithm is the algorithm
which selects tuples inQ iteratively without considering the
price correlation. The first greedy algorithm returns a solution
with a theoretical guarantee on the profit. The second version is
the algorithm which selects tuples inQ iteratively considering
the price correlation. The second greedy algorithm performs
well empirically.

A. Greedy Based Algorithm I

The first version of the greedy algorithm is the algorithm
which selects tuples inQ iteratively without considering the
price correlation.

For each tupleq in Q, we first define the optimal profit
of the selection set containingq only. We call this profit the
standalone profitof qi.

Definition 4 (Standalone Profit):Given a tupleq in Q, the
standalone profitof q, denoted bySP (q), is defined to
Profito({q}).

The first version of the greedy algorithm is described as
follows. Specifically, for each tupleq in Q, we find the
standalone profit ofq. Then, we choosek tuples which
have the greatest standalone profits. This version is shown in
Algorithm 4.



Algorithm 4 Greedy algorithm (Version 1)

1: v← (0, 0, ..., 0)
2: for eachq ∈ Q do
3: find the standalone profit ofq
4: Q′ ← a set of thek tuples which have the greatest

standalone profits
5: return Q′

Although this greedy approach is a heuristical approach,
it has theoretical guarantees on the profit returned by the
algorithm.

Suppose thatO is theoptimal selection setfor problem TPP
(i.e., the selection set which has the greatest profit). Notethat
the optimal profit ofO is equal toProfito(O). Recall that
we want to maximize the profit, due to the heuristical nature
of the greedy algorithm, this algorithm may return a selection
Q′ which has a lower profit (which is equal toProfito(Q

′)).
It is easy to verify that

Profito(Q
′) ≤ Profito(O)

In the following, we give two theoretical results about the
error guarantee on the profit returned by the algorithm. The
first result corresponds to anadditive error guaranteewhile the
second one corresponds to amultiplicative error guarantee.

We first show the result about the additive error guarantee.
Theorem 4:Let O be the optimal selection set andQ′ be

the selection set returned by Algorithm 4.

Profito(O)− εadd ≤ Profito(Q
′)

where

εadd =
k(k − 1)

2
σ

Next, we show the result about the multiplicative error
guarantee.

Theorem 5:Let O be the optimal selection set andQ′

be the selection set returned by Algorithm 4. Suppose that
Profito(Q

′) > 0. Let ∆ =
∑

qi∈Q′ SP (qi). Algorithm 4 is
a (1− εmult)-approximate algorithm. That is,

Profito(Q
′) ≥ (1− εmult)Profito(O)

whereεmult = k(k−1)σ
2∆ .

Time Complexity: Consider Algorithm 4. We need to calcu-
late the standalone profit ofq for each tupleq ∈ Q. This step
takesO(k(log(m + n) + N)) time. Then, we need to choose
thek tuples which have the greatest standalone profits, which
can be done inO(k log k) time. Thus, the time complexity
of Algorithm 4 is O(k(log(m + n) + N) + k log k). Since
k = O(m + n), the complexity becomesO(k(log(m + n) +
N)) = O(k log(m + n) + kN).

Algorithm 5 Greedy algorithm (Version 2)

1: Q′ ← ∅
2: while |Q′| ≤ k do
3: for eachqi ∈ Q do
4: xi ← AOPA(Q′ ∪ {qi})
5: find the tupleqi in Q such thatqi has the greatest value

of xi

6: Q′ ← Q′ ∪ {qi}
7: return Q′

B. Greedy Based Selection II

In the previous subsection, we describe the first version
of the greedy algorithm which does not consider the price
correlation. In this subsection, we describe the second version
of the greedy algorithm which select tuples inQ iteratively
considering the price correlation.

The second version of our greedy algorithms is shown in
Algorithm 5.

Time Complexity: Consider Algorithm 5. There areO(k)
iterations where statements from line 3 to line 6 correspond
to an iteration. Consider an iteration. Statements from line 3 to
line 4 takeO(n·k(log(m+n)+N)) = O(nk(log(m+n)+N))
time. Statements from line 5 to line 6 takesO(n log n) time.
Thus, each iteration takesO(nk(log(m+n)+N)+n logn) =
O(nk(log(m+n)+N)) time. The overall time complexity of
Algorithm 5 isO(k ·nk(log(m+n)+N)) = O(nk2(log(m+
n) + N)). Note that compared with the time complexity of
Algorithm 4 (i.e.,O(k log(m+n)+kN)), the time complexity
of Algorithm 5 is higher.

VI. D ISCUSSION

In problem TPP, after we set the price of each tuple in the
selection setQ′, we know that each of these tuples is in the
skyline with respect toP ∪ Q′. In other words, after we set
the price of each tuple inQ′, each of these tuples isoneof the
best choices for the customer to choose (because there may be
more than one tuple in the skyline). In order to make sure that
each tuple inQ′ will be chosen by a customer in the market
with a higher probability, we would like to set the price of
each of these tuples such that not only each of these tuples is
in the skyline but also each of these tuples dominates at least h

tuples in the existing marketP whereh is an input parameter.
This problem is called Finding top-k profitable products (TPP)
with theh-dominance constraint. Theh-dominance constraint
corresponds to that each of these tuples dominates at leasth

tuples in the existing marketP .
All the formulations described in Section II can also be

used. The only change we need is the definition of afeasible
price assignment vector. With theh-dominance constraint, a
price assignment vectorv is said to befeasibleif after we set
the price of eachqi ∈ Q′ to vi, eachqi ∈ Q′ is in the skyline
with respect toP ∪Q′ and eachqi ∈ Q′ dominates at leasth
tuples inP .



Algorithm 6 Algorithm findOptimalIncremental-
Price(qi, Qi−1,vi−1) with the h-dominance constraint

Input: A set Qi−1(= {q1, q2, ..., qi−1}), tuple qi in Q′ and
the optimal price assignment vectorvi−1 of Qi−1

Output: the optimal price assignment vectorvi of Qi with
the h-dominance constraint

1: vi ← vi−1

2: // Skyline constraint
3: find a setY containing all tuples inP ∪Q′ which quasi-

dominateqi

4: if Y 6= ∅ then
5: vskyline ← (minp∈Y p.Al)− σ

6: else
7: vskyline ←∞
8: // The h-dominance constraint
9: find a setZ containing all tuples inP which are quasi-

dominated byqi

10: if |Z| ≥ h then
11: vdom ← the h-th greatest price (i.e.,Al) among all

tuples inZ

12: else
13: vdom ← −∞
14: // Combining the above two constraints
15: v ← min{vskyline, vdom}
16: set thei-th entry invi to v

17: return vi

Problem TPP with theh-dominance constraint is more
general than problem TPP without theh-dominance constraint.
This is because if we seth = 0, then the new problem becomes
problem TPP without theh-dominance constraint.

After we consider the additionalh-dominance constraint,
the price assignment vector of a selection set may also be
affected.

In this new problem, we only need to modify Algorithm 2 to
Algorithm 6. Algorithm 6 is nearly the same as Algorithm 2.
Algorithm 6 involves three major parts. The first part contains
the statements related to theskyline constraintwhich can be
found from Line 2 to Line 7. The second part contains the
statements related to theh-dominance constraintwhich can
be found from Line 8 to Line 13. The third part contains
the statements related to combining the above two constraints
which can be found from Line 14 to Line 16.

With the following theorem (which is similar to Lemma 3),
it is easy to prove the correctness of Algorithm 6 (i.e.,
under theh-dominance constraint, Algorithm 6 returns the
optimal price assignment vector ofQi given a setQi−1 =
{q1, q2, ..., qi−1}, tupleqi in Q′ and the optimal price assign-
ment vector ofQi−1).

Theorem 6:Suppose thatp ∈ X and qi ∈ Q′. Consider
that we are given the optimal price assignment vector ofQi−1

equal tovi−1 = (v1, v2, ..., vn) such that we set the price of
eachqj (i.e., qj .Al) in Qi−1 to vj .

• Skyline Constraint: Suppose thatγ(X, qi) 6= ∅. Let

vskyline = (minp∈γ(X,qi) p.Al)− σ.
• The h-dominance Constraint: Let θ(qi) be the set

containing all tuples inP which are quasi-dominated by
qi. Suppose thatθ(qi) 6= ∅. Let vdom be theh-th greatest
price (i.e.,Al) among all tuples inZ.

Let vi be a price assignment vector equal tovi−1 except that
the i-th entry of vi is set tomin{vskyline, vdom}. vi is the
optimal price assignment vector ofQi.

Note that this problem with theh-dominance constraint is a
general problem of problem TPP. Since problem TPP is NP-
hard, this problem is also NP-hard.

Theorem 7:The problem with theh-dominance constraint
is NP-hard.

All the proposed algorithms, namely the dynamic approach
and the two version of the greedy approach, can also be
adopted except that we need to call a new version of algorithm
findOptimalIncrementalPrice (Algorithm 6). Details can be
found in [13].

VII. E MPIRICAL STUDIES

We have conducted extensive experiments on a Pentium
IV 2.4GHz PC with 4GB memory, on a Linux platform.
We implemented all algorithms we proposed, namelyDP,
GR1andGR2. DP corresponds to our dynamic programming
approach whileGR1andGR2 correspond to the first version
and the second version of the greedy algorithms. We also
implemented a naive (or brute-force) algorithm described in
Section II. We name it asBF. All the program are implemented
in C++. In the following, we consider problem TPP with theh-
dominance constraint discussed in Section VI since it is more
general than problem TPP without theh-dominance constraint.

We measured the algorithms with four measurements,
namely (1)Execution Time, (2) Preprocessing Time, (3) Mem-
ory Costand (4)Profit. (1) The execution time of an algorithm
corresponds to the time it takes to find the final selection. (2)
The preprocessing of an algorithm corresponds to the time it
builds a R*-tree index for quasi-dominance checking. (3) The
memory cost of an algorithm is the memory occupied by the
algorithm. (4) The profit of an algorithm corresponds to the
profit returned by the algorithm.

A. Dataset Description

The experiments are conducted over real datasets and syn-
thetic datasets.

1) Real Dataset:For the real datasets, same as [12], we
obtain real datasets from Priceline.com and Expedia.com.

For the website of Priceline.com, we obtained all packages
on Jan 15, 2009 for a round trip traveling from San Francisco
to New York for a period from March 1, 2009 to March
7, 2009. We have 149 packages. These packages form the
set P of existing tuples. Each package has 6 attributes,
namely quality-of-room, customer-hotel-grading, hotel-class,
hotel-price, class-of-flight, no-of-stopsandprice.

For the website of Expedia.com, we obtained all flights
and all hotels on the same day (i.e., Jan 15, 2009) for the



same round trip with the same travel period. We have 1014
hotels and 4394 flights. According to these hotels and these
flights, we adopt the method proposed by [12] to generate
all competitive packages. Details can be found in [12]. These
competitive products form setQ. In this dataset, we have
4787 competitive packages. Similarly, each package inQ has
6 attributes (including attributeprice). Note that each package
in Q is associated with an additional cost attribute. In order to
generate the cost attribute, for each packageq in this package
set, we setq.C to be the price of this package multiplied by a
discount rated whered is a user parameter. Note that although
there are values in attributeprice in this setQ, we discard all
these values in the dataset because our problem is to find these
values.

2) Synthetic Dataset:For synthetic datasets, we adapt the
dataset generator of [1]. We observe from the real dataset that
some attributes have large cardinalities but some have small
cardinalities. For example, in the real dataset,price may have
thousands of possible values, butno-of-stopscan have only 2
or 3 possible values. We divide the attributes into two groups
of nearly equal size. Note thatP has l attributes only while
Q has an additional attributeC in addition to thel attributes.
The first group contains the first half of attributes (or more
specifically,A1, . . . Abl/2c) each of which has the cardinality
of 10. The second group contains the second half of attributes
(or more specifically,Abl/2c+1, . . . , Al) and attributeC where
each attribute in this group has the cardinality of 10k.

We generateP and Q in the same way except that gen-
eratingP involves l attributes but generatingQ involves the
first l − 1 attributes and attributeC. Note that attributeAl

of Q is not considered because in our problem definition,
attribute Al is to be found. The dataset generation process
is described as follows. Firstly, we used the dataset generator
provided by [1] to generate an anti-correlated dataset where
each attribute value is a real number in a range between 0.0
and 1.0. Secondly, we perform a postprocessing step so that
each attribute in the first group has the cardinality of 10 and
each attribute in the second group has the cardinality of 10k.
For an attribute in the first group, it can be easily done by
multiplying a value in this attribute by 10 and rounding it to
be an integer. We can also do a similar step for an attribute
in the second group.

B. Result over Small Synethetic Dataset

It is known that a dynamic programming approach is not
scalable to large datasets. Besides, this dynamic programming
approach solves problem TPP whenl = 2. In this section,
we conducted some experiments to compare all proposed
algorithms over a small two-dimensional synthetic dataset
where |P | = 10, 000 and |Q| = 10, 000. We set the default
parameters ash = 5, d = 0.5 andσ = 200.

We varyk to study the performance of the proposed algo-
rithms. Figures 1, 2 and 3 are the results for execution time,
profit and the memory cost of each algorithm, respectively.

In Figure 1, the execution time ofBF is very large and
is very unscalable. Note thePREP is the preprocessing time

Parameter Values
|P | 0.5M, 1M, 1.5M, 2.0M
|Q| 0.5M , 1M 2M, 3M
d 0.25,0.5, 0.75, 1
l 2, 5, 10,15, 20
k 10, 20, 50, 100
σ 50, 100,150, 200
h 0, 10,20,30

TABLE IV

EXPERIMENTAL SETTING

of GR1 and GR2. It is nearly equal to the time forGR1 and
GR2 to find the selection set for problem TPP. In Figure 2,
the profit ofDP andBF is the greatest but the profit ofGR1
andGR2is also high. In most cases,GR2returns higher profit
thanGR1. In Figure 3, as expected,DP occupies much more
memory than other approaches.

Since BF is not scalable, in the following, we do not
compare all algorithms withBF.

C. Result over Large Synthetic Dataset

In the previous section, we conducted experiments over
small synthetic datasets. In these experiments, althoughGR1
and GR2 are heuristical, they also give a high profit. In
this section, we conducted experiments over large synthetic
datasets to study the scalability ofGR1 and GR2. We varied
|P |, |Q|, d, l, k, σ andh in our experiments. The values of each
parameter used in the experiments are given in Table IV where
the default values are in bold.

Figures 4, 5 and 6 shows some selected results. For the sake
of space, we do not show some figures.

1) Execution time:Figures (a) show the measurement of
execution time. In all figures,GR2 runs slower thanGR1. As
we discussed in Section V, the time complexity ofGR2 is
higher than that ofGR1. For factork (Figure 5(a), whenk
increases, the execution time ofGR2 increases exponentially
but the execution time ofGR1does not change much. This is
because the time complexity ofGR2 is quadratic with respect
to k but the time complexity ofGR1 is not.

2) Preprocessing time:Figures (b) show the preprocessing
time of the algorithms. This involves the step of building the
index. When|P |, |Q| and l increase, the preprocessing times
of GR1andGR2 increase.

3) Memory cost:Figures (c) show the memory cost of the
algorithms. Since the memory cost of bothGR1 and GR2 is
the memory occupied by the spatial index R*-tree on dataset
P ∪Q, when|Q| increases and|P | increases, the memory cost
increases, as shown in Figures 4.

4) Profit: Figures (d) show the profit returned by the
algorithms. In most cases,GR1andGR2gives similar profits.
For factor k (Figure 5(d)), whenk increases, the profits of
GR1 and GR2 increase because more tuples are selected
to contribute the profit of the final selection. For factorh

(Figure 6(d)), whenh increases, the profits of both algorithms
decreases. This is because ifh is larger, then the price of each
selected tuple in the final selection should be set lower in order
that each of tuples dominates at leasth tuples in the existing
market.
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h 15, 20, 25, 30
σ 1000 ,2000,5000 , 10000
d 0.4, 0.6, 0.8, 1.0
k 100, 150, 200, 250

TABLE V

EXPERIMENT PARAMETERS ONREAL DATASET

D. Result over Real Dataset

We also conducted experiments on real datasets. We varied
four factors, namelyh, k, d and σ. For the interest of space,
we only show the results with two factorsh andk as shown in
Figures 7 and 8, respectively. The default setting configuration
is: k = 150, h = 20, d = 0.6 andσ = 50. The results for real
datasets are similar to those for synthetic datasets.

Summary: Although DP finds the optimal solution for prob-
lem TPP, it is not scalable and is limited to problem TPP when
l = 2. GR1andGR2 is scalable to large datasets. It is shown
that they can find a selection setQ′ with high profits. In most
cases,GR1 and GR2 returns similar profits. However,GR2

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

15 20 25 30

E
xe

cu
tio

n
 T

im
e
 (

s)

h

PREP
GR1
GR2

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

15 20 25 30

P
ro

fit

h

GR1
GR2

(a) (b)

Fig. 7. Effect ofh (the minimum number of tuples dominated by each tuple
in the selection set)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

100 150 200 250

E
xe

cu
tio

n
 T

im
e
 (

s)

k

PREP
GR1
GR2

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

100 150 200 250

P
ro

fit

k

GR1
GR2

(a) (b)

Fig. 8. Effect ofk (the size of the final selection set)



sometimes gives a higher profit thanGR1.

VIII. R ELATED WORK

Skyline queries have been studied since 1960s in the theory
field where skyline points are known as Pareto sets and
admissible points [4] or maximal vectors [2]. However, earlier
algorithms such as [2], [3] are inefficient when there are many
data points in a high dimensional space. Skyline queries in
database was first studied by Borzsonyi [1] in 2001.

After that, a lot of techniques were proposed to accel-
erate the computation of skyline and its variations. Here,
we briefly summarize some of them. Some representative
methods include a bitmap method [10], a nearest neighbor
(NN) algorithm [6], and branch and bound skylines (BBS)
method [8].

Top-K queries about skyline were studied in [8], [7], [11].
[8] discussedranked skylineandK-dominating queries. Given
a set of points ind-dimensional space,ranked skylinespecifies
a monotone ranking function, and returnsk tuples in thed-
dimensional space which have the smallest (or greatest) scores
according to an input function. Given a set of points ind-
dimensional space,K-dominating queriesretrieveK points
that dominate the greatest number of points. It is similar to
the h-dominance constraint introduced in Section VI.

[7], [11] studiedrepresentative skyline queries. The problem
is to selectk points among all skyline points according to a
pre-defined objective function. Thek points in the output are
said to be representative.

[7] was the first to introducerepresentative skyline queries.
[7] finds a set ofk points among all skyline points such that
the number of points dominated by this set is maximized.
However, the method in [7] cannot be applied in our problem
because we consider both the profitability of products and
the dominance relation of products, but [7] considers the
dominance relation only. Besides, the price of each product
is to be found in our problem.

Another definition of representative skyline queries was
proposed by [11]. In [11], representative skyline queries is
to find k points (ork representative points) among all skyline
points such that the sum of the distances between each skyline
point and its “closest” representative point is minimized.

All of the above studies are to findk points or tuples given a
singletable where all attribute values of each tuple in the table
aregiven. This paper has the following differences. Firstly, we
want to findk tuples giventwo tables (one isP and the other is
Q) where one of the attribute values of each tuple in one table
(Q) is not given and is to be found. Secondly, the concept of
profits is considered in this paper but not in the above studies.

The most closely related work is [12]. Given a setP of
existing tuples and a number of source tables, [12] finds all
tuples “generated” from the source tables such that these tuples
are in the skyline with respect to the tuples in the existing
market. Those tuples are called competitive tuples or products.
Note that the set of all competitive tuples generated in [12]
can be regarded as setQ described in this paper. However,
in [12], too many competitive products are generated. In their

experimental studies, there are 10,000 competitive products in
a real dataset. In most cases, it is good to choose some of the
competitive products instead of all competitive products for
promotion. One criterion is to maximize the total profit of the
selection set which is studied in this paper.

IX. CONCLUSION

In this paper, we identify and tackle the problem of finding
top-k profitable products, which has not been studied before.
We propose methods to find top-k profitable products effi-
ciently. An extensive performance study using both synthetic
and real datasets is reported to verify its effectiveness and
efficiency. As future work, finding top-k profitable products
with dynamic data and finding top-k profitable products with
additional constraints (e.g., representative properties[7], [11])
are interesting topics.
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APPENDIX

A. Proof of Lemmas/Theorems

Proof of Lemma 1: If p dominatesqi, andp 6∈ γ(X, qi), then
p does not quasi-dominateqi. So, there exists at least one
attribute on whichqi is better thanp according to the quasi-
dominance definition. This conflicts with our premise thatp

dominatesqi.



Proof of Lemma 2: If p quasi-dominatesp′, according to
the definition off , this indicates that (1)p dominatesp′ with
respect to the firstl − 1 attributes, namelyA1, A2, ..., Al−1,
or (2) p has the samel − 1 attribute values asp′. In case
1, obviously,f(p) < f(p′). In case 2,f(p) = f(p′). Thus,
f(p) ≤ f(p′)

Proof of Lemma 3: Suppose that we have a better assign-
ment vectorv′ of Qi in form of (v′1, v

′
2, . . . v

′
n) such that

Profit(Qi,v
′) > Profit(Qi,vi).

Consider two cases.Case 1:v′i ≤ vi. In this case,v′i −
qi.C ≤ vi − qi.C. In other words,4(qi, v

′
i) ≤ 4(qi, vi).

In addition, we know thatvi−1 is the optimal price as-
signment vector ofQi−1, which meansProfit(Qi−1,v

′) ≤
Profit(Qi−1,vi−1). Thus, we have

Profit(Qi,v
′) = Profit(Qi−1,v

′) +4(qi, v
′
i)

≤ Profit(Qi−1,vi−1) +4(qi, vi)

= Profit(Qi,vi)

Thus, Profit(Qi,v
′) ≤ Profit(Qi,vi). This leads to a

contradiction.
Case 2:v′i > vi. It is easy to verify thatv′ is not a feasible

price assignment vector. For the sake of space, we do not
include the details.

Proof of Theorem 4: Let P be the set of existing tuples, and
Q be the set of the newly created tuples. LetO be the optimal
selection andQ′ be the selection returned by Algorithm 4.
GivenQ′ ⊆ Q andqi ∈ Q′, we define∆o(qi, Q

′) = ∆(qi, vi)
where vi is the i-th entry of the optimal price assignment
vector v of Q′. SupposeO = {o1, o2, . . . ok} and Q′ =
{q1, q2, . . . qk}, whereoi andqi are sorted in ascending order
of the f values described in Section III.

Let ni be the greatest possible number of tuples inQ′ quasi-
dominatingqi. It is easy to verify that∆o(qi, Q

′) ≥ SP (qi)−
niσ. Note that

∑k
i=1 ni ≤

k(k−1)
2 . We derive that

∑

qi∈Q′

∆o(qi, Q
′) ≥

∑

qi∈Q′

(SP (qi)− niσ)

=
∑

qi∈Q′

SP (qi)−
∑

qi∈Q′

niσ

≥
∑

qi∈Q′

SP (qi)−
k(k − 1)

2
σ

Thus, we conclude that
∑

qi∈Q′

∆o(qi, Q
′) ≥

∑

qi∈Q′

SP (qi)−
k(k − 1)

2
σ

Note that

∑

oi∈O

∆o(oi, O) ≤
∑

oi∈O

SP (oi)

≤
∑

qi∈Q′

SP (qi)

Therefore, we have

Profito(O) − εadd =
∑

oi∈O

∆o(oi, O)−
k(k − 1)

2
σ

≤
∑

qi∈Q′

SP (qi)−
k(k − 1)

2
σ

≤
∑

qi∈Q′

∆o(qi, Q
′)

= Profito(Q
′)

Proof of Theorem 5:According to Theorem 4, we have that
∆− k(k−1)

2 σ ≤ Profito(Q
′). By the nature of optimality, we

also haveProfito(Q
′) ≤ Profito(O). For any tupleq ∈ Q′,

the real profit cannot be larger than the standalone profit. Thus,
∆− k(k−1)

2 σ ≤ Profito(Q
′) ≤ Profito(O) ≤ ∆.

Therefore, ifProfito(Q
′) > 0, we have

Profito(Q
′)

Profito(O)
≥

∆− k(k−1)σ
2

∆

= 1−
k(k − 1)σ

2∆

Therefore,

Profito(Q
′) ≥ (1− εmult)Profito(O)

Proof of Theorem 6: It is very easy to verify thatvi is a
feasible assignment vector, so we only prove the optimality.
Suppose thatvi = (v1, v2 . . . vn) is not optimal. Letu :
(u1 . . . un) be another feasible price assignment vector such
that Profit(Qi,u) > Profit(Qi,vi). Since q1 . . . qn are
sorted in ascending order off(q), we haveProfit(Qi,vi) =
Profit(Qi−1,vi−1) + ∆(qi, vi).

Consider two cases.Case 1: ui ≤ vi. In this case,
∆(qi, ui) ≤ ∆(qi, vi). Since vi−1 is the optimal price
assignment vector ofQi−1, thus Profit(Qi−1,vi−1) ≥
Profit(Qi−1,u). Therefore, we have

Profit(Qi,vi) = Profit(Qi−1,vi−1) + ∆(qi, vi)

≥ Profit(Qi−1,u) + ∆(qi, ui)

= Profit(Qi,u)

which conflicts with our previous assumption.
Case 2: ui > vi. In this case, sincevi =

min{vskyline, vdom}, vi = vskyline or vi = vdom. For any
one of two cases, ifui > vi = vskyline or ui > vi = vdom,
we can immediately verify thatu breaks theskyline constraint
or theh-dominance constraint.


