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Abstract—Selecting a certain number of data points (or
records) from a database which “best” satisfy users’ expec-
tations is a very prevalent problem with many applications.
One application is a hotel booking website showing a certain
number of hotels on a single page. However, this problem is
very challenging since the selected points should ““collectively”
satisfy the expectation of all users. Showing a certain number
of data points to a single user could decrease the satisfaction of
a user because the user may not be able to see his/her favorite
point which could be found in the original database. In this
paper, we would like to find a set of k& points such that on
average, the satisfaction (ratio) of a user is maximized. This
problem takes into account the probability distribution of the
users and considers the satisfaction (ratio) of all users, which
is more reasonable in practice, compared with the existing
studies that only consider the worst-case satisfaction (ratio) of
the users, which may not reflect the whole population and is not
useful in some applications. Motivated by this, in this paper,
we propose algorithms for this problem. Finally, we conducted
experiments to show the effectiveness and the efficiency of the
algorithms.
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I. INTRODUCTION

Selecting a certain number of data points (or records) from
a database in order to “best” satisfy users’ expectations is
a prevalent problem with many applications, from recom-
mender systems to search engines. In many situations, the
users of such an application is anonymous, that is, s/he is
not registered on the website or has not logged into his/her
account. No personal information is available regarding the
specific preferences of an anonymous user. Thus, to select
data points for an anonymous user, only information about
the users in general (possibly refined by user’s location) can
be utilized.

In general, when a number of points are selected for a
user, no specific information may be known about the user.
The websites usually do not have an interface to ask the
users to input their preferences (beyond merely refining a
query) and even if they did, the users might not be willing or
capable to provide their exact preferences. Moreover, a user
will have a low satisfaction level if s/he cannot see his/her
favorite data point among the points shown to the user. Thus,
an accurate formulation of the level of satisfaction of the user
is required for us to be able to select data points that better
satisfy the user, without knowing the user’s preferences.
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Utility functions are used to quantify a user’s satisfaction
from a single point. Using the concept of utility functions,
regret ratio [1]-[6] has been proposed that measures how
well a set of points satisfies a user compared with when
the user has seen the entire database. The setting described
above corresponds to the problem of selecting a set of points
for a user when the user’s utility function is unknown (i.e.,
we have no information about users’ preferences). Thus,
we cannot select a set of points for the user in order to
minimize the user’s regret ratio. Instead, we can focus on
selecting a set of point that minimize the user’s regret ratio
on expectation (i.e., on average), based on the probability
distribution of the utility functions.

In this paper, we study the problem of finding the average
regret ratio minimizing set (FAM) [7]]. Given a database D
and a probability distribution © of utility functions, we want
to find a set S of k points in D such that the expected regret
ratio of a user is the smallest.

Most studies on regret ratio so far have focused on the
k-regret queries that minimize the maximum regret ratio.
[2]-[4] show that solving a k-regret query is NP-hard and
existing studies [1]—[6]] focused on improving the efficiency
of the algorithms and improving the quality of the result.
Minimizing maximum regret ratio provides a worst-case
guarantee on the regret ratio of all the users. However,
as opposed to average regret ratio, maximum regret ratio
disregards the probability distribution of the utility functions.
But it can be important to obtain a lower regret ratio
for the utility functions that are more probable and occur
more frequently. Moreover, maximum regret ratio does not
account for the distribution of the regret ratio among the
users. Two sets can have the same maximum regret ratio
even if the regret ratio of a large proportion of the users in
one is smaller than the other. But average regret ratio of the
two sets will be different. It is confirmed empirically by our
experimental results on real datasets that the vast majority
of the users will have a lower regret ratio if we minimize
average regret ratio instead of maximum regret ratio (see
(8.

Skyline queries [9] have also been used to address the
problem by finding a set of points which are not dominated
by any other points in the database. However, the size of the
answer of skyline queries is uncontrollable and can be very
large. In addition, [10] considered the distribution © of the



utility functions and proposed the k-hit query which is to
find a set S of k points such that the probability that at least
one point in S is the best point of a user is maximized. The
answer to this query becomes less convincing if we care
about not only users who regard the points in the answer
set as their best points but also users who do not regard the
points in the answer set as the best points.

To address the shortcomings of the existing works, in
this paper, we study the FAM problem. [7] first studied the
FAM problem and proposed a greedy algorithm to solve
it. Here, we show that FAM is NP-hard, and we prove
a dynamic programming algorithm for the FAM problem
when the dataset contains two dimensions, and provide
experimental results that show the advantage of average
regret ratio over existing methods. Our technical report [8]]
contains the more detailed theoretical and empirical study of
the problem together with proofs of the theoretical results
of this paper as well as [7].

The rest of the paper is organized as follows. Section
formally defines our FAM problem. Section shows the
greedy algorithm. Section[[V]presents our dynamic program-
ming algorithm in a 2-dimensional case. Section [V] presents
our experimental results. Section [VI] presents the conclusion
and the future work.

II. PROBLEM DEFINITION

Given a database D containing n points, we want to
select a set S containing k£ points that best satisfy users’
expectations. We first define how users’ feelings towards a
single point are captured. A utility function, f, is a mapping
f D — R, that denotes how much a user likes a point.
The utility of a point p with respect to a user with utility
function f is denoted by f(p).

To capture a user’s feeling towards a set of points, f’s
satisfaction with respect to S denoted by sat(S, f), is
defined to be max,cg f(p), or 0 if S is empty. A point
p is said to be f’s best point in S if p = arg maxpes f(p).
Then, the user’s regret ratio is defined as follows.

Definition 1 (Regret and regret ratio [6]). Let S be a subset
of D. For a user whose utility function is f, when s/he sees
the set S instead of D, the regret of f with respect to S,
denoted by r(S, f), is defined to be sat(D, f) — sat(S, f)

and the regret ratio of f, denoted by rr (S, f), to be Sggfbf }.).

The regret ratio of a user with respect to a set .S’ captures
how dissatisfied this user is if this subset .S of the database
D, instead of the whole database, is shown to this user.

Consider F’, the uncountable set of all possible utility
functions (the countable case of F' is a simple extension and
is analyzed in our technical report [8]]). We let © denote the
distribution of the utility functions in F', and let n(f) be the
probability distribution function for utility functions f in F’
corresponding to ©. Note that ffeF n(f)df = 1.

Definition 2 (Average Regret Ratio). Let F' be a set of users
with the probability density function 1(.) corresponding to
a probability distribution © and S be a subset of D. The
average regret ratio of F' for S, denoted by arr(S), is defined

to be ffGF TT(S7 f)’?(f)df

In the above formulation, arr(S) is the expected value of
the regret ratio of a user when the users’ utility functions
follow the distribution ©. In the rest of this paper, we focus
on the most general case of F' (i.e., when F' is the set of all
continuous utility functions in the space R™ > 0) and we
assume that the utility value for any point is at most 1. Note
that the distribution © allows us to select for each instance
of the problem which utility functions should be considered
and how probable they are.

We are ready to present the problem discussed in this
paper, called Finding Average Regret Minimizing Set (FAM),
as follows.

Problem 1 (Finding Average Regret Minimizing Set
(FAM)). Given a positive integer k, and a probability
distribution © we want to find a set S containing k
points in D such that arr(S) is the smallest (ie., S =
argming ¢ p,|s/|= arr(S’)).

The following theorem shows that FAM is NP-hard for a
general probability distribution.

Theorem 1. Problem FAM is NP-hard.

The NP-hardness result holds when the specification of
the general probability distribution is allowed to be of non-
constant size, that is, the probability distribution of FAM can
be any general probability distribution and it does not have
to be specified by at most a constant number of parameters.

III. ALGORITHM FOR GENERAL CASE

In the general case of FAM, when the set of utility func-
tions is continuous and can have any probability distribution,
the problem is NP-Hard and we focus on providing an
approximate algorithm for the problem. We first presented
the algorithm in [7] and its more detailed analysis can
be found in [8]]. The approximation algorithm GREEDY-
SHRINK initializes the solution set .S’ to the whole database
and iteratively removes one point from the current solution
set S'in a way that the average regret ratio of the resulting set
is the smallest. This continues until the number of remaining
points in S is at most k. Using the properties of the average
regret ratio, it can be theoretically shown that the quality of
the solution returned by GREEDY-SHRINK is within a factor
of the optimal solution.

IV. ALGORITHM ON DATASET CONTAINING TWO
DIMENSIONS

The FAM problem is NP-hard for a general continuous
probability distribution. Here, we consider a special case
of the problem with continuous distribution of linear utility



functions and provide an exact algorithm that can solve
the FAM problem optimally when the dimensionality of the
database is two.

First, note that the linear utility functions are of the form
f(p) = wip[1l] + wop[2] where p[1] and p[2] are the first
and second attributes of the point p, and w; and wy are
the weights of the utility function for each dimension. We
can consider (w1, ws) as a vector, and it is easy to see that
scaling the vector does not change the regret ratio of a utility
function from any set. Hence, we only need to consider
the direction of the vector, which we can measure by the
angle it makes with the first dimension. Therefore, in this
section, an angle 6 is used to represent the set of utility
functions that make the angle 6 with the first dimension,
that is, § = arctan(:3). We let Fgl“ be the set of utility
functions whose angle is between ¢; and 6,. Additionally,
let 0; ; = arctan(%). Intuitively, 6; ; is the slope of
the line that passes through origin and divides the space of
utility functions into two subspaces based on whether they
prefer p; over p;. Finally, we let 0; ,,1 = 5 for simplicity
of notation.

In our discussion, we make sure our dataset only includes
skyline points and that the points are sorted in descend-
ing order of their first dimension. Therefore, if i < j,
then p;[1] < p;[1] and because they are in the skyline,
p;[2] > p;i[2]. Moreover, we limit the set of utility functions
to 0 < wy,wy < 1.

A. Recursive Formulation

Let arr*(r,i,0) be the optimal solution to the following
problem: given that the point p; is already selected and is the
best point for utility function 6, choose at most 7 points to
minimize the average regret ratio of users in F;? . Moreover,
let arr (S, ng ) be the average regret ratio of the set S over
the utility functions in FQGL . The optimal solution to FAM is
now min; <<, arr*(k —1,4,0), and we have the following
recursive formulation.

Theorem 2. Given an integer r, and an angle 0;, 0 <

usl
2

01 < 3, with base cases arr*(0,4,0;) = arr({p:}, Fy)
and arr*(r,i,5) = 0, it hods that arr*(r,i,0;) =

. 0; ; . .
min;<j<ni1,6; ;>0, arr({pi}, Fp7) +arr*(r —1,34,0; ;)
B. Dynamic Programming Algorithm

First we find the skyline of the dataset and sort the
points by their first dimension. Then we use the recursive
formulation to solve the problem. Finally, when for all ¢,
arr*(k—1,4,0) has been calculated, we go through all the n
possible values and choose the one with the smallest average
regret ratio as the optimal solution.

We need to discuss calculating arr({p; }, Fgl 7). Note that
6;, in the recursive call is always equal to 6; . for some
integer z, except for the first function call when 6; = 0.
Therefore, for every i, there are at most n+1 possible values

for 0; and there are at most n + 1 possible values for 0; ;
(because j can be equal to n + 1). Thus, there are O(n3)
different values of arr({p;}, ng “7) possible which we can
precompute. Using the definition of the average regret ratio,
we can write arr({p}, Fgl“) as

1 cilwy
> [ [ an
0 Jeclwy

1<i<n

w1 p[1] + wap[2]

wipil1] + wapg] B2

for appropriate ¢! and ¢} values (our technical report [8]
contains the detailed treatment). The exact calculation of the
average regret ratio also depends on the choice of 7(f). For
instance, for a uniform distribution where n(f) = 1, we can
integrate the expression exactly and provide a closed-form
solution for each integral.

Time Complexity. First, the algorithm finds the skyline
points, sorts them and computes arr({pi},FZi’j) for all
i,J,0;, which takes O(n?) as there are total of O(n?)
different possible values and each arr evaluation takes O(n)
(to evaluate the sum of the n integrals). Filling the arr*
table requires filling O(kn?) elements, each of which take
O(n), which is O(kn®). Finally, finding an i for which
arr*(k — 1,4,0) is minimum needs a linear scan of the
elements and O(n) time. Therefore, overall, the algorithm
takes O(n?).

V. EMPIRICAL STUDIES

We conducted experiments on a workstation with
2.26GHz CPU and 32GB RAM. All programs were imple-
mented in C++. In Section we compare the solution
set based on the average regret ratio studied in this paper
with two solution sets studied in previous papers to study its
usefulness. Then, we present the experimental results based
on the average regret ratio in Section Our technical
report [8] contains a comprehensive empirical evaluation.

A. Avg. Regret Ratio vs. Max. Regret Ratio vs. k-Hit

In this experiment, we used the NBA dataset from 2013
to 2016 containing statistical records of 664 NBA players.
In this experiment, in the absence of any information about
utility functions, we used linear and uniformly distributed
utility functions.

We executed our proposed algorithm designed for the
average regret ratio, greedy algorithm in [6] designed for the
maximum regret ratio and algorithm in [[10] designed for k-
hit to generate the sets Sy, Sy and Sk_ps¢ respectively
of 5 NBA players. These three sets could be found in Table[l]

In this experiment, we compare the “goodness” of the
set S, with the two sets S, and Sp_p;; based on
a ‘“subjective” online survey manner and an “objective”
external statistics manner.

We asked 702 participants with basic NBA knowledge to
select one set among Sy, Sy and Si_pse which col-
lectively contains better players. According to the response



Sarr Srrr Sk—hit Top 1to 5 Top 6 to 10 Dataset d n
Stephen Curry LaMarcu Aldridge Stephen Curry Stephen Curry Derick Rose House- 6 127,931
Kevin Durant DeMarcus Cousins Kevin Durant LeBron James Russell Westbrook hold-6d
James Harden Stephen Curry James Harden Kobe Bryant Kyrie Irving Forest 11 | 100,000

DeAndre Jordan George Hill Draymond Green Kiristaps Porzingis James Harden Cover
Russell Westbrook Ramon Sessions Russell Westbrook Kevin Durant Jimmy Butler Yahoo! - 8,933
Music
Table I Table II
THREE SETS OF 5 PLAYERS COMPUTED BASED ON THE AVERAGE Topr 10 NBA PLAYERS IN 2016 Table III
REGRET RATIO (ARR), THE MAXIMUM REGRET RATIO (MRR) AND ACCORDING TO THE NUMBER OF JERSEYS REAL DATASETS’
THE k-HIT QUERY (k-HIT) (I.E., Sarr, Smrr AND Sk_nit) SOLD INFORMATION

to the survey question, about 56%, 17% and 27% of the
participants preferred Sg.-, Sprr and Sk_pit, respectively,
which suggests that the result based on the average regret
ratio is more preferred compared with the other two results.
Next, consider the result based on the external statistics
about NBA player jersey sales (Table [[). Surprisingly, 4
players out of 5 players in S, and Si_p;+ are in the top-
10 players based on the number of jerseys sold (Table [II).
However, only 1 player out of 5 players in Sy, is in the
top-5 and the top-10.
Greedy-Shrink —x— K-Hit —&—

MRR-Greedy —— Sky-Dom —S—

(a) House-6d dataset

(b) Forest Cover dataset (c) Yahoo! Music dataset
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Figure 1. Effect of k£ on average regret ratio of real datasets

B. Experiments for Average Regret Ratio

We wused three real datasets commonly used
in the existing studies for  skyline  queries
and top-k queries, namely Household-6d

(http://www.ipums.org), Forest Cover, Yahoo!music dataset
(http://webscope.sandbox.yahoo.com/catalog.php?datatype=c)
to evaluate our algorithm. In the first two datasets, the
utility functions used are linear and their distribution is
uniform, but for Yahoo!music we learn the distribution of
users preferences based on the rating they provide. The
number of dimensions and the data size of each of these
real datasets can be found in Table

We compared our proposed algorithms called GREEDY-
SHRINK and DP (described in Section and with
the 3 existing algorithms, namely MRR-GREEDY [|6], SKY-
Dowm [11]] and K-HIT [10]. MRR-GREEDY is the greedy
algorithm [|6] designed to find the solution set based on
maximum regret ratio. SKY-DOM is an algorithm in [11]
which selects k points that together dominate the most
number of points in the skyline of a dataset. K-HIT is a
top-k algorithm proposed by [[10] that uses a probabilistic
approach for selecting k points.

In the k-hit algorithm, we set parameters € and ¢ to be
0.1 such that the setting matches the error and confidence

parameter for sampling in GREEDY-SHRINK which is set to
N =10, 000.

Figure [1| shows the average regret ratios of the solutions
returned by different algorithms based on the datasets.
GREEDY-SHRINK has the smallest average regret ratio
among all the algorithms, and K-HIT has a slightly larger
average regret ratio. However, SKY-DOM algorithm does not
work well on real datasets and returns an average regret
ratio much larger than the other algorithms. Furthermore,
the average regret ratio of the points returned by SKY-Dom
does not change significantly when the number of points
returned increases.

VI. CONCLUSION

We considered the problem of selecting a number of rep-
resentative points from a database. The problem is concerned
with the happiness, or utility, of the users who see the
selected points instead of the whole database.

Acknowledgment. The research is supported by HKRGC
GRF 16214017 and ITS/227/17FP.

REFERENCES

[1] A. Asudeh, A. Nazi, N. Zhang, and G. Das, “Efficient com-
putation of rregret-ratio minimizing set: A compact maxima
representative,” SIGMOD, 2017.

P. K. Agarwal, N. Kumar, S. Sintos, and S. Suri, “Efficient
algorithms for k-regret minmizing sets,” SEA, 2017.

W. Cao, J. Li, H. Wang, K. Wang, R. Wang, R. Wong, and

W. Zhan, “k-regret minimizing set: Efficient algorithms and
hardness,” ICDT, 2017.

S. Chester, A. Thomo, S. Venkatesh, and S. Whitesides,
“Computing k-regret minimizing sets,” VLDB, 2010.

(2]

(3]

(4]

[5] P. Peng and R. C. W. Wong, “Geometry approach for k-regret

query,” ICDE, 2014.

D. Nanongkai, A. D. Sarma, A. Lall, R. J. Lipton, and J. Xu,
“Regret-minimizing representative databases,” VLDB, 2010.

S. Zeighami and R. C.-W. Wong, “Minimizing average regret
ratio in database,” SIGMOD, 2016.

S. Zeighami and R. C. W. Wong, “Technical report,” http:
/Iwww.cse.ust.hk/~raywong/paper/arr-technical.pdf, 2018.

[6]
(71
(8]

[9] S. Borzsony, D. Kossmann, and K. Stocker, “The skyline
operator,” ICDE, 2001.

P. Peng and R. C. W. Wong, “k-hit query: Top-k query with
probabilistic utility function,” SIGMOD, 2015.

X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang, “Selecting stars:
The k most representative skyline operator,” ICDE, 2007.

[10]

(11]


http://www.cse.ust.hk/~raywong/paper/arr-technical.pdf
http://www.cse.ust.hk/~raywong/paper/arr-technical.pdf

	Introduction
	Problem Definition
	Algorithm for General Case
	Algorithm on Dataset Containing Two Dimensions
	Recursive Formulation
	Dynamic Programming Algorithm

	Empirical studies
	Avg. Regret Ratio vs. Max. Regret Ratio vs. k-Hit
	Experiments for Average Regret Ratio

	Conclusion
	References

