
On Nearby-Fit Spatial Keyword Queries
(Extended Abstract)

Victor Junqiu Wei#, Raymond Chi-Wing Wong∗, Cheng Long†, Pan Hui∗‡

#Noah’s Ark Lab, Huawei Technologies, ∗The Hong Kong University of Science and Technology
†Nanyang Technological University, ‡University of Helsinki

#weijunqiu@huawei.com, ∗{raywong,panhui}@cse.ust.hk, †c.long@ntu.edu.sg, ‡panhui@cs.helsinki.fi

Abstract—Geo-textual data is ubiquitous nowadays, where
each object has a location and is associated with some
keywords. Many types of queries based on geo-textual data,
termed as spatial keyword queries, have been proposed,
and are to find optimal object(s) in terms of both its
(their) location(s) and keywords. In this paper, we propose
a new type of query called nearby-fit spatial keyword query
(NSKQ), where an optimal object is defined based not only
on the location and the keywords of the object itself, but also
on those of the objects nearby. For example, in an application
of finding a hotel, not only the location of a hotel but also the
objects near the hotel (e.g., shopping malls, restaurants and
bus stops nearby) might need to be taken into consideration.

The query is proved to be NP-hard, and in order to
perform the query efficiently, we developed two approximate
algorithms with small constant approximation factors equal
to 1.155 and 1.79. We conducted extensive experiments based
on both real and synthetic datasets, which verified our
algorithms.

Index Terms—spatial keyword queries, proximity queries,
spatial database, location-based services

1. Introduction
Nowadays, geo-textual data which refers to data with

both spatial and textual information is ubiquitous (e.g.,
webpages and photos at Flicker). The geo-textual data
could be represented by a set of spatial objects each
of which is associated with a set of (textual) keywords.
Consider the following problem based on the geo-textual
data presented in Figure 1.
A hotel-finding problem: Tom is going

to attend an international conference
and would like to find a hotel such that
(1) the location of the hotel is near to
the conference venue (marked by the black
dot in the figure) and (2) there are at
least a convenience store, a café and a
pub nearby the hotel.

It is easy to see that H2 is the best selection for Tom
since it is surrounded by a pub (P2), a café (C2) and
a convenience store (S2) and is in the vicinity of the
conference venue. Besides, H1 and H3 are bad choices
since there are nothing in the vicinity of H3 and H1 is
far away from the conference venue.

Although many different types of queries based on
geo-textual data which are termed as spatial keyword
queries have been proposed in the literature, none of
them could be used to capture the above hotel-finding

Conference Venue

H3

H2

H1
P2

P1

C2

S1
S2

Hotel

Convenience Store

Pub

Café

Hotel, Café

d(,) CV

3.6

1.9

2.7

2

3.8

2.8

3

0.8

H1

P1
S1

H2
P2

C2
S2

d(,)

1.7

H2

P2

d(,)

1.6

0.9

H1
P1
S1

Distances

H3

Fig. 1: A motivating example (CV stands for ”Confer-
ence Venue”)

problem well. The relevant existing studies fall into the
following 3 categories. The first category is the spatial
keyword kNN query (SKkNNQ) [1] which ranks each POI
by its own location and keywords and fails to consider its
vicinity. Thus, it is not applicable to the aforementioned
problem. The second and the third category are the
collective spatial keyword query (CoSKQ) [2]–[4] and m-
Closest Keyword query (mCK) [5], respectively. They aim
to find a group of objects collectively covering all query
keywords with their cost minimized, where the cost
involves the distances among the POIs and the query
location. But, they rank each group of objects collectively
rather than each target object (in the above example,
a hotel). Thus, the target object found in the returned
group could be a bad one although the returned group
has the lowest cost (see the detailed explanation in [6]
for better understanding).

Motivated by this, in this paper, we formalize the
problems like the hotel-finding problem as a query called
nearby-fit spatial keyword query (NSKQ) as follows.

Problem statement. Let D be a set of spatial objects each
of which is associated with a set of keywords. Given a
query q which consists of a location q.λ called the query
location, a keyword q.t called the target keyword, and a set
q.ψ of keywords called the nearby keywords, the nearby-fit
spatial keyword query (NSKQ) is to find the object in D
which has the smallest cost wrt q, denoted by Cost(o|q),
among all objects containing the target keyword. Here,
Cost(o|q) is defined to be a linear combination of two

Fig. 2: An example of NSKQ

Obj ψ

o1 a
o2 b
o3 c
o4 a
o5 b, c
o6 b, c
o7 a, c
o8 b, c
o9 c

Fig. 3: Keyword set
of each object

components: (1) the distance from the query location to o
and (2) the smallest distance from a set of objects covering
the set of nearby keywords to o i.e., Cost(o|q) = α ·
d(q, o) + (1− α) ·min{Dist(o, O)|O ⊆ D, O covers q.ψ},
where α ∈ [0, 1] is a tuning parameter and Dist(o, O) de-
notes the maximum pairwise distance of the set O∪ {o},
i.e., Dist(o, O) = maxo1,o2∈O∪{o} d(o1, o2).

Besides, in [6], we prove that the NSKQ problem is
NP-hard, and to solve it efficiently, we developed two ap-
proximate algorithms, both with small constant approxi-
mation factors and empirically verified the efficiency and
the effectiveness of the approximate algorithms.

2. Processing NSKQ
We proposed two approximate algorithms for NSKQ,

namely Appro1 and Appro2. In Appro1, we adopted a
concept called “minimal covering disk” which is a disk
compactly covering q.ψ and q.t. Given a disk Θ, Θ is said
to be a covering disk if there exists a set O of objects in Θ
such that O covers q.ψ and q.t. Given a covering disk Θ,
Θ is said to be a minimal covering disk if there does not
exist a smaller disk Θ′ such that Θ′ is a covering disk
and Θ′ does not contain any object outside Θ.

For example, Figure 2 shows 9 objects, namely
o1, o2, ..., o9, together with their keywords shown in Fig-
ure 3. In Figure 2, we also show three disks, namely
Θ1, Θ2 and Θ3, where Θ1 centers at q and its radius is
d(q, o6), Θ2 (Θ3) is a disk whose boundary contains o5
and o6 (o1, o2 and o3, resp.). Consider that q.t = c and
q.ψ = {a, b}. Θ1, Θ2 and Θ3 are covering disks. Neither
Θ1 nor Θ2 is a minimal covering disk (since there exists
a smaller covering disk of Θ1 and one smaller covering
disk of Θ2) but Θ3 is a minimal covering disk.

Based on this concept, we develop the Appro1 al-
gorithm. Roughly speaking, instead of enumerating all
possible combinations of objects covering q.ψ and q.t,
Appro1 (1) first enumerates all possible candidates of
minimal covering disks, (2) for each enumerated disk,
finds within the disk the nearest object o′q containing
the target keyword from query q and a set O′ of ob-
jects covering all nearby keywords, and computes the
cost value Cost(o′q|q, O′) which is an estimated value
of Cost(o′q|q), and (3) returns the object o′q with the
smallest estimated cost. It is shown in [6] that the ap-
proximate ratio of Appro1 is 1.155 and its time complexity
is O(|q.ψ|3 · |D| log |D|).

Appro1
Appro2

Long-Appro-Adapt1
Cao-Appro1-Adapt2

10
-2

10
-1

10
0

10
1

10
2

10
3

3 6 9 12 15

(a)

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

No. of nearby keywords

1

1.5

2

2.5

3

3 6 9 12 15

(b)

A
p
p
ro

x
im

a
te

 r
a
ti
o

No. of nearby keywords

Fig. 4: Effect of |q.ψ| for (Web)
Besides, we propose Appro2 which is faster than Ap-

pro1 but has a slightly larger approximation factor. Ap-
pro2 uses two new concepts, namely “center-centric near-
est neighbor set” and “axis-parallel square”, which are
“looser” concepts compared with “minimum covering
disk”. Since finding “center-centric nearest neighbor set”
and “axis-parallel square” are computationally cheaper
than finding “minimum covering disk” [6], Appro2 is
faster than Appro1. The time complexity of Appro2 is
O(|q.ψ||D| log |D| + |D| log2 |D|). Besides, the approxi-
mate factor of Appro2 is 1.79, a little bit larger than the
approximate factor of Appro1.

3. Experiment
We conducted experiments on a 2.2GHz machine

with 4GB RAM. We compared our proposed algo-
rithms, namely Appro1 and Appro2, with several baselines
adapted from existing algorithms as shown in [6] and
present only two baselines, namely Long-Appro-Adapt1
and Cao-Appro1-Adapt2, since each of the other baselines
is dominated by one of the four algorithms considered
in the paper. All algorithms were implemented in C++.
We use the same datasets as in [2], namely Web, GN
and Hotel. Figure 4 shows the results on the Web dataset
(which contains 1,777,598 objects). Each considered base-
line either has an unacceptable running time (up to more
than 2 orders of magnitude than ours) or has an unac-
ceptable approximate ratio (more than 2). Remarkably,
the approximate ratio of Appro1 is nearly 1, which means
that its accuracy is significantly high in practice.

4. Acknowledgments
We are grateful to the anonymous reviewers for their

constructive comments on this paper. The research of
Victor Junqiu Wei and Raymond ChiWing Wong is sup-
ported by HKRGC GRF 16219816. The research of Cheng
Long was supported by the NTU Start-Up Grant and
Singapore MOE Tier 1 Grant RG20/19 (S).

References
[1] I. D. Felipe, V. Hristidis, and N. Rishe, “Keyword search on spatial

databases,” in ICDE, 2008.
[2] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi, “Collective spatial

keyword querying,” in SIGMOD, 2011.
[3] C. Long, R. C.-W. Wong, K. Wang, and A. W.-C. Fu, “Collective

spatial keyword queries:a distance owner-driven approach,” in
SIGMOD, 2013.

[4] X. Cao, G. Cong, T. Guo, C. S. Jensen, and B. C. Ooi, “Efficient
processing of spatial group keyword queries,” TODS, 2015.

[5] T. Guo, X. Cao, and G. Cong, “Efficient algorithms for answering
the m-closest keywords query,” in SIGMOD, 2015.

[6] J. Wei, R. C.-W. Wong, C. Long, and P. Hui, “On nearby-fit spatial
keyword queries,” TKDE, 2019.

