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Abstract—Given a set of spatio-temporal objects, a top-k
window aggregate query reports top-k tuples that are ordered
with respect to the number of objects during a given time interval
and within a spatial range. For example, when analyzing traffic
density in a city, one wishes to retrieve top-k time intervals in
a certain area that are decreasingly ordered according to the
number of vehicles passing by. As simply performing sequential
scan over all objects is a costly procedure, an index structure is
typically built to enhance the query performance. A crucial step
during the evaluation is to determine the number of objects in
an arbitrary node, called coverage number sequence. This is a
challenging task since objects appear and disappear at different
time points such that the number of objects in the query node
changes over time. Also, as a hierarchical index structure, the
value of a node at high level is achieved by performing the
aggregation over its child nodes. Simply enumerating all objects
rooted in the query node suffers from performance issues mainly
due to (i) traversing the sub-tree to retrieve a large number of
time points and (ii) repeatedly performing the aggregation at
certain time points. We propose an efficient approach to solve
the performance issue for both R-tree and Octree and support
updating for new arrival data objects being inserted into the
index. Our approach outperforms alternative methods in general
according to a thorough analysis on the complexity. Coverage
number sequences as well as proposed optimization techniques
are utilized to enhance the performance of window aggregate
queries. We confirm the superiority of our approach over al-
ternative methods by performing a comprehensive experimental
evaluation over large real datasets in a database system.

I. INTRODUCTION

Spatio-temporal databases manage spatial and time-varying

characteristics of entities and have been extensively studied in

a variety of applications including traffic management, weather

monitoring and mobile commerce [3], [8], [7]. There is a kind

of spatio-temporal queries that report k results based on a

ranking function. Application users may not need to have the

overall result as the size could be large but retrieve k best

results. Example queries include k nearest neighbor queries

[12] and top-k similarity queries [27]. In this paper, we study

a novel kind of top-k queries that report the summarized

information over a set of objects fulfilling the spatio-temporal

condition, called top-k window aggregate queries. Such a

query requests a spatio-temporal window to look for objects

being located inside and performs the aggregation counting

over them to report k tuples ordered by the number of objects.

For example, counting the cardinality of vehicles crossing

a certain area (e.g., commercial center) during rush hour is

a fundamental problem in traffic management. The reported

information benefits urban plans such as constructions of roads

and underpasses or adjusting traffic lights.

Example 1. Assume that there are five objects {o1, o2,

o3, o4, o5} moving long the x-axis and the query window

(gray area) is ([x1, x2), [ts, te)), as shown in Figure 1(a).

The number of objects appearing in [x1, x2) during [ts, te) is

reported in Figure 1(b). After traversing the moving integer,

the query returns 〈([ts, t1), 1)〉 (k = 1) if we consider the

minimum number of objects.

(a) 1D query region (b) #objects in the window

Fig. 1. Example of top-k window aggregation queries

Efficiently answering this query requires indexing tech-

niques because the performance of sequential scan over the

datasets is prohibitively expensive. We mainly focus on the

R-tree family in this paper. The pruning procedure makes use

of the aggregation information of objects being stored in a

node. Since spatio-temporal objects appear and disappear at

different time points, the number of objects varies at each time

point, complicating the calculation procedure of aggregation

counting. In addition to top-k window aggregate queries, the

aggregation information of internal structures can be utilized

as a black box to (i) enhance the query performance of other

top-k queries such as [12] [20] [27] (e.g., [12] utilizes coverage

number sequences to report the minimum number of qualified

objects in a node without accessing the underlying structure),

and (ii) test and analyze internal data structures for system

developers, e.g., “is there a subtree containing more objects

than others at the level?”.

Given an R-tree built on a set of spatio-temporal objects

[18] and an arbitrary query node, we study efficiently reporting

the number of objects over time in the node, called coverage

number sequence. Such a query reports the number of objects

at each time point in the query node. For the sake of simplicity,

we use the notation CovNumSeq in the following. CovNumSeq

can be considered as performing an aggregation counting



query with the structure constraint, which means that only

objects rooted in the query node (sub-tree) are processed. This

differs from traditional aggregation queries which only define

the time constraint.

Example 2. Assume that a 3D R-tree is built on a set of

moving objects, as depicted in Figure 2(a). The indexed objects

are pieces of movements and each entry of a leaf node contains

a reference to one piece of movements. Given a node, its

CovNumSeq is defined by a sequence of items each of which

consists of a time interval and the number of objects over this

time interval in the node. The CovNumSeqs of N2 and N3 are

illustrated in Figure 2(b). Consider the node N3. o3 appears

at [t0, t3), o4 appears at [t1, t3) and o5 appears at [t2, t4),

resulting in CovNumSeq = 〈([t0, t1), 1), ([t1, t2), 2), ([t2, t3),

3), ([t3, t4), 1)〉. To obtain CovNumSeq of Nr, we perform

an aggregation over CovNumSeqs of N1, N2 and N3.

(a) R-tree (b) CovNumSeqs

Fig. 2. Example of CovNumSeqs over an R-tree

In the literature, a number of temporal aggregation queries

have been studied, which can be classified into (i) cumulative

temporal aggregate queries [25], (ii) range temporal counting

[26], [22] and (iii) spatio-temporal aggregation counting [14],

[24].

The first type of queries reports the summarized information

of objects whose intervals intersecting a query window formed

by defining an offset around a time point. If the offset becomes

zero, the query is called instantaneous temporal aggregate in

which the time line is partitioned into time points. Typical

aggregate operators are COUNT, SUM and AVG. Our query

can be treated as instantaneous temporal aggregation over

the relevant objects. That is, CovNumSeq is achieved by

performing the aggregation over objects fulfilling the structure

condition instead of the temporal condition. In Figure 2, the

time interval of N3 is [t0, t4) which intersects with that of N2

([t0, t3)), but the evaluation will not involve {o1, o2} in N2

because they do not belong to N3 (structure constraint). The

second type of queries computes the total number of objects

whose time intervals intersect a query interval. However, the

interval of a counted object may be not identical to the query

interval such that at certain time points the number of objects

is actually smaller than the reported value. Considering N2 in

Figure 2(b), we set the query interval [t0, t3). Range temporal

counting will report 2, but there is only one object during [t0,

t1). The result of range temporal counting is in fact an instant

value of CovNumSeqs that represents the maximum value over

the query.

The third type of queries returns the number of objects

fulfilling the spatio-temporal condition. Those algorithms can

be adapted to report CovNumSeqs but the performance is sub-

optimal. One extracts temporal (spatio-temporal) data from the

query node to form the temporal (spatio-temporal) window.

Considering N2, we have the temporal window [t0, t3) as the

query time. The evaluation will process {o3, o4, o5} in N3

since their intervals intersect with [t0, t3). As a result, at [t0,

t1) we have {o1, o3}, at [t1, t2) we have {o1, o2, o3, o4}, and at

[t2, t3) we have {o1, o2, o3, o4, o5}, resulting in CovNumSeq

= 〈([t0, t1), 2), ([t1, t2), 4), ([t2, t3), 5)〉. This leads to false

dismissals because {o3, o4, o5} is not in the query node N2.

One can remove objects not in the query node after the spatio-

temporal evaluation but this requires extra storage and query

costs, significantly decreasing the performance. On the one

hand, evaluating which node an object belongs to needs to

maintain the relationship between objects and nodes (i.e., the

leaf node an object belongs to and all nodes on the path from

the leaf node to the root node). This is done for all data objects.

On the other hand, if a large query window is requested, e.g.,

a non-leaf node, a number of objects will be processed but

they may not contribute to the result.

CovNumSeq reports a distinct count at each time point

and such a value changes over time as objects appear and

disappear at different time points. There is no way to exactly

summarize distinct objects substantially better than by simply

enumerating all of them [21]. The number of processed objects

is small if a leaf node is requested because only a few objects

are evaluated. However, the number of processed objects is

large for a non-leaf node since all objects in the subtree are

evaluated. An extreme case occurs when a root node is queried.

To report the result, the evaluation traverses down to leaf nodes

to collect data objects and perform the aggregation over all

objects rooted at the node, which is a costly procedure.

We propose a divide-and-conquer strategy that calculates

CovNumSeq for each child node and merges these CovNum-

Seqs to be the final result. Based on a thorough analysis,

we find the bottleneck is that merging CovNumSeqs over

child nodes involves repeatedly accessing a large number of

duplicate time points. Motivated by this, we create the set of

time points in advance and study common endpoints among

different sub-spaces. The computation cost is reduced by

determining the subset of endpoints involved for computation.

We use an R-tree as the study case because the structure has

been popularly used in spatio-temporal databases, while our

solution applies to Octree [15] as well. We develop a method to

efficiently update CovNumSeqs for on-line applications. One

increases the counters for time points overlapping with the

historical data and performs the computation for new time

points.

CovNumSeqs accompanied with spatial distances are uti-

lized to enhance the performance of window aggregate

queries. Given a set of moving objects and a spatio-temporal

window, one calculates the number of objects moving in the

query area at each time point and reports k time intervals

with the minimum number of objects. The performance of

traditional spatio-temporal counting methods is sub-optimal



because iteratively evaluating each object is costly for large

datasets. We enhance the query performance by making use of

CovNumSeqs and the pruning strategy based on approximate

counting.

The contributions are summarized as follows:

• We formalize the problem of CovNumSeqs and top-k
window aggregate queries.

• We design an efficient algorithm to compute CovNum-

Seqs and perform a thorough theoretical analysis on time

and space complexities. The solution applies to both R-

tree and Octree.

• An efficient updating method is developed for CovNum-

Seqs for new arrival data, and the complexity is analyzed.

• By employing CovNumSeqs, we design efficient algo-

rithms to answer window aggregate queries.

• We develop all techniques in a prototype database system

SECONDO and perform a comprehensive experimental

evaluation using large real datasets. The results demon-

strate that our proposal offers more than an order of

magnitude performance improvement in comparison with

four alternative methods.

The rest of the paper is organized as follows: The related

work is reviewed in Section II. We formalize the problem in

Section III, present the approach of computing CovNumSeqs

in Section IV and provide a thorough analysis in Section

V. Updating CovNumSeqs is introduced in Section VI. Al-

gorithms of answering window aggregate are introduced in

Section VII. The evaluation is conducted in Section VIII and

we conclude the paper in Section IX.

II. RELATED WORK

Temporal aggregation. Computing temporal aggregates is

a fundamental operator in temporal databases, which reports

summarized values about tuples with time-evolving attributes

[2], [28], [26], [10], [19]. Typical functions include COUNT,

SUM, AVG, MIN and MAX. They can be classified into

two categories: instantaneous and cumulative. The former

partitions the time line into time points and the value at each

time point is computed from the set of tuples valid at the

point. The latter reports the value that is computed over all

tuples whose intervals overlap the window formed by placing

an offset around the time point.

Temporal aggregation algorithms include nonindexed eval-

uation and indexed evaluation algorithms. The former scans

the temporal relation every time a query is issued, and the

latter uses a disk-based data structure. According to [22], aR-

tree (aggregate R-tree) [17] is the most “practical” method to

process temporal aggregates. The method augments the R-tree

with aggregate information in intermediate entries. If a node

is totally contained in the query region, the aggregate number

is directly retrieved without accessing the sub-tree. Existing

approaches such as Balanced tree [16], Parallel fashion [9]

and Timeline [13] perform the temporal aggregation over

objects overlapping query timestamps, but this is not the case

for coverage number sequences. In our query, only relevant

objects are considered which are the objects located in the

query node. The evaluated data is in fact a subset of objects

overlapping query timestamps and efficiently determining the

subset is not a trivial task. Each object belongs to a list of

nodes in the structure.

Approximate temporal aggregation with nearby coalescing

returns an interval for most users when a complete interval for

all users is not available [4]. An approximate temporal count

retrieves a value that deviates from the precise result by less

than an error bound ǫ [22]. The approximation ration can be set

by zero such that the accurate result is returned. However, the

approach setting ǫ = 0 does not count the number of objects at

each time point but only the objects whose intervals intersect

the query. We evaluate whether the keys (set the leaf node as

key) are identical to the query node. Besides, comparing keys

for non-leaf nodes involves a number of node ids, complicating

the evaluation procedure.

Spatio-temporal aggregation. One solution is to decom-

pose a spatio-temporal object into different extents including

spatial extent, temporal extent and the combination of spa-

tial and temporal extents, and then perform the aggregation

over each extent [14]. Papadias et al. propose the aRB-tree

(aggregate R-B-tree) for the efficient processing of spatio-

temporal average count queries [18]. Spatial regions are in-

dexed in an R-tree and each entry of the R-tree is associated

with a pointer to a B-tree that stores historical aggregate data

(the overall number of objects) about the entry. The aRB-tree

facilitates aggregating processing by eliminating the procedure

of accessing nodes totally enclosed by the query. However,

the structure is not directly applicable for distinct counting

queries because it does not take into account multiple object

occurrences. The structure only maintains summarized data

without information about individual objects. Thus, duplicate

elimination techniques cannot apply. One can use a B-tree on

node ids to find the requested node. However, the aggregate

data in each non-leaf entry of the B-tree defines the overall

number of objects instead of the count at each time point.

Given a query region and an interval, a spatio-temporal ag-

gregate query retrieves summarized information about objects

that appeared in the region during the query interval [21]. The

reported counting is an instant value instead of the cardinality

of objects at each time point. The method [23] finds the

average number of objects per time-stamp during a time

interval, but the proposed structures only store summarized

data without information about individual objects. This does

not support our issue because the number of objects at each

time point is required.

III. PROBLEM DEFINITION

A. Formalizing CovNumSeqs

Coverage number sequences are represented by moving

integers. Let Instant denote a set of all possible time points

each of which is represented by a real number.

Definition 1 Moving integers

Dmint = {〈([t1, t2), c1), ..., ([tn, tn+1), cn)〉|ti < ti+1 ∧
ti, ti+1 ∈ Instant, ci ≥ 0 ∧ ci ∈ Dint}



Let O be the set of data objects in a node and T (o) (o ∈
O) return the time interval of an object.

Definition 2 CovNumSeq

Given an R-tree node N , its CovNumSeq denoted by cov(N )

∈ Dmint represent the number of objects at each time interval

over
⋃

o∈O
T (o). That is, ∀ ([t1, t2), c) ∈ cov: c = |O′|, O′

= {o| o ∈ O ∧ [t1, t2) ⊆ T (o)}.

Each item ([t1, t2), c) defines the number of objects in the

node during a time interval. An object may contribute to the

counters in several items if its time period overlaps with those

time intervals. If a leaf node is processed, the item for each

child (a data object) is simple, i.e., ([t1, t2), 1). If a non-leaf

node is processed, CovNumSeq is achieved by performing the

aggregation over all child nodes.

Example 3. As reported in Figure 3, there are four objects

in N1 ({[t0, t2), [t1, t3), [t3, t5), [t4, t5)}) and two objects

in N2 ({[t0, t2), [t1, t3)}). In N1, the object with [t0, t2)

contributes to counters in items ([t0, t1), 1) and ([t1, t2),

2). CovNumSeqs of Nr is achieved by aggregating cov(N1),

cov(N2) and cov(N3).

Fig. 3. CovNumSeqs of nodes N1, N2 and Nr

B. Top-k Window Aggregate Queries

The query finds data objects whose time intervals intersect

the query window and returns k values summarizing the

information contained in the result.

Definition 3 Window aggregation minimum queries (Win-

min for short)

The query, defined by q(r, t, k), calculates the number of

objects appearing in the region q.r during q.t, and reports k
time intervals with the minimum number of objects. We use

Covq to denote the result such that

(i) |Covq| = q.k;

(ii) ∀ ([t1, t2), c) ∈ Covq: c = |Oq| > 0, Oq = {o| [t1, t2)
⊆ T (o) ∧ o intersects q.r during [t1, t2)};

(iii) ∄ ([ts, te), c
′) /∈ Covq, c′ > 0, [ts, te) ⊆ q.t : ∃ ([t1,

t2), c) ∈ Covq , c′ < c.

The shape of the query region is arbitrary such as rectangle,

triangle and circle. In the following, we consider a rectangle

because other shapes can be processed by first using the

rectangle to perform an approximate query and then doing

the refinement.

IV. COMPUTE COVNUMSEQS

A. The framework

We outline the calculation procedure in Figure 4. The input

parameters are an R-tree R, an auxiliary structure denoted

by P and a node id. Our solution named Cov consists of

three steps: (i) building a partition list on data objects, (ii)

updating counters for child nodes and (iii) building the overall

CovNumSeqs.

We explain the procedure by considering the root node as

the procedure of other nodes is a subroutine of processing the

root node. Initially, one builds a structure called partition list

that records the number of objects at each time interval. The

partition list, represented by a binary tree, contains a sequence

of called elementary intervals, which are obtained by sorting

the endpoints of argument intervals. Each pair of consecutive

endpoints defines an elementary interval. Next, for each child,

we access the partition list to update counters. In the end,

we build CovNumSeq on the partition list. The structure P
maintains intermediate results and contains a set of elements

in the form of (nid, p), where nid is a node id and p is a

partition list.

Fig. 4. An outline of the solution

Definition 4 Partition list

Let p ∈ Dmint be a partition list built on data objects in

which each element consists of a time interval and a counter

representing the number of objects during the interval.

We build a partition list to maintain CovNumSeqs of each

accessed node and progressively update the structure by values

of its child nodes. Depending on whether a leaf node or a non-

leaf node is processed, different procedures are executed. A

partition list will become CovNumSeqs after the completion

of the algorithm. We give the main algorithm in Algorithm 1.

B. Processing Leaf Nodes

Given a leaf node, we scan all data objects and insert start

and end time points with counters into the partition list. All

counters are initialized to be 0. For each object, we access the

partition list to update the counter at each time point contained

by the object. A time point may be contained by several data

objects and the counter increases as each object is evaluated.

Next, we merge consequent time points if their counters are the

same. This is to reduce the length of the partition list. Later,

data objects in non-leaf nodes will be processed by traversing

the partition list to update the counters. The smaller the list

is, the smaller cost will be. In the end, we build the coverage

number sequence and return the result. The algorithm is given

in Algorithm 2.

Example 4. Figure 5 illustrates the procedure of calculating

CovNumSeq for N1. The node contains four objects and the

partition list is initialized first. Then, the counter at each time



Algorithm 1 Cov

Input: R: a 3D R-tree;

P : an auxiliary structure;

nid: query node id.

Output: cov

1: N ← GetNode(R, nid);

2: if N is a leaf node then

3: return Cov Leaf (N , P); ⊲ Algorithm 2

4: else

5: for all N [i] do ⊲ build the partition list

6: Cov(R, P , N [i]); ⊲ process child nodes

7: for each (t, c) ∈ P [N [i]].p insert (t, 0) into

P [N ].p;

8: for all N [i] do ⊲ update counters

9: let 〈ts, ..., te〉 be all endpoints contained by N [i];
10: for all ([ts, ts+1], c

′) ∈ P [N ].p do

11: find ([ts, ts+1], c) ∈ P [N [i]].p and update c′

← c′+c;

12: calculate cov on P [N ];
13: return cov;

Algorithm 2 Cov Leaf

Input: N : a leaf node;

P : an auxiliary structure.

Output: cov

1: p ← ∅;
2: for all objects in N [i] do ⊲ initialize the partition list

3: let ts and te be start and end points of N [i];
4: p ← (ts, 0), p ← (te, 0);

5: for all objects in N [i] do ⊲ update counters

6: for all endpoints contained by N [i] do

7: find the corresponding p[i] and update p[i].c++;

8: for all p[i] do ⊲ merge time points

9: if p[i+ 1].c = p[i].c then

10: remove p[i+ 1];

11: P ← (N , p);

12: build cov on the partition list p;

13: return cov;

point is updated. For simplicity, we only provide the start

point of an interval in the partition list since the end point is

equivalent to the start point of its consequent interval. There

are two objects between [t1, t2) and [t4, t5), and only one

object exists during other time intervals. Next, we merge two

intervals [t2, t3) and [t3, t4) into [t2, t4) as the counters at

the two intervals are the same. This is done by removing (t3,

1) from the partition list. Finally, we build CovNumSeq and

return cov = <([t0, t1), 1), ([t1, t2), 2), ([t2, t4), 1), ([t4, t5),

2)> as the result.

C. Processing Non-leaf Nodes

We build CovNumSeq for each child node during which

the partition list is created. If the child node is still a non-

leaf node, the procedure traverses down the tree until the leaf

(a) partition list (b) update counters

Fig. 5. Build cov for N1

level (lines 5-7 in Algorithm 1). Then, for each child node

we update the counter for each (t, c) in the partition list. The

counter is increased by iteratively adding the number of objects

at t for each child (lines 8-11 in Algorithm 1). After merging

CovNumSeq of a child node into that of the parent node, we

release the space maintained for the partition list as the value

for such a child node has been determined already. Finally,

we compute CovNumSeq based on the partition list.

Example 5. Consider building CovNumSeq for Nr, as

illustrated in Figure 6. For each partition list of its child node,

i.e., {p(N1), p(N2), p(N3)}, we insert time points into p(Nr)
and receive p(Nr) = <(t0, 0), (t1, 0), (t2, 0), (t3, 0), (t4, 0),

(t5, 0)>. Next, the counter at each time point is updated by

adding the values of child nodes. The dashed line in Figure

6 shows the result after processing p(N1) and the solid line

indicates the final result.

Fig. 6. Build cov for Nr

D. Applying to Octree

Algorithm 1 also applies to Octree [15] which is a three-

dimensional analog of quadtree. The space is recursively

divided into cubes in an adaptive way and data objects will be

inserted into corresponding cells. However, the procedure of

processing nodes in Octree differs from that of processing an

R-tree in two aspects: (i) The node capacity of non-leaf nodes

in R-tree is determined by block size, but the node capacity of

non-leaf nodes in Octree is 8; (ii) To build a compact structure,

an Octree defines a threshold to restrict the minimum number

of data objects in a leaf node. As a result, leaf nodes without

containing enough data objects will be merged into the parent

node and become virtual nodes which will not be processed

for computing coverage number sequences. For these merged

leaf nodes, CovNumSeqs are retrieved in the parent node.

V. THEORETICAL ANALYSIS

Given a query node, let covi be CovNumSeq of the ith child

and cov1,i (i ∈ {1, ..., f}) be CovNumSeq aggregated from

cov1 to covi, respectively. We use |cov| to return the number

of time points and have



|cov1,i| ≤ |cov1,i−1|+ |covi| (1)

Let us consider a leaf node. cov1,2 is built on the first two

objects and has 4 time points at most. Since time points in

covi may not exist in cov1,i−1, inserting covi into cov1,i−1 will

create time points at which the number of objects changes. The

procedure of determining CovNumSeqs is in fact calculating

cov1,f (f is the node capacity). One starts from the first two

objects to achieve cov1,2 and then inserts cov3 to achieve

cov1,3. Repeat inserting covi into cov1,i−1 until the f th object

is processed. The time cost is measured by the number of

processed time points.

Time complexity. Given an R-tree node located at level h,

we need O(fh · favg) time to compute CovNumSeq in which

favg is the average number of time points contained by an

object in a leaf node.

Proof

Leaf nodes. We have h = 1. Building the partition list

requires O(f · log f) time as each time point is inserted into a

binary tree, resulting in O(2·f) time points. Updating counters

takes O(f ·(log f+favg)) time as we need O(log f) time to find

the start point in the partition list for a data object and then

iteratively update favg counters. Merging time points needs

O(f) time as all time points are accessed once. To sum up,

we need O(f · (log f + favg) time in total.

Non-leaf nodes. The ith child node of a non-leaf node

N is denoted by N [i]. To compute cov(N ), we calculate

cov(N [i]) for each child, insert time points contained by N [i]
into the partition list and update the counters. The time costs

of building cov(N ) and cov(N [i]) are denoted by Cost(N ) and

Cost(N [i]), respectively.

Cost(N) =

f · (Cost(N [i]) + |cov(N [i])| · log(f · |cov(N [i])|))
(2)

|cov(N [i])| = fh−1 · favg (3)

⇒ Cost(N) =

f · (Cost(N [i]) + fh−1 · favg · log(f
h−1 · favg))

⇒ Cost(N) =

f · Cost(N [i]) + f · favg · log(f
h−1 · favg)

if h = 2,

Cost(N [i]) = f · favg ⇒ Cost(N) = f2 · favg

if h = 3,

Cost(N [i]) = f2 · favg ⇒ Cost(N) = f3 · favg

⇒ Cost(N) =

f · fh−1 · favg + fh−1 · favg · log(f
h−1 · favg)

= O(fh · favg · (1 +
(h− 1) · log f · favg

f
))

= O(fh · favg)

�

We analyze favg as follows. The lower bound is straightfor-

ward favg = 2 because each object at least contains two time

points. Consider the upper bound.

Lemma 1 The upper bound for favg is f + 1.

Proof We prove that (i) favg = f + 2 is not possible and (ii)

favg = f + 1.

Case (i): This is proved by contradiction. Let [xl, xr) be the

time interval of an object which contains f + 2 time points.

By removing endpoints xl and xr, the rest f time points are

denoted by <x1, ..., xf>, as demonstrated in Figure 7(a).

Consider the object containing x1 as one of endpoints. Since

the object contains f + 2 time points, the other endpoint

can only be located at xr+1 > xr. This is because if the

other endpoint is smaller than xl, there will be f time points

located on the left of xl (the object contains f + 2 time

points). The object already contains <x1, ..., xf>. Then, the

overall number of time points will be f + f + 2, contradicting

the condition that f objects can have 2 · f time points in

maximum. If the other endpoint is located between [x2, xr),
the object cannot contain f + 2 time points. Repeating the

same inference for {x2,...,xf}, there will be {xr+2,...,xf} time

points on the right of xr. As a result, there will be f + 2 +

f time points. This contradicts the condition that f objects

can have 2 · f time points in maximum. Case (ii): f objects

are distributed in such a way that each object contains f + 1

points among which f - 1 points come from the other objects,

as illustrated in Figure 7(b). �

(a) favg = f + 2 (b) favg = f + 1 (f = 4)

Fig. 7. The upper bound for favg

Let Favg = {2, 3, ..., f + 1} be the set of all possible values

for favg. We analyze the probability of each value, denoted

by P (Favg). The value depends on two factors: (i) the overall

number of time points and (ii) the distribution of time point. If

favg = f , the overall number of time points cannot be smaller

than f . If the overall number of time points is 2 · f , favg can

be small (e.g., 2, the case that no two objects intersect) or

large (e.g., f + 1). Given f objects, the number of time points

belongs to F = {2, ..., 2 · f} and the probability of each case

is denoted by P (F) = 1

2·f−1
.

Lemma 2 Given f objects each of which contains favg time

points, the overall number of time points is at least 2· favg -

2.

Proof Let [xl, xr] be an object containing favg points, denoted

by {xl, x1, ..., xfavg−2, xr}. Consider the object containing x1

as the endpoint. If the other endpoint is located at xl−1 < xl,

there will be favg - 2 time points on the left of xl, resulting in

favg - 2 + favg time points. If the other endpoint is located at

xr+1 > xr, we have one more point besides favg time points.

Repeating the same procedure for x2, ..., xfavg
, we have favg



- 2 endpoints > xr . Thus, there will be at least favg + favg -

2 time points. �

Let Count(t) and c be the average number of endpoints

contained by an interval and the average number of alive

objects at a time point overall the dataset, respectively. Given

a set of n objects, the number of endpoints is between O(2)
and O(2 · n). Theoretically, we have Count(t) ∈ {2, ..., n +

1} and c ∈ {1, ..., n}. The lower bound is simple. Consider

the upper for Count(t). This occurs when the data follows the

distribution in Figure 7(b). The upper bound for c occurs when

interval endpoints are identical to each other. Based on Lemma

2, we derive some values of P (Favg) as follows.

P ({f, f + 1} ⊂ Favg) = P (F) ·
2

f − 1

= P ({2f − 2, 2f − 1, 2f}) ·
2

f − 1

=
3

2 · f − 1
·

2

f − 1

(4)

P ({2, ...,
f

2
} ⊂ Favg) = P (F) ·

1

2

= P ({2, ..., f − 2}) ·
1

2
=

f − 3

2 · f − 1
·
1

2

(5)

A summarization of complexities of our solution and alter-

native methods is provided in Table I 1. In a database system,

f is determined by block size and is usually between some

dozens and a hundred. According to Equations (4) and (5),

the probability for a large value favg is low and in most

cases small values appear. For example, by setting f = 50,

we have P ({f, f + 1}) = 6

4851
= 0.1% and P ({2, ..., f

2
}) =

47

198
= 23.7%. To conclude, in quite a few cases (favg ∈ {f ,

f + 1}) our solution achieves the same performance as [12],

but in most cases our solution significantly outperforms the

existing technique as favg is a small value, e.g., 2 or 3. We

will demonstrate this in the experimental evaluation.

TABLE I
TIME COMPLEXITIES OF COMPUTING COVNUMSEQS

Cov O(fh · favg)
SB-tree [25] O(fh−1 · c · log fh)

SegB+-tree [4] O(fh · c · log fh)

BTA [5] O(fh · Count(t) · log fh)

NN [12] O(fh+1)
f is the node capacity and h is the tree height.
c is the average number of objects at a time point.

favg ∈ {2,..., f +1} and c ≫ Count(t), c ≫ f .
Consider N2 in Figure 2(b). o1 contains 4 points and

o2 contains 3 points, resulting in favg = 4+3

2
= 3.5.

Count(t) is the average number of time points
contained by an object overall the data set.

Note that if we compare log f and favg, it is possible that

log f < favg or log f > favg because of favg ∈ Favg = {2,

1Due to space limitation, the analysis of alternative methods is omitted.
Details refer to our manuscript: link

3, ..., f + 1}. The value f depends on the block size of the

system setting. f could be adjusted by us. In our experiment,

the block size is set to 4k and log f = 5. When the block size

is set to a larger value, log f will increase. A linear increase

of the block size could lead to a log scale increase of log f .

E.g., f = 48 × 4 and log f = 7. Theoretically, we could set

parameter f (by setting an appropriate block size) such that

log f < favg. In practice, we have log f < favg ∈ {2, 3, ...,

f + 1} in majority cases. To sum up, the time complexity for

computing an arbitrary node is O(fh · favg) in which h is the

node level (h = 1 for a leaf node).

Lemma 3 Storage overhead

Given an R-tree node located at level h, the storage over-

head of CovNumSeqs is O(fh · λ) in which f is the node

capacity (h = 1 for leaf nodes) and λ denotes the physical

storage size for time points, integers and other variables.

Proof The storage size of a node depends on the number of

time points since the counter for each time point is recorded.

A node located at level h contains O(fh) data objects. �

For a leaf node, the lower and upper storage bounds are

Ω(2 · λ) and O(f · λ), respectively. The lower bound occurs

when all data objects in the leaf node have the same endpoints.

VI. UPDATE

We support processing new arrival trajectories for on-line

applications. One first inserts new trajectories into the index

structure and then updates CovNumSeqs. We apply the sort-

based bulk load approach [6] to update the index structure.

The updating task for CovNumSeqs involves two parts: com-

puting CovNumSeqs for nodes containing new trajectories

and updating CovNumSeqs for nodes in the existing structure

affected by new trajectories. Specifically, the procedure works

as follows: (i) a subtree is built to store new trajectories,

CovNumSeqs for each node in the subtree are calculated and

then appended to the list of CovNumSeqs. (ii) the subtree is

inserted into the existing structure by inserting the root node

of the subtree as an entry into an appropriate node of the

index for the historical data. (iii) CovNumSeqs for each node

in the inserting path are updated, resulting in processing both

existing and new trajectories. The path starts from the root

node of the historical index and ends at the node into which

the subtree is inserted.

Lemma 4 Complexity of a single update.

Given a new arrival trajectory, we need O(f ·favg+H) time

to update CovNumSeqs. The time cost includes inserting the

trajectory into the index structure and updating CovNumSeqs

for all related nodes.

Proof Assume that the new trajectory is put into one leaf node.

We require O(f · favg) time to compute CovNumSeq for the

leaf node. Inserting the new leaf node into the existing R-tree

needs O(H) (H is the tree height) and update CovNumSeqs

needs O(H) as each node in the path is processed. To sum

up, the overall time complexity is O(f · favg +H). �



Lemma 5 Complexity of updating by bulk load.

Given a group of O(f) new arrival trajectories, we need

O(f · (log f + favg + H)) time to update CovNumSeqs. The

time cost includes (i) inserting new trajectories into the index

structure and (ii) updating CovNumSeqs for all related nodes.

Proof (i): Sequentially putting O(f) trajectories into a leaf

node requires O(f) time. Then, We compute CovNumSeqs for

the node and have O(f ·(log f+favg)) time cost. (ii): Inserting

the new leaf node into the existing R-tree needs the time O(H)
(H is the tree height). Updating CovNumSeqs needs O(f ·
H) as all nodes in the path are processed and each contains

O(f) time points for updating the counters. This is because

new arrival trajectories have O(f) time points overlapping

with the historical data space. To sum up, the overall time

complexity is O(f · (log f + favg +H). �

VII. WINDOW AGGREGATE QUERIES

The basic method traverses the spatio-temporal index to

look for objects fulfilling the condition. Trajectories may

be split because only pieces of movements falling in the

query window contribute to the result. Then, one performs

the aggregation over qualified trajectories. Finally, k intervals

with the minimum number of objects are returned.

A. Utilizing CovNumSeqs

We provide the algorithm in Algorithm 3, named Win-min-

Cov. By utilizing CovNumSeqs, if a node’s bounding box

is contained by the query window, all objects in the node

contribute to the result and CovNumSeqs are used to report

the value. One does not require to traverse the index in a top-

down manner to leaf nodes to retrieve data objects and perform

the aggregation.

However, there are still some drawbacks that inhibit the

performance: (i) The number of nodes whose bounding boxes

are contained by the query window may be small because this

depends on the size and location of the query window. If only

a few nodes fulfill the condition, the effect of CovNumSeqs is

marginal and the performance is similar to the basic method.

(ii) If a large query window is issued, not only the number

of processed nodes becomes large but also the partition list

contains a large number of time points. Updating counters in

the partition list is a costly procedure as one needs to increase

the counters for all time points contained by the query interval.

Data objects are iteratively processed each of which incurs

updating counters at all involved time points. (iii) Calculating

accurate counters is a costly procedure if a large number of

objects. This motivates us to further optimize the procedure.

B. Enhancing the algorithms

We propose two strategies to further reduce the number of

accessed nodes: (i) performing an approximate calculation for

nodes whose spatio-temporal contents intersect the query and

(ii) initializing the maxheap as early as possible, and updating

the structure in a progressive way. The procedure consists

of three steps, as outline in Figure 8. Step 1 initializes an

extended partition list (see Definition 5) and reports a set of

Algorithm 3 Win-min-Cov

Input: R: a 3D R-tree;

p: the partition list on all elementary intervals;

Cov: CovNumseqs; q: query parameter.

Output: Covq
1: L ← R.Root;

2: restrict p according to q.t ;

3: while L is not empty do

4: N ← GetNode(R, L.top());
5: if box(N ) is contained by q then

6: update p by Cov(N );

7: else

8: if box(N ) intersects q then

9: if N is a leaf node then

10: for all object N [i] do

11: update p by N [i] and q;

12: else

13: for all entry in N do

14: put N [i] into L;

15: Initialize Covq by a maxheap with the size q.k;

16: for all (t, c) ∈ p do

17: if |Covq| < k then

18: Covq ← (t, c);
19: else

20: if c < Max(Covq) then

21: update Covq by (t, c);

22: return Covq;

leaf nodes whose bounding boxes intersect the query window.

We provide the framework in Algorithm 4.

Fig. 8. Three steps of answering the query

Algorithm 4 Win-min-CovOP

Input: R: a 3D-Rtree; Cov: CovNumSeqs;

p∗: extended partition list; q: query parameter;

Gap: an auxiliary structure

Output: Covq

1: Nl ← TraverseIndex(R, Cov, p∗, q, Gap); ⊲ step 1

2: Covq ← Initialize(Nl, p
∗, q); ⊲ step 2

3: return Refine(Covq , Nl, p
∗, q); ⊲ step 3

Definition 5 Extended partition list

The extended partition list is denoted by p∗ = <([t1, t2), c,
c′), ..., ([tn−1, tn), c, c

′)> in which each element maintains

two counters c and c′ recording the number of objects and the

number of leaf nodes in a time interval, respectively.

Example 6. The extended partition list p∗ for Nr is provided

in Figure 9. During [t0, t3), all leaf nodes {N1, N2, N3} have



objects whose time intervals intersect with [t0, t3) and we have

c′ = 3 at [t0, t1), [t1, t2) and [t2, t3). During [t3, t4), only

objects in N1 and N3 are defined, resulting in c′ = 2 at [t3,

t4). During [t4, t5), only objects in N1 are defined, resulting

in c′ = 1 at [t4, t5).

Fig. 9. Example of p∗ in the root node Nr

The counter c′ actually denotes the minimum number of

objects in a time interval. A leaf node contains O(f) objects

and is counted as long as one of its data objects is defined in

the time interval. Retrieving such a value does not incur any

I/O cost as the node is not opened to retrieve data objects.

For time intervals that do not contribute to the result, it is

not necessary to obtain the accurate value if the approximate

result is sufficient. We set counters in p∗ for non-leaf nodes

in the following two cases: (i) if the node’s bounding box is

contained by q, we utilize CovNumSeqs to set the counters;

(ii) if the node’s bounding box overlaps q, we access its child

nodes.

The procedure TraverseIndex follows the same step as

Algorithm 3 but processes leaf nodes in a different way. If

a leaf node is encountered, we put it into a priority queue

Nl and process the node later (opened or pruned). Nodes in

the queue are increasingly sorted by time. If a leaf node’s

bounding box is contained by q, there will be at least one

object during the query time and we update the counter c′ in

p∗. A leaf node may contain a gap meaning that there is a time

interval during which no object exists. In this case, one cannot

update the counter for the overall time but only these pieces of

intervals at which objects are defined. The auxiliary structure

Gap stores valid time intervals for all leaf nodes containing

gaps. This is computed off-line. For on-line applications, the

structure is computed when all data objects are inserted into

a leaf node. This is because we can only determine whether

there is a gap in the node when all data objects are inserted.

If yes, the created structure is appended to the list.

Example 7. Consider a new trajectory arriving at the leaf

node N4 whose start time point is t7, see Figure 10. There

is no object between [t6, t7). If the bounding box of N4 is

contained by the query window, there will be at least one

object at [t3, t6) and [t7, t9) but not the overall interval [t3,

t9). Therefore, we increase c′ at [t3, t6) and [t7, t9) rather

than [t3, t9).

Step 2 calls Algorithm 5 which processes leaf nodes in the

priority queue Nl. The task includes (i) updating the value c
in p∗ for part of the query time, e.g., 10%, and (ii) building a

Fig. 10. Example of Gap

maxheap Covq with the size k. The cost of setting the counters

overall the query time is high for a large query window.

Therefore, we at first perform the calculation for part of the

time and process the rest of them in Step 3. Since the number

of leaf nodes is usually large, we do not open all of them

but only take the first k leaf nodes such that there will be

enough objects to initialize the maxheap. The top element in

the maxheap is denoted by Max(Covq).

Algorithm 5 Initialize

Input: Nl: a priority queue;

p∗: extended partition list;

q: query parameter.

Output: Covq

1: set a threshold t∗; ⊲ for calculating the accurate value

2: while T (Nl) < t∗ do

3: open each leaf node to update counters in p∗;

4: Covq ← ∅;
5: for all p∗[i].t1 < t∗ do

6: if |Covq| < q.k then

7: Covq ← p∗[i];
8: else

9: if p∗[i].c < Max(Covq) then

10: update Covq by p∗[i];

11: return Covq;

Step 3 visits the list p∗ to sum up two counters for each

p∗[i] during which either (i) leaf nodes whose bounding boxes

intersect the time interval are opened to retrieve data objects

such that the accurate number of objects is computed or (ii) the

element is skipped if the number of objects from two counters

is larger than the top value in the maxheap. If p∗[i] is pruned

according to Lemma 6, we will not access leaf nodes as the

time interval cannot be in the result. Otherwise, we open leaf

nodes and update counters in the maxheap. Since objects in p∗

and Nl are ordered by time, they are scanned once to report

the result.

The enhanced method opens a few leaf nodes to initialize

the maxheap and does not access nodes (i) whose bounding

boxes are contained by the query and (ii) pruned by Lemma

6.

Lemma 6 We prune p∗[i] if p∗[i].c + p∗[i].c′ ≥ Max(Covq).

Proof p∗[i].c and p∗[i].c′ record the numbers of objects and

leaf nodes, respectively. Since there is at least one object in a

leaf node, the overall number of objects is at least p∗[i].c +



Algorithm 6 Refine

Input: Covq: maxheap; Nl: priority queue;

p∗: extended partition list; q: query parameter

Output: Covq
1: for all p∗[i] do

2: if p∗[i] is not pruned then ⊲ Lemma 6

3: for all nodes T (Nl) intersecting p∗[i] do

4: retrieve objects to update counters in p∗[i];

5: if p∗[i].c < Max(Covq) then

6: update Covq by p∗[i];

7: return Covq;

p∗[i].c′, which cannot be smaller than Max(Covq). Thus, p∗[i]
will not update Covq. �

Example 8. Suppose that the query is q(r, [t1, t4), 1) and

leaf nodes {N1, N2, N3, N4} are returned after step 1, as

demonstrated in Figure 11. At step 2, we use t∗ = t2 to set

the counters in p∗ such that N1 and N2 are opened. After

performing the aggregation over cov(N1) and cov(N2), we

have 4 objects at [t1, t2) and 2 objects at [t2, t3), respectively.

We process all p∗[i] < t∗ (t∗ = t2) and build the maxheap with

one element ([t1, t2), 4). At step 3, we process the elements

in p∗. There are 2 leaf nodes {N3, N4} whose time intervals

are contained by q during [t2, t3). The interval [t2, t3) will

be omitted according to Lemma 6. Consequently, N3 is not

accessed. The next interval in p∗ is [t3, t4). As the counter is

smaller than Max(Covq), we access the leaf node N4 to update

the counter.

(a) step 1

(b) steps 2 and 3
Fig. 11. Example of the procedure

VIII. EXPERIMENTAL EVALUATION

We implemented the proposal in C/C++ and performed the

evaluation in SECONDO [11]. A desktop PC (Xeon(R) E5-

2620 v4, 2.1GHz, 64GB memory, 2TB hard disk) running

Ubuntu 14.04 (64 bits, kernel version 4.4.0) is used.

A. Setup

R-tree and Octree are built on trajectory data produced from

GPS records of Beijing and ShangHai taxis [1], named BT

and ST, respectively. The statistics of data sets and R-tree

are reported in Table II. The R-tree node capacity is f = 49

and the split threshold of Octree is ϕ = 80. We also report

Count(t) and c in the experimental data sets, which confirm

the superiority of our approach (c ≫ Count(t), c ≫ f ). They

are used to express time complexities in Table I.

TABLE II
DATA SETS AND SETTINGS

Name #Objects #Endpoints H # Nodes Count(t) c Avg(T (o)) (sec)

BT1 663,849 6,942 4 13,980 23 2,091 84.6

BT2 1,082,450 15,487 4 22,714 33 2,257 58.58

BT3 2,908,990 44,224 4 60,777 41 2,661 58.58

BT4 5,565,884 71,235 5 124,075 49 3,974 53

BT5 11,629,616 84,223 5 242,288 53 7,130 53

ST 18,098,030 82,739 5 377,252 25 5,196 25

The distributions of favg. We randomly selected 500 leaf

nodes and report favg in Figure 12. The results demonstrate

that in most cases favg is smaller than 10 and 20 for 3D R-tree

and Octree, respectively. This is consistent with the analysis

in Section V. That is, the probability of an object containing

a large number of time points is low. As a result, the time

complexity of Cov in practice is O(fh · favg) ≈ O(fh).
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Fig. 12. favg values over 500 leaf nodes (BT5)

Storage size. We report the storage overhead of CovNum-

Seqs and index structures in Figure 13. The storage cost of

CovNumSeqs depends on the number of time points contained

by data objects in the node. Octree has much less storage

overhead than R-tree because each non-leaf node of Octree

only contains 8 entries (≪ f ).
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Fig. 13. Storage overhead

Effect of fill factor and node capacity. We report the

experimental results in Figure 14. The performance is slightly

affected by fill factor because the R-tree is built by bulkload.

That is, the majority of nodes are full after creating the

index except that in some leaf nodes a few objects are

stored due to the spatio-temporal deviation. When the node

capacity decreases, the number of nodes increases and thus

the evaluation involves calculating more nodes than before,

decreasing the performance.
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Fig. 14. Effect of Index parameters

B. The evaluation of CovNumSeqs

We do the performance evaluation by comparing Cov with

four alternative methods: (i) NN [12], (ii) BTA [5], (iii) SB-

tree [25] and (iv) SegB+-tree [4]. We set the root node to

be the query node to compute CovNumSeqs for the overall

structure. If an arbitrary node is requested, we randomly select

one among the set of all nodes and report the average cost over

20 nodes as the final result.

Scaling the data size. We calculate CovNumSeqs for all

nodes in R-tree and Octree and report the time costs in Figure

15. Our solution processes O(favg) time points (favg ∈ {2, ...,

f}) for each aggregation operation rather than O(f) in NN.

In the worst cast, we have favg = f but the probability is low.

BTA is competitive for small data sets but the performance

decreases significantly for large data sets. This is because one

needs to perform the aggregation for a parent node over a

list of balanced trees built from child nodes. In particular, the

balanced tree becomes quite large for nodes located at high

level, resulting in processing a large number of nodes and

data objects. In contrast, there is no overhead of building and

traversing balanced trees in our proposal. We build a partition

list in advance and progressively update the structure to main-

tain CovNumSeqs when traversing the subtree rooted in the

query node. We reduce the size of the partition list by merging

time points at which the numbers of objects are the same.

This enhances the performance of looking for endpoints to

update counters. The approach SegB+-tree cannot efficiently

determine which (leaf or non-leaf) node an object belongs to

(also SB-tree). One first finds data objects overlapping the

query interval and then determines data objects belonging

to the R-tree node. The procedure iteratively evaluates data

objects overlapping the endpoints intersecting the query. The

higher level the node is located at, the more data objects are

processed. Another interesting finding is that the time cost for

an Octree is higher than that for an R-tree. This is because an

Octree leaf node contains more data objects (ϕ = 80) than an

R-tree (f = 49).

CovNumSeq for one node. We report the costs in Figures

16 and 17, respectively. In all settings, our method achieves

the best performance.

Effect of node height. We randomly selected 20 nodes at

each level (if there are enough nodes, otherwise we select

all) and report the average time cost in Figure 18. The time

increases accordingly when nodes are located at high level.

This is because the number of data objects becomes large for
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Fig. 15. Scalability evaluation (Beijing taxis)
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Fig. 16. Performance of querying one node (R-tree)
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Fig. 17. Performance of querying one node (Octree)

nodes at high level, e.g., the root node. In all cases, our method

achieves the best performance.
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Fig. 18. Nodes at different levels (h = 1 for leaf level)

C. Update Evaluation

The update cost includes two parts: (i) calculating CovNum-

Seqs for updated nodes; and (ii) inserting CovNumSeqs of

updated nodes into the existing structure. We report the time

cost and the updating rate in Figures 19 and 20, respectively.

The overall running time includes I/O cost and CPU time

since CovNumSeqs are disk-resident structures. Majority of

the time is for part (ii) because CovNumSeqs for each node

in the inserting path are updated. Time intervals of new arrival

objects usually overlap with time intervals of historical data.

Thus, CovNumSeqs for time points contained by both histor-

ical and new objects are updated. This results in recalculating

CovNumSeqs for a branch of the structure. If the historical



data size is large, updating the structure is a costly procedure.

Although the number of updating objects increases several

orders of magnitude, the time cost only increases marginally.
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Fig. 19. Update performance
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Fig. 20. Arrival rate

D. Window Aggregate Query Evaluation

We evaluate the performance by comparing with (i) Basic

and (ii) Win-min-Cov 2. The spatio-temporal query window is

generated as follows. First, we determine the overall range for

each dimension, that is, minimum and maximum values for

x, y and t. Second, the size of each dimension in the query

is determined according to the defined setting q.r and q.t ∈
{0.01, 0.05, 0.1, 0.2, 0.5}. For example, if the overall time is 2

hours, the setting of 0.01 means a query interval representing

2 × 0.01 = 0.02 hours. Third, for each dimension in the query

we randomly select the start point in the domain and set the

end point by adding the size calculated in the second step. The

value of each dimension in the query window is defined by

the ratio of the query size to the size of the overall dimension

and the result is averaged over 20 runs.

As provided in Figure 21, there is no obvious performance

difference among the three methods when q.r and q.t ∈ {0.01,

0.05, 0.1, 0.2}. A small query window involves evaluating a

few nodes and the number of processed nodes by the three

methods is almost the same. When the query window increases

up to 0.5, the cost of our algorithm is almost half of the

other two methods. This demonstrates that our optimization

technique effectively prunes the search space for a large query

window. According to experimental statistics, the ratio of

nodes contained by the query box to nodes intersecting the

2The aggregate R-B-tree [18] can be adapted to our problem and the method
is similar to Win-min-Cov. The aggregate information of each R-tree node is
maintained by a B-tree. Entries in the B-tree are of the form (t, c) in which t
is a time point (the key) and c is the number of objects at t. Two consecutive
entries (ti, ci) and (ti+1, cj) mean that there are ci objects between [ti,
ti+1) and the value changes to cj at ti+1.

query box is only 19% when the size of the query window

is 50%. In this context, Win-min-Cov is sub-optimal because

the number of nodes without accessing is small, which is

consistent with our analysis in Section VII-A.
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Fig. 21. Effect of scaling the query window (BT5)

We report the effect of k and scalability evaluation in

Figures 22 and 23, respectively. The parameter k does not

have a significant impact on the performance. The cost of all

methods is not sensitive to k, but our method still achieves the

best performance. The results of scalability evaluation show

that our proposal outperforms alternative methods by a factor

of 2 in the largest dataset (BT5 containing 11M objects).
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Fig. 22. Effect of scaling k (BT5)
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Fig. 23. Scalability evaluation (q.r = 0.5, q.t = 0.5, k = 10)

IX. CONCLUSION

We propose an efficient method to calculate coverage num-

ber sequences over R-tree and Octree. A thorough theoretical

analysis is provided. The coverage number sequence is utilized

to answer window aggregate queries. A comprehensive exper-

imental evaluation is conducted to confirm the superiority of

our proposal over other solutions. One interesting task in the

future is to investigate window threshold queries that report

areas containing a certain number of objects objects during

the query time.
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