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Abstract—Given a massive dataset, data visualization (DV)
could efficiently express the insights and summaries behind the
massive raw data by employing vivid visual representations. To
create suitable DVs, users are required to get a comprehensive
understanding of the raw data and then transfer their ideas
into DVs by composing a suitable and accurate specification
in some declarative visualization languages (DVLs, e.g., Vega-
Lite). A specification is a JSON object defining the properties
of the DVs, like the selected data, the transformations, the visual
details, and so on. Due to its complicated grammar and details,
DV has quite a steep learning curve, even for data analysts. In
this paper, we propose a new task named FeVisQA, referring to
Free-form Question Answering over data Visualizations. More
specifically, given a raw dataset, a related DV (in the form
of a specification), and a question, FeVisQA aims to predict a
textual answer automatically. As a particular case of the general
CodeQA (i.e., QA over general programming code like Python
and Java) task, FeVisQA enables people to better comprehend
data and its DVs by conducting logical reasoning when answering
these questions. Since FeVisQA has not been studied in the
literature, we first construct a benchmark dataset containing 152
datasets, 14,406 DVs, and 83,890 QA pairs. To tackle this new
task, we design a novel neural network named FeVisQANet with
advanced multi-modal encoder and adaptive decoder structures,
and we also design a novel multi-step framework called VisQA
for Multi-modal Large Language Models (MLLMs) based on
Retrieval-augmented Generation (RAG) technology. Extensive
experiments on our constructed datasets validate the rationale
and effectiveness of this proposed FeVisQA task and the proposed
model. While research on QA over text and table, machine
reading comprehension, and CodeQA develops rapidly, prior
works have yet to draw attention to question-answering over
DVs. This study connects two important subareas, QA from the
natural language process area and DV from the data engineering
area. We hope this new dataset and model can serve as a helpful
benchmark that would benefit the development of both fields.

Index Terms—Question-Answering, CodeQA, Data Visualiza-
tion, Vega-Lite, FeVisQA, Declarative Visualization Languages

I. INTRODUCTION

Data Visualizations (DVs), following the adage “A picture
is worth a thousand words”, effectively convey insights from
massive datasets [2], [3]. Recently, a significant amount of
studies related to DVs has been extensively explored and
published in data engineering and database conferences such
as SIGMOD [4], VLDB [5], [6], TKDE [7]–[9] and ICDE
[10]–[14]. However, when facing a massive raw dataset, to
create suitable DVs, users need to define a visualization

A FEVISQASYSTEM system using the techniques described in this draft
was published as a demonstration paper at ICDE 2024 [1].

Question 1: What is the meaning of this DV? 
Answer 1: A line graph showing how the overall average Miles Per Gallon for how the 
MPG has changed over the years. 
Question 2: It this DV suitable for this dataset? 
Answer 2: Yes
Question 3: What is the meaning of the transform operation? 
Answer 3: The window transform is used to calculate the averaged MPG for vehicles over 
the years.

(a) A Car Dataset (b) A DV in Vega-Lite for the Car Dataset

(c) The Corresponding DV Chart 
Rendered by Vega-Lite Engine. 

Fig. 1: Examples showing three free-form questions over a DV
(Specification) in Vega-Lite and their corresponding answers
in the proposed FeVisQA task.

specification in some Declarative Visualization Languages
(DVLs, e.g., Vega-Lite [15]). A specification is usually in the
form of a JSON object that follows the grammar of some
DVLs. It includes many details and properties like the selected
data, the transformations, and the visual details. Fig. 1 shows
an example of a car dataset with a specification in the widely-
used Vega-Lite DVL. It should be noted that the specification
could be complicated with many details. To create good DVs,
users must not only understand their raw data deeply, but also
become experts in DVLs. The users must be very familiar with
the DVLs and, at the same time, achieve a deep understanding
of the raw data, to create feasible and suitable specifications.
This is just like how a programmer has to master a new
programming language to write code. These premises are like
how a programmer masters a new programming language.This
steep learning curve prevents many people from using and un-
derstanding data visualizations effectively, limiting the power
of DVs to help everyone learn from data.

To make data visualizations more accessible and under-
standable for everyone, not just experts, in this work, we



propose a new task named FeVisQA, referring to Free-form
Question Answering over data Visualization. More specifi-
cally, given a DV specification of a dataset and a question, the
objective of the FeVisQA task is to predict the corresponding
textual answer. FeVisQA could be considered to be a particular
case of the general CodeQA tasks [16], [17], which focus on
answering questions related to programming codes for source
code comprehension. Serving a similar goal of facilitating
programming learning in education, FeVisQA enables people
to better comprehend DVLs by conducting logical reasoning
when answering questions. To better illustrate, three QA ex-
amples over a DV specification in FeVisQA are also shown in
Fig. 1. By answering these reasoning questions, people could
better understand the data and the specification since these
questions usually require significant perceptual and cognitive
effort to obtain the final answers.

Since FeVisQA has not been studied in the literature, we
first construct a benchmark dataset to evaluate its rationale
and further promote the following research and development
of this field. This dataset is composed of various questions that
belong to three categories. The first kind concerns a given DV
specification’s general information (e.g., meaning). The second
kind justifies whether a DV specification is good or bad for
a given dataset. The third kind is about the details of some
given specifications.

After constructing the dataset, we must design models to
handle this task. We notice that CodeQA is a well-formed task
with a relatively long history. It has received unprecedented
attention recently, with many CodeQA models released from
the research community. For example, Liu et al. [16] pro-
posed a CodeQA dataset that contains QA pairs on general
programming languages (GPLs) like Java and Python. Then
they further designed several baseline methods to tackle this
CodeQA task. Lee et al. [17] released another CS1QA dataset
for educational purposes that include QA pairs with the codes
from students and the portion of the code relevant to answering
the question. While most of this effort has been spent on the
QA over GPLs, studies have yet to be conducted on QAs
dedicated to DVs, and DVLs have a distinctive nature that
differs from GPLs. To this end, FeVisQA aims to promote
understanding DVs (in terms of specification in DVLs). The
input of our model is the data, the DV (specification), and
the question, while none of the existing QA models achieve
this objective. Furthermore, rich information is encoded in the
multi-modal inputs in DV, and how to fully utilize them is still
an open question.

To alleviate the above-mentioned problems, we present a
multi-modal neural network named FeVisQANet for answer-
ing questions over DVs. FeVisQANet is equipped with a novel
multi-model encoder and an advanced adaptive decoder. In
particular, we first incorporate the dataset and the question
information by a dataset encoder. To better preserve the struc-
tural and multi-modal information from DV specifications, we
represent each DV specification into an Abstract Structural
Tree (AST), which follows a tree-like grammar that preserves
structural and contextual information. Then we employ a

Transformer-based structure to encode the AST information
into node embeddings. To generate accurate answers to dif-
ferent kinds of questions, we further propose an adaptive de-
coder to predict answers like long-form strings, numbers, and
boolean values. Extensive experiments over our constructed
dataset validate that our method could considerably improve
other strong baselines.

To further explore the application of multimodal large
language models (MLLMs) in the FeVisQA task, we de-
signed the VisQA framework, a multi-step framework that
includes Question Classification, Initial Answer Generation,
RAG(Retrieval-augmented Generation)-based Reasoning, and
Answer Validation and Correction. Specifically, for each nat-
ural language question input, we (i) use a FeVisQANet-based
classifier to categorize whether it is necessary to retrieve
relevant examples as contextual supplements and whether to
execute DVL to produce a DV chart as multimodal input;
(ii) construct a prompt based on the classification results,
which includes the possible example retrieval process and the
DVL execution process, and input the prompt into the LLM
to obtain the initial answer; (iii) retrieve relevant examples
(including question, DVL, and answer) based on the cosine
similarity of the input question and DVL, allowing the LLM
to generate the reasoning process for answering the question
by referencing the answers; (iv) use the reasoning process of
the relevant examples as guidance for the LLM to validate
and, if necessary, correct the initial answer.

Comparative evaluation of FeVisQANet and VisQA against
other baseline models demonstrates their superior perfor-
mance, achieving state-of-the-art (SOTA) results. Among
them, FeVisQANet performs slightly lower than VisQA but
still significantly outperforms other baselines, making it highly
suitable for resource-constrained scenarios.

This study is a good exploration that marries two important
subareas: QA from the natural language processing (NLP)
area and DV from the data mining area. We hope it will
inspire more cross-area research studies. In a nutshell, our
main contributions in this paper are summarized as,

• Being the first to propose this novel FeVisQA 1 task,
which focuses on Free-form Question Answering over
Data Visualizations. To validate the rationale of this
new task, we construct a benchmark dataset consisting
of different questions. This new task could help people
better comprehend the data and master how to create
suitable DVs, given massive raw data. This study can
serve as a useful research benchmark that significantly
enlarges the QA family.

• We design a novel neural network named FeVisQANet
for this new proposed task. FeVisQANet has advanced
encoders that can fully use the multi-modal information
expressed in DVs. Moreover, it employs an adaptive
decoder to generate various answers to questions of

1Our source code and FeVisQA dataset are
available at https://1drv.ms/f/c/80e862c5ba9a0a46/
EjPn1aYVMb5Mg5dbpd4jRRkBw2jHtdhMeWnpoa3UmWUlEw?e=8gzWDd



(b) The Statistics of the Proposed Datasets(a) The Dataset Synthesis Rules 

(c) The Distrubtion of the Quesions

NVBench Source Data

Bad Visualization Rules:

• Pie charts having many slices

• Bar charts with too many categories

• Chart except scatter with two 

qualitative variables

• …

Database: flight_1 
Table: flight

destination distance

…
Boston 2606

Chicago 1749

… …

Honolulu 2551

{  "data": {"url": "data/flight.json"},
"mark": "bar",
"encoding": {

"x": { "field": "destination "},
"y": {"aggregate": “count"}}

}

(a) Dataset

(b) Data Visualization

(c) NL Description

Show the number of flights in each 
destination city with a bar chart.

Context-Free Grammar For Synthesis

• Is any equal value of y-axis in the chart?

• What is the maximum value of y-axis about {classify}?

• What is the total number of {y_name}?

• How many lines are there in the chart?

• …

(1) Type1 QA:

Question: What is the meaning of this DV?

Answer: Show the number of flights in each 

destination city with a bar chart.

(2) Type2 QA

ü Positive one from source data

Question: Is this DV suitable for this given 

dataset?

Answer: Yes

ü Negative one changed from positive one 

according to the rules

     Question: Is this DV suitable for this given 

 dataset?

Bad Visualization 
Generation

"x": { 
"field": 

"distance"
}

(3) Type3 QA

Question: What is the total number of count 

(destination)?

Answer: 18

Generated Data from 
the source data

Answer: No

Fig. 2: The methods and data sources used to construct the FeVisQA dataset, and the statistic of our constructed dataset.

different kinds. These new structures guarantee the final
inference performance of the whole network.

• We designed a multi-step LLM-based framework, VisQA,
which leverages RAG technology and a DNN-based clas-
sification model to fully utilize the capabilities of MLLMs
in the FeVisQA task.

• We conducted extensive experiments on our proposed
dataset and compare it with other strong baselines. The
results show that our proposed FeVisQANet model and
VisQA framework could perform better than several
strong counterparts.

The rest of this paper is organized as follows: we first intro-
duce some concepts and the problem definition in Section II.
Then we discuss the details of our proposed FeVisQANet
mechanism, including the data creation process and the net-
work structure in Section III. The experimental setup and
results are listed in Section V, followed by the related work
in Section VI. Finally, we conclude the work in Section VII.

II. PROBLEM FORMULATION AND DATASETS

In this section, we first introduce some preliminary concepts
that could improve the understanding of the following work.
These concepts can be divided into three categories, DV, the
proposed FeVisQA task, and the released datasets.

A. Concepts on Data Visualization

Declarative Visualization Language (DVL). A DVL defines
the properties of a DV, including features like chart type,
color, size, mapping function, and properties for marks such
as canvas size and legend. Commonly used DVLs in the
market include Vega-Lite [15], ggplot2 [18], ECharts [19],
and VizQL [20]. Our analysis mainly uses the Vega-Lite
due to its popularity and wide usage. However, the proposed
methodology could also be used in other DVLs.

Visualization Specification. A specification defines the exact
properties of a DV using a DVL. In Fig. 1, the specification in

Vega-Lite follows the JSON format defining properties such as
data path, mark, and encoding. A specification could be rather
complicated, and creating a suitable specification for a given
dataset requires experience in DVL as well as familiarity with
the raw data.

B. The Proposed FeVisQA Task

FeVisQA is short for Free-form Question Answering over
data Visualization. More specifically, given a dataset/database
D, a DV v (in the form of a specification in a DVL) and a ques-
tion q, the FeVisQA task aims to predict the textual answer
a automatically. FeVisQA enables users to better comprehend
DVs by conducting logical reasoning when answering these
questions. Then, the complete training set can be represented
as T = {D(o), v(o), q(o), a(o)}No=1, where N is the dataset
size. The desired FeVisQA model could be represented as
f(D, v, q) → a.

C. The Constructed FeVisQA Dataset

Since FeVisQA has not been studied in the literature, we
construct some benchmark datasets to promote the develop-
ment of this new field. As shown in Fig. 2(a), we employ
various rules and data sources to construct question-answer
pairs and then accumulate a large-scale FeVisQA dataset.
The questions can be categorized into different styles, namely
Data Retrieval, Reasoning, and Structure. For the reasoning
question, we mainly obtain the questions from two sources.
(i) the NVBench dataset from a paralleled task, text-to-vis,
contains around 10K natural language description (NLD) and
their corresponding DVs. For each DV in NVBench, we could
define a theme question like “What is the meaning of this
DV?”, and obtain its answer by modifying the NLD. An
example can be found in Fig. 1. This kind is refereed as
Type 1 in the following discussion. (ii) the training dataset
from another paralleled task, DV recommendation, which
contains around 10K datasets and their positive and negative
recommended DVs, given the potential datasets. For each DV
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Fig. 3: Network Structure of our Proposed FeVisQANet Model, where (i) a Question & Data Encoder first loads Tapas
embeddings for words and then encodes the dataset and question information using a Transformer-based structure, (ii) a
Specification Encoder first converts the DV specification into AST and then encodes it with a GCN structure, (iii) a Cross-
modal Encoder fuses the outputs from the previous two encoders, and (iv) an Adaptive Decoder generates corresponding
answers to different question type.

in this dataset, we could define matching questions like “Is
this DV suitable for the given dataset?” and set the answer
to be “Yes” for positive DVs and “No” for negative ones.
This kind is refereed as Type 2 in the following discussion.
For the Data Retrieval and DV Structure-related questions,
we employ a rule-based method to generate these questions
with answers, which is also a common practice in other QA-
related tasks such as [21]. It is noteworthy that this category of
questions is among the most challenging in the FeVisQA task,
and the model’s performance on these questions best reflects
its level of understanding of DVs. This kind is refereed as Type
3 in the following discussion. After all the above-mentioned
process, we finally obtained a large-scale FeVisQA dataset
with its statistics shown in Fig. 2(b) and Fig. 2(c). It should
be noted that similar methodologies used in constructing the
dataset are also prevalent in other QA studies such as [21].

III. OUR PROPOSED DNN-BASED APPROACH

In this section, we mainly discuss the structure of the
proposed FeVisQANet model.

A. Model Overview

After discussing the basics and the dataset, we are ready
to introduce the details of our proposed FeVisQANet model.
Comprising the DV specifications, the related datasets, and
the question as the inputs, it then generates the textual answer
corresponding to the given question. As shown in Fig. 3, the
whole network is composed of two main components: a multi-
modal encoder and an adaptive decoder, the former which
extracts comprehensive information from the specification,
the question as well as the datasets, and the latter decoding

the desired answer according to the type of question. The
multi-mode encoder is composed of popular structures like
Transformer, taking multi-modal information as inputs and
integrating them into a latent representation with the fusion
mechanism. The decoder uses the hidden representations from
the multi-mode encoder and adaptively generates different
answers according to the types of questions. In this section,
we would like to present more details about each component.

B. Multi-Modal Encoder

1) Question and Dataset Encoder: The question and
dataset are strongly correlated and essential for retrieving or
inferring the correct answer. As such, we design a novel
architecture to encode the question and table simultaneously,
and preserve their information, respectively. An embedding
layer, initialized from the well-trained pre-trained model Tapas
[22], is employed here. More specifically, we provide the
question and the related tables as the inputs to the Tapas
tokenizer and then go through an embedding layer to obtain an
effective initial embedding Zq . The main structure following
the above module is based on the stacked Transformer encoder
blocks, where each block comprises a multi-head attention
layer and a feed-forward layer. The multi-head attention works
by calculating the relevance score among the input text during
each head and using the score to update the hidden states.
The essence of each head is a scale-dot attention, denoted as
Eq. (1), where Q is the query, K is the key, and V is the
key. After that, a new Q, which is fused by the weighed V ,
is generated as

attention = Softmax(
QKT

√
dk

)V, (1)



where 1√
dk

is the scaling factor with a dk equal to the
dimensionality of query Q.

The attention mechanism in the Transformer encoder is
self-attention where Q, K, and V refer to the same vector.
Specifically, they are linearly projected from the inputs of t-
th block Hq(t), and the initial input equals the output of the
embedding layer, i.e., Hq(0) = Zq . We obtain the queries,
keys, and values through multiplication with the respective
trainable weight matrices WQ

i , WK
i and WV

i , so the i-th
head inherited from Eq. (1) can be represented as Eq. (2).
Then all heads constitute the outputs of the current multi-
head attention layer. Afterward, previous outputs go through a
feed-forward layer consisting of a linear transformation, ReLU
activation, and another linear transformation to get the current
block outputs, shown in the following equations. Finally, the
hidden representation of the question and table is generated
from the last block as Hq .

headi = attention(Hq(t)W
Q
i , Hq(t)W

K
i , Hq(t)W

V
i ),

(2)
MultiHead(Q,K, V ) = [head1; · · · ;headh]WO, (3)

Hs = FFN(MultiHead(Q,K, V )) (4)

2) DV Specification Encoder: The DV specification is in
the form of a JSON object hierarchically representing DV
information. It indicates information like the calculation of
the datasets, the arrangement of data, and the visualization
representation. Thus, it is crucial to infer the answer given
a question about the DV’s understanding. To capture both
the structural and the semantic information involved in a
specification, we first convert it into an Abstract Structure
Tree (AST) [23] and then use a Transformer-based structure
to encode it into some hidden representations.

Representing Specification with AST. AST enjoys the bene-
fits of preserving the same semantics and structure as the JSON
object and can also be easily processed by neural networks.
To give a better illustration, we present an example in Fig. 4
to illustrate how to convert a JSON object into an AST. More
specifically, the root node is initialized first, and then, the tree
is constructed in a recursive style. Given a key-value pair in
the JSON, the key is set as a parent node in the AST. Then,
the value is directly set as a child node when the value is a
string or a number (e.g., as for the item ’mark’, node ’mark’
only has one child node ’bar’). Alternatively, is set as a nested
item set of child nodes when the value is a nested dictionary
(e.g., for the item ’encoding’, its value is a nested dictionary,
so all keys in the dictionary, including item ’x’ and item ’y’,
are regarded as the child nodes). We repeat this process until
all the branches reach the leaf nodes.

Encoding AST with Transformer. After the procedure of the
AST construction, we need to focus on both the parent and the
child nodes to get complete and concise information on the
DV specification. A Transformer-based encoder is employed
here to encode the specification into a hidden representation.

Specifically, after we obtain the AST tree by above con-
version, and we conduct a pre-order traversal [24] to get

Fig. 4: Example of converting specification to AST

the corresponding sequence. Then, we convert the word in
the sequence into embedding by the well-trained Tapas, and
construct the representation of the whole sequence by a
Transformer. We represent the representation as Hv .

3) Cross-modal Encoder: Once we obtain the question-
table embedding Hq and specification embedding Hs, we
intend to fuse them while keeping their features. Similar to
the Transformer encoder, this cross-modal encoder referring to
[25] is composed of several blocks, and each block contains
a cross-attention module, a self-attention module, and a feed-
forward network module. In particular, there are two branches
in each block, one for the question table and one for the
specifications. As shown in Fig. 3, taking feature1 and feature2
as input and assigning different values to Q, K, and V ,
these two branches perform identical operations. Feature1 and
feature2 are specified to Hq and Hs respectively, and Q = Hq ,
K = V = Hs for the question-table branch and vice versa
in the specification branch. Each block will output a new
syncretic representation and go into the next block until the
whole network is finished. Finally, we obtain new question-
table embedding Hq and specification embedding Hs, which
serves for the following decoders.

C. Answer Decoder

The free-form question-answering task indicates that the
answer is not in a fixed format, which means that it can be in
any length or format. In particular, we summarize existing
questions and their corresponding answers into three basic
types: long-form string, number, or boolean value. A potential
model should give a long explanatory text to answer the
questions querying the meaning of a DV, a short boolean value
to questions about the quality of a given DV, and a short text
or numbers to questions that require data retrieval or logical
reasoning about the data and DV. Therefore, we design an
adaptive decoder to generate different answers to handle this
task and generate more accurate answers. In detail, three sub-
generators are designed: a textual generator, a classifier, and
a retrieval-based calculator.

1) Textual Generator: The textual generator aims to predict
long text as answers. We build our model using a Transformer
since it performs very well in generating a long text. The
Transformer-based decoder is similar to the encoder described
in Section III-B1, which is also based on stacked blocks utiliz-
ing multi-head scaled dot attention, except a unique encoder-
decoder cross-attention layer is concluded in each block.



More specifically, a self-attention layer takes the previously
predicted word embedding as the inputs, which is assigned to
Q, K, and V . Then a cross-attention layer takes the outputs
from the last self-attention layer as query Q and performs a
weighted aggregation on value V , which refers to the cross-
modal encoder output. Due to these designs, the correlated
text from the encoder can be captured and served for the next
word prediction.

2) Classifier: The objective of this decoder is to distinguish
whether a description is right or wrong, so a binary classifier
is implemented here. In particular, a pooling module, which
consists of a dense layer and a Tanh activation layer, takes the
hidden state of the first token as the input to obtain an exclusive
representation for the textual inputs. Then a linear projection
followed by a Sigmoid activation is further employed to get
the final binary outputs.

3) Retrieval-based Calculator: Inspired by Table PLMs
like Tapas, we designed a retrieval-based calculator to answer
data retrieval and logic reasoning questions. Our decoder
contains two classifiers to select the cells and choose the
aggregation operator. Then we can infer the final results based
on the original cell value or calculated values from the selected
cells. The final output from the cross-modal encoder can be
divided into two parts, a question embedding, and a table
embedding. The table embedding is then used to compute
the logit value for each token, and an average vector is
computed from all the tokens in a cell, which is regarded as
the logit value for the cell. As for the classifier for aggregation,
considering the actual need in our dataset, extra operators such
as ’yes’, ’no’, and ’diff’ are added to ensure that this decoder
can handle any question produced from the table. The operator
is chosen according to the outputs of a linear layer followed
by a softmax when taking the hidden state of the first token.

D. Model Training

Since all types of questions will share one common encoder
and then go through different decoders to predict the answers,
a batch is divided into min-batches where different types
of questions are categorized into different mini-batches. The
decoders are updated when we feed the mini-batches into the
model one by one and then the common encoder is updated at
the end of this batch. Although the decoders are different,
the essence of the final prediction can be regarded as a
classification problem. Thus widely used cross-entropy loss
is applied here. The details are shown as follows.

(i) As for the textual generator, the target is to maximize
the probability of the expected word at each step, as shown in
Eq. (5),

L1(y, ŷ) = − 1

NT

NT∑
n=1

1

nt

nt∑
t=1

log ptout(y = ŷt
n), (5)

where y and ŷ are the predicted and target sequence. NT is the
total number of training samples in this mini-batch, and nt is
the length of the n-th target sequence. ptout(y = ŷtn) indicates
the probability that the model chooses the target word ŷtn to
be the final output at step t of the n-th sample.

(ii) When it comes to the binary classifier, the binary cross-
entropy loss shown in Eq. (6) is employed

L2(y, ŷ) = − 1

NC

NC∑
i=1

(yi log pi + (1− yi) log(1− pi)), (6)

where NC is the total number of questions that in this
category, and yi and pi are the true category and the predicted
probability for i-th sample, respectively.

(iii) As for the retrieval-based calculator, we train the model
to predict a binary label for each cell and select the most
probable aggregation operator. To be more specific, the average
binary cross-entropy loss over all cells is used here, as shown
in Eq. (7),

Lcell = − 1

NR

NR∑
n=1

1

cn

cn∑
i=1

(yi log pi + (1− yi)(1− log (1− pi)),

(7)
where NR is the total number of question that belongs to
this category, and cn is the number of the cells in the n-
th concerned table. The cross-entropy loss over aggregation
choice is defined as Eq. (8), where pa(ya = ŷna ) is the
probability when the predicted operator ya is equal to the
target one ŷna for n-th sample. Then, these two loss functions
are minimized simultaneously.

Lagg = − 1

NR

NR∑
n=1

log pa(ya = ŷna ), (8)

L3 = Lcell + Lagg, (9)

IV. OUR PROPOSED LLM-BASED APPROACH

In this section, we will provide a detailed introduction to
our proposed LLM-based framework, VisQA.

A. Model Overview

As shown in Figure 5, the VisQA framework is composed
of several stages: Question Classification, Initial Answer Gen-
eration, RAG-based Reasoning, and Answer Validation and
Correction. This framework cleverly employs the classifier
of FeVisQANet to categorize questions, determining whether
RAG technology is needed to assist in the Initial Answer
Generation process and whether a DV chart is needer as an
image input. This significantly reduces computational resource
consumption during the process. Additionally, with the aid of
RAG technology, the framework generates reasoning processes
for relevant examples, which are used to validate and, if
necessary, correct the initial answer. This framework fully
leverages the potential of MLLMs in FeVisQA tasks. In this
section, we will provide a detailed explanation of these four
steps.

B. Question Classification

In the FeVisQA task, samples necessitating a textual re-
sponse must leverage RAG technology to aid in formulating
answers. This approach simulates response styles in analo-
gous scenarios and enhances performance on metrics such as
METEOR. For samples requiring a classification response,



question

DVL

Dataset

Trained
Classifier

Initial Answer 
Generation 

Retrieve Examples

Execute DVL

LLM Generate

RAG-based Reasoning

Retrieve Examples

LLM Reasoning

Answer 
Validation and 

Correction

/

/

(a) Retrieve Examples
question

embedding
model

Training Set
cosine

similarity

Select
Top-K

...

(b) Trained Classifier

Training Set

+
train

FeVisQANet
Classifier

Trained
Classifier

(c) Execute DVL

DVL

Top-K
Relevant Examples

Final
Answer

Execute

DVL answer
DVL answer

DVL answer
DVLquestion answer

DVL answer
DVL answer

DVL answer
DVLquestion answer

Fig. 5: The working pipeline for our proposed LLM-based approach. For each input (question, DVL, dataset) pair, the following
steps are executed: (i) First, classify the input (question, DVL, dataset) pair to determine whether RAG technology assistance
and whether the image input assistance are required. (ii) Then, based on the classification result, perform (or skip) the example
retrieval process and the DVL execution process, and then generate the initial answer; (iii) Next, retrieve the top-K (question,
DVL, answer) pairs and use the LLM to generate the reasoning processes for these examples based on the answers; (iv) Finally,
use the reasoning processes of these examples as references to verify and, if necessary, correct the initial answer.

it is imperative to accept images as input. This necessity
arises from the challenge of determining whether the final DV
chart effectively represents the data solely based on the DV
specification (e.g., highly discrete data is not suitable for a bar
chart but is better represented by a scatter chart). Conversely,
for samples demanding precise numerical calculations, the
related examples and image inputs provided by RAG technol-
ogy serve as distractions, impeding accurate reasoning about
the current problem. Consequently, we stipulate that Type 1
questions require RAG technology assistance, Type 2 questions
necessitate the DV chart image as additional input, and Type 3
questions require neither RAG technology assistance nor the
DV chart as additional input.

To accurately classify the questions, we adopted the En-
coder structure from FeVisQANet and employed the Clas-
sifier Decoder structure from FeVisQANet as the model’s
Decoder. Other implementation details remain consistent with
FeVisQANet and are also based on the PLM model Tapas.

C. Initial Answer Generation

After classification by the FeVisQANet-based classifier, we
need to construct the prompt for Initial Answer Generation
based on the classification results, which involves retriev-
ing relevant examples and executing the DV specification.
Specifically, during the retrieval of relevant examples, we

first use a pre-trained text-to-embedding model to convert the
input question and DV specification into embeddings, and
then calculate the cosine similarity with the embeddings of
examples in the example library. The formula is as follows:

simq = 1 - cosine(qin, qlib)

simdvl = 1 - cosine(dvlin, dvllib)

sim = simq × 0.5 + simdvl × 0.5

where qin and dvlin are the vector representations of the
input question and DVL, and qlib and dvllib are the vector
representations of the questions and DVLs in the example
library. The cosine() is the method to calculate the co-
sine distance between two vectors. The simq and simdvl
represent the semantic similarity between the questions and
DVLs of the examples, respectively, and sim represents the
overall similarity (relevance) between the examples. Finally,
the top-K examples with the highest similarity are selected as
contextual references.

Due to space limitation, the prompt template for Type 3
questions is shown in the online technical report provided
in the footnote of Section I, which do not rely on RAG
technology or image input assistance. Instead, we provide clear
instructions for the LLM to perform free-form reasoning.

The prompt templates for Type 1 and Type 2 questions
are similar to the above prompt template but use concise



TABLE I: Performance Comparison

Type 1 Type 2 Type 3 Total

Method BLEU-4 ROUGE METEOR EM EM BLEU-1 ROUGE METEOR EM

Seq2Seq 0.0505 0.3171 0.3278 99.96% 48.86% 0.5864 0.5733 0.3151 53.00%
Transformer 0.0671 0.3470 0.3330 99.96% 48.05% 0.5830 0.5728 0.3160 52.40%
DualEncoder 0.0585 0.3320 0.3317 99.67% 47.08% 0.5758 0.5629 0.3106 51.62%
Zero-Shot LLM 0.0062 0.1661 0.1949 64.46% 53.71% 0.0086 0.5493 0.2831 50.51%
Few-shot LLM 0.0223 0.2321 0.3822 64.09% 51.87% 0.0111 0.5184 0.3087 52.19%
RAG for LLM 0.0398 0.2563 0.3799 69.15% 58.40% 0.0120 0.5781 0.3230 55.12%
Fine-tuned Llama 0.0609 0.3396 0.3715 89.03% 62.94% 0.0119 0.6725 0.3577 61.86%
FeVisQANet (Ours) 0.0791 0.3749 0.3764 99.63% 73.46% 0.5756 0.6707 0.3393 71.35%
VisQA (Ours) 0.0116 0.2237 0.3151 77.80% 89.79% 0.0202 0.8205 0.4496 79.93%

instructions. After the Initial Answer Generation process, we
obtain the initial answer.

D. RAG-based Reasoning
To automatically provide a similar and reasonable reasoning

process for each example to verify and, if necessary, correct the
initial answer, we retrieve the top-K most relevant (question,
DVL, answer) pairs based on the input question and DVL.
These pairs are then constructed into a prompt, allowing
the LLM to refer to the answers and provide a reasoning
process. The advantage of this approach is that it enables the
automatic generation of possible reasoning processes based on
different inputs, rather than using a fixed reasoning process,
thereby improving the accuracy of initial answer verification
and correction.

E. Answer Validation and Correction
After obtaining the reasoning processes of the relevant

examples, we use them as references to perform reasoning on
the current (question, DVL) pair, thereby verifying whether
the initial answer is correct and correcting it if it is not. This
step allows VisQA to reflect on the answers it generated based
on the examples in the example library.

V. EXPERIMENTAL SETUP

In this section, we provide a detailed performance evaluation
of our proposed task and model in terms of quantitative
metrics. We first introduce the experimental setup, evaluation
measurements, and the designed baselines and then demon-
strate the effectiveness of the proposed model by comparing
them with these strong baselines.

A. Baselines
FeVisQA has not been studied in the literature, and we need

to construct various FeVisQA baselines in our experiment to
compare the performance. The detailed descriptions can be
found as follows.

• Seq2Seq: Seq2Seq [26] is the pioneering study that tack-
les many NLP tasks (e.g., automatic speech recognition)
in an encoder-decoder style. Our implementation converts
the FeVisQA problem into a machine translation problem.

• Transformer: Transformer [27] has recently been domi-
nating many areas [27]–[32]. It could greatly surpass pre-
vious methods. As such, we also employ a Transformer
as a baseline for performance comparison.

• DualEncoder: DualEncoder is a popular CodeQA model
proposed in [16], which improves the basic Seq2Seq
model with two encoders.

• Zero-shot LLM: The Zero-Shot LLM is an experimental
setup designed to guide the LLM in completing the
prediction task for FeVisQA by crafting clear and precise
instructional prompts, rather than providing examples.

• Few-shot LLM: The Few-shot LLM is a key way to use
in-context learning (ICL). It adds several examples to the
context to help LLMs learn how to handle specific task.

• RAG for LLM: RAG [33] technology can smartly pick
examples from the knowledge base as references based on
the input, helping to reduce model mistakes. The retrieval
method is the same as the one described in Section IV-C.

• Fine-tuned Llama: The Fine-tuned Llama is an exper-
imental setup obtained by performing Lora fine-tuning
on Llama-3.2-1B using the FeVisQA training dataset,
representing the performance of model fine-tuning meth-
ods on the FeVisQA task.

• FeVisQANet: FeVisQANet is our proposed DNN-based
model that includes an advanced multi-modal encoder and
decoder designed explicitly for this FeVisQA task.

• VisQA: VisQA is our proposed LLM-based multi-step
framework. By leveraging RAG technology and a com-
plex framework, it fully harnesses the performance of
MLLMs in the FeVisQA task.

We split the FeVisQA into a training set and a testing set.
To ensure fairness, all the methods were trained on the same
training set and evaluated on the same testing set.

B. Evaluation Metrics

We follow the common metrics in the CodeQA task and also
employ these widely used metrics to compare the performance,
namely BLEU [34], ROUGE [35], METEOR [36], EM [16].
The detailed definitions are as follows.

• BLEU: BLEU, short for BiLingual Evaluation Under-
study, is the most widely used metric in NLG tasks. In
BLEU, the calculation of n-gram precision and recall are
modified, which counts the percentage of N-gram co-
occurrences between candidate and reference texts. The
formal definition of BLEU is:

BLEU = BP · exp
( N∑

n=1

wn log pn

)
, wn = 1/n (10)



where pn is the modified n-gram precision. The brevity
penalty BP is calculated as:

BP =

{
1 if c > r

e(1−r/c) if c ≤ r
, (11)

where c is the length of the candidate text and r is the
effective reference text length. In this paper, we reported
BLEU-4 for all our experiments.

• ROUGE: ROUGE is short for Recall Oriented Under-
study for Gisting Evaluation. Based on different features
used to compute recall, ROUGE includes types includ-
ing ROUGE-N, ROUGE-L, ROUGE-W, and ROUGE-S.
ROUGE-L is based on the longest common subsequence
(LCS), and uses F-score instead of using only recall. We
report the ROUGE-L score in our experiment.

• METEOR: METEOR stands for Metric for Evaluation
for Translation with Explicit Ordering, which is an-
other popular evaluation metric for text generation tasks.
Compared with BLEU, METEOR could reflect a better
correlation with human judgment. METEOR is formally
defined as:

METEOR = Fmean(1− p), (12)

where Fmean is the harmonic mean of the unigram’s
precision P and recall R,

Fmean =
PR

αP + (1− α)R
, (13)

where α is a parameter between 0 and 1 with the default
value 0.9. The text segment’s penalty p function is defined
as

p = γ(
c

m
)β , where 0 ≤ γ ≤ 1, (14)

where c is the number of chunks and m is the number
of mapped unigrams between two texts, β is a parameter
with the default value set to be 3.

• EM: EM stands for Exact Match; Compared with the
above metrics, EM directly count the percentage of the
correctly predicted answers. However, it is more suitable
for evaluation short answers. EM is formally defined as:

EM =
Ne

N
, (15)

where Ne is the number of exact matches, and N is the
total number of all the instances.

C. Implementation Details

Our models are trained by the Adam optimizer, with a mini-
batch size and a learning rate set to 64 and 1e-4, respectively.
We use the pre-trained embedding weight from the Tapas-base
model with the hidden size set to 768, which is also used as
the hidden size for other encoder and decoder modules. At the
same time, the initial embeddings of the DV specifications
come from the Glove with dimension set to 300, followed
by a linear layer to transfer the dimension to 768. The
number of the Transformer layer is set to 2 and the number

of heads is set to 4 for all Transformer-based modules and
the GCN layer is set to 1. As for the textual generator, the
vocabulary size is set to 5614, which is decided by the training
corpus. The parameters of the Calculator also follow the same
settings from Tapas-base model, except that there exist seven
different aggregation operators, namely ‘none’, ‘count’, ‘sum’,
‘average’, ‘yes’, ‘no’, and ‘diff’. During the inference phase,
we use the selected operation and columns to obtain the final
result. In the baseline models, the LLMs used are all “gpt-4o-
mini-2024-07-18”, which include Zero-shot LLM, Few-shot
LLM, RAG for LLM, and VisQA, with the parameter set to
“temperature=0.0”. For the Fine-tuned Llama, the model used
is “Llama-3.2-1B”, employing the LoRA fine-tuning method,
with lora dropout and lora rank set to 0 and 8, respectively.

D. Experimental Results

1) Comparison of Accuracy: Table I shows our models
outperform baselines on FeVisQA, especially on challenging
Type 3 questions. We demonstrate our models’ advantages
through performance comparisons.

VisQA achieves state-of-the-art performance, significantly
outperforming all baselines, particularly on Type 3 questions.
VisQA reaches 89.79% EM on Type 3 and 79.93% overall
EM, a substantial improvement over Fine-tuned Llama and
FeVisQANet, establishing VisQA as the accuracy leader.

Analyzing by model category reveals prompting-based
multi-step LLMs like VisQA are most effective. Traditional
DNNs (Seq2Seq, Transformer, DualEncoder) perform weak-
est. FeVisQANet, a DNN-PLM hybrid, improves over basic
DNNs. Fine-tuned Llama performs between FeVisQANet and
DNNs. VisQA surpasses all, especially on Type 3, highlighting
multi-step LLM prompting’s effectiveness.

Comparing VisQA to direct prompting methods (Zero-shot
LLM, Few-shot LLM, RAG for LLM) validates VisQA’s ad-
vanced prompting. Direct prompting methods are insufficient.
RAG for LLM is better but still lags VisQA. VisQA’s multi-
step framework achieves much higher accuracy, especially on
Type 3, confirming its superior prompting architecture for
FeVisQA’s complexity.

Seq2Seq, Transformer, and DualEncoder baselines highlight
FeVisQANet’s specialized DNN architecture effectiveness. Fe-
VisQANet outperforms these basic DNNs and performs better
than Fine-tuned Llama in overall metrics (71.35% vs 61.86%
EM). This shows FeVisQANet advantages for FeVisQA, even
versus fine-tuned smaller LLMs. FeVisQANet’s design enables
better performance with a much smaller parameter size than
LLMs, showing parameter efficiency.

Finally, a key advantage of VisQA is its deployment flex-
ibility and adaptability. Unlike fine-tuned models requiring
retraining for new data, VisQA operates effectively without
FeVisQA-specific fine-tuning. Its performance can be en-
hanced in real-world applications by simply updating the exter-
nal knowledge base used in its RAG component. This knowl-
edge base maintenance allows VisQA to adapt to evolving
data visualizations and information without model retraining,
offering significant practical benefits in dynamic environments.



TABLE II: Ablation Study Results.

Type 1 Type 2 Type 3 Total

Method BLEU ROUGE METEOR EM EM BLEU ROUGE METEOR EM

FeVisQANet 0.0791 0.3749 0.3764 99.63% 73.46% 0.5756 0.6707 0.3393 71.35%
- w/o Dataset 0.0651 0.3599 0.3461 95.23% 28.61% 0.4262 0.4199 0.2352 37.07%
- w/o Adaptive Decoder 0.0678 0.3600 0.3512 99.96% 55.34% 0.6383 0.6283 0.3455 57.85%

Few-shot LLM 0.0223 0.2321 0.3822 64.09% 51.87% 0.0111 0.5184 0.3087 52.19%
RAG for LLM 0.0398 0.2563 0.3799 69.15% 58.40% 0.0120 0.5781 0.3230 55.12%
VisQA 0.0116 0.2237 0.3151 77.80% 89.79% 0.0202 0.8205 0.4496 79.93%

- w/o Correct 0.0197 0.2416 0.3421 82.74% 87.44% 0.0200 0.8141 0.4476 79.02%
- w Few-shot Generate 0.0191 0.2389 0.3581 77.20% 88.93% 0.0204 0.8148 0.4491 79.19%
- w/o Reasoning 0.0076 0.2061 0.2658 60.58% 85.86% 0.0189 0.7619 0.4165 74.11%
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Fig. 6: Hyper-parameters Study Result (No. of Trans. Heads and No. of Trans. Layers).

While VisQA leverages powerful LLMs, potentially raising
cost or privacy concerns, FeVisQANet remains a valuable
alternative: achieving higher accuracy than Fine-tuned Llama
with far fewer parameters, making it very strong and efficient,
and ideal for resource-limited or privacy-sensitive scenarios.

Due to space limitations in the main text, we have included
the error case analysis, the performance comparison between
FeVisQANet and VisQA, and the usability study of FeVisQA
in the technical report provided in the footnote of Section I.

2) Ablation Studies (The DNN-based Approach): In this
section, we conducted ablation studies on the DNN-based
approach to demonstrate the contribution of each designed
component in FeVisQANet. In particular, we first evaluate the
FeVisQANet with all the designed components as the baseline.
Then we remove or replace some components of FeVisQANet
to check its performance. Each model is then represented by
the name(s) of the components it removes or replaces. More
precisely, to validate the impact of the dataset on the model’s
ability to understand data visualization, we removed this part,
meaning that the database information was not used as input
to the model, and named this experimental setup w/o Dataset.

For the decoder, we replace the adaptive decoder with a vanilla
LSTM-based decoder (w/o Adaptive Decoder); The results
are shown in Table II.

We take the EM score on the FeVisQA set as the primary
indicator, and the other metrics also reflect similar obser-
vations. First, incorporating the dataset information brings
about a 92.40% relative performance improvement (71.35%
v.s 37.07%). This set of ablation studies and the improvement
validate the necessity of involving the dataset information in
the FeVisQA task, which is usually not included in the existing
CodeQA task. This observation validates the necessity of min-
ing and modeling the dataset information in the FeVisQA task.
Furthermore, we also observe a 23.34% relative performance
improvement using the adaptive decoder.

3) Ablation Studies (The LLM-based Approach): Table II
also presents the ablation study results of the LLM-based
approach. It highlights the following points: (i) Removing
the entire correction process (w/o Correct) led to a 0.91%
decrease in the overall EM (Exact Match) accuracy and a
2.35% decrease in accuracy for data reasoning (Type 3); (ii)
Replacing the generate process with the Few-Shot Prompting



(c) The Chart
(a) The Dataset

(b) The Specification

(d) The QA Predicted by Various Methods

TABLE III: Examples from the FeVisQA dataset with the results predicted by our models and the baselines.

method (w Few-shot Generate) resulted in a 0.74% decrease
in overall accuracy and a 0.86% decrease in data processing
accuracy; (iii) In the experimental setting where the reasoning
process that relies on RAG technology for generating related
examples was removed and answer correction was directly
based on the zero-shot strategy (w/o Reasoning), the over-
all EM decreased by 5.82% and data processing accuracy
decreased by 3.93%; (iv) For the Few-Shot LLM and RAG
for LLM experimental settings, the overall accuracy (or data
processing accuracy) was lower by 27.74% (or 37.92%) and
24.81% (or 31.39%) respectively compared to VisQA. These
ablation studies demonstrate the critical roles of all four
processes within VisQA, with reasoning being particularly
important since it provides a reference reasoning process for
verifying and correcting the initial answers, thereby enhancing
the performance of the entire framework.

4) Parameter Study: We provide the parameter study to
analyze the performance variations concerning the main pa-
rameters. We first identify the main factors that affect the
performance of FeVisQANet, (i) the number of layers in the
Transformer and (ii) the number of heads in the Transformer.
The experimental results are shown in Fig. 6. Once again, the
primary indicator used here is still the EM score. Fig. 6a ∼
Fig. 6d illustrates the first set of results, which discuss how
the performance varies concerning the number of heads in the
Transformer. When the number of heads exceeds or falls below
the ideal value of 8, the performance reaches the its maximum
value and then decreases. However, similar phenomena are
also observed in the other parameter (e.g., Fig. 6e ∼ Fig. 6h),

For example, increasing Transformer layers only sometimes
results in higher performance (i.e., optimal value 2). This
happens because the model’s learning capability improves as
the layer rises, but using fewer layers does not help because
of the smoothing issue with deep neural networks.

5) Case Study: Several cases from the FeVisQA bench-
marks are presented in Table III to give a vivid illustration.
We include the dataset, the DV specification in Vega-Lite, the
chart, the questions, the expected answers, and the predicted
answers by various models. In the first example, we have a
“Transaction” dataset with many attributes. A potential DV
specification 2 is given with various questions. The answers to
these questions are diverse. From this example, FeVisQANet
and VisQA could accurately understand the meaning of all
the questions and then generate the correct answers, whether
the question belongs to data retrieval, reasoning, or structure.
Other baselines fail to answer most of the questions.

VI. RELATED WORK

In this section, we would like to briefly survey the most
related work from these three aspects, DV, (Code) QA, and
LLMs and RAG Techniques for DV.

A. Data Visualization

Due to its good visual representation capabilities, various
organizations utilize DV to support strategic and operational
decisions. Consequently, many DV-related studies have been

2We omit some parts of the specification file due to space limits.



conducted in the research and the industry communities [3],
[5], [11], [20], [37]–[39]. There are also many Declarative
Visualization Languages (DVLs) released in the market, in-
cluding Vega-Lite [15], ggplot2 [18], ZQL [40], ECharts [19],
and VizQL [20]. Among all these DVLs, Vega-Lite is the
most common and widely-used one. Two popular tasks have
been proposed to lower the barriers to using DVLs to create
DV. The first task is NL2Vis (i.e., Natural Language to Data
Visualization), which allows users to create DVs via natural
language descriptions (NLDs). Existing approaches usually
tackle this task by converting it into a machine translation and
utilizing advanced neural networks. To name a few, Seq2Vis
[37] is a representative study that employs a Seq2Seq network
to map the NLD into DVs. ncNet [41] is another neural-
based model that mainly uses a Transformer with many new
optimization techniques like an attention-forcing mechanism.
RGVisNet [42] combines the retrieval-based method with the
generation-based method that achieves better performance. Be-
sides these neural-based methods, traditional approaches such
as the rule-based method are also proposed in studies like [43],
[44]. Another prevalent task is automatic DV recommendation
[45], which focuses on recommending feasible DVs given a
massive raw dataset. For example, DataEye [11] proposes a
three-step method, namely visualization recognition, ranking,
and selection, to tackle this task.

Our proposed FeVisQA task is a new kind of DV-related
task that promotes the development of the DV field. FeVisQA
enables people to better comprehend DVs and DVLs by logical
reasoning when answering questions.

B. (Code) Question Answering

Our work belongs to the General QA (GQA) field, more
specifically, CodeQA tasks [16]. GQA has wide applications
in the industry. It is usually presented in applications like
search engines or dialogue systems. Due to its long history and
wide applications, there are a substantial amount of existing
studies in the community. A common approach to tackle this
problem is first translating the questions into logical forms and
then executing the logical forms to get the answers. There are
many choices of logic forms, such as lambda-DCS [46], graph
query [47], and s-expression [48]. The translation from the
question to the logic form could fully use recent advances in
the semantic parser, including traditional ones like [46] as well
as the neural-based ones [49]. Besides this approach, another
commonly used one is to retrieve potential candidates from the
knowledge base and then re-rank these candidates to select the
top ones as the final results [50]–[53].

When it comes to CodeQA, it is proposed in [16], which
focuses on answering questions related to the source code
(e.g., Java, Python) for source code comprehension. For
example, Liu et al. [16] proposed a CodeQA dataset that
contains QA pairs on general-purpose programming languages
(GPLs), including Java and Python. Then they further designed
several methods to tackle this CodeQA task, which is also
implemented and compared in our experiments. Later, Lee
et al. [17] released another CS1QA dataset for educational

purposes that include QA pairs with the codes from students
and the portion of the code relevant to answering the question.

However, these previous studies only focus on GPLs, and
none cover DVLs. Different from GPLs, composing a DV
requires defining specifications using DVLs. Moreover, a spec-
ification’s execution result is a chart, which differs from GPLs.
These properties make FeVisQA quite different from models
and datasets used for the common CodeQA task. FeVisQA
also greatly enlarges and enriches the CodeQA family.

C. LLMs and RAG Techniques for Data Visualization

Retrieval-Augmented Generation (RAG) technology has be-
come a key method to fully harness the potential of LLM in
downstream tasks [54], [55]. It has demonstrated outstanding
performance in various fields, including but not limited to
open-domain QA [56], dialogue systems [57], domain-specific
QA [58], and complex tasks such as code generation [59], [60].
By combining information retrieval and generation models,
RAG technology not only improves system accuracy but also
expands the knowledge range of the models, significantly
enhancing their ability to handle various issues in real-world
application scenarios.

RAG technology shows progress in DV. Song et al. [61] op-
timized RAG retrieval quality using an Example Mining mod-
ule for better accuracy.Lu et al. [62] addressed performance
degradation under input perturbations with a complex multi-
step RAG framework. Our VisQA model adopts a similar RAG
and multi-step approach to fully harness MLLM capabilities
for the FeVisQA task.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced FeVisQA, a novel Question
Answering (QA) task designed to enhance the understanding
of Data Visualizations (DVs) by requiring logical reasoning
to answer questions about DV specifications for raw datasets.
Our primary contributions include: (i) the construction of a
benchmark dataset to foster development in this field, and (ii)
the proposal of a new multimodal network, FeVisQANet, a
novel multi-step framework for MLLMs, VisQA, along with
several strong baselines. Extensive experiments demonstrate
the feasibility of the proposed task and the effectiveness of our
models. We believe FeVisQA can serve as a valuable research
benchmark for advancing the domains of data visualization
and question answering.

A key limitation of the current FeVisQA benchmark is its
diversity, particularly regarding real-world user interactions.
Creating a more diverse and representative dataset constitutes
a highly promising future research direction.

ACKNOWLEDGMENT

Haodi Zhang and Jinwei Lu are the corresponding authors.
We are grateful to the anonymous reviewers for their construc-
tive comments on this paper. Raymond Chi-Wing Wong are
supported by fund WEB24EG01-A. Haodi Zhang is supported
by the fund 2023B1212010007.



REFERENCES

[1] Y. Song, J. Lu, X. Zhao, R. C.-W. Wong, and H. Zhang, “Demonstration
of fevisqa: Free-form question answering over data visualization,” in
2024 IEEE 40th International Conference on Data Engineering (ICDE).
IEEE, 2024, pp. 5417–5420.

[2] M. Aparicio and C. J. Costa, “Data visualization,” Communication
design quarterly review, vol. 3, no. 1, pp. 7–11, 2015.

[3] X. Qin, Y. Luo, N. Tang, and G. Li, “Making data visualization more
efficient and effective: a survey,” The VLDB Journal, vol. 29, no. 1, pp.
93–117, 2020.

[4] S. S. Bhowmick, K. Huang, H. E. Chua, Z. Yuan, B. Choi, and S. Zhou,
“Aurora: Data-driven construction of visual graph query interfaces for
graph databases,” in Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data, 2020, pp. 2689–2692.

[5] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and N. Polyzotis,
“Seedb: Efficient data-driven visualization recommendations to support
visual analytics,” in Proceedings of the VLDB Endowment International
Conference on Very Large Data Bases, vol. 8, no. 13. NIH Public
Access, 2015, p. 2182.

[6] D. Ji, H. Luo, Z. Bao, and S. Culpepper, “Navigating data repositories:
Utilizing line charts to discover relevant datasets,” Proceedings of the
VLDB Endowment, vol. 17, no. 12, pp. 4289–4292, 2024.

[7] W. Zhang, Y. Wang, Y. Song, V. J. Wei, Y. Tian, Y. Qi, J. H. Chan, R. C.-
W. Wong, and H. Yang, “Natural language interfaces for tabular data
querying and visualization: A survey,” IEEE Transactions on Knowledge
and Data Engineering, 2024.

[8] Y. Luo, X. Qin, C. Chai, N. Tang, G. Li, and W. Li, “Steerable self-
driving data visualization,” IEEE Transactions on Knowledge and Data
Engineering, vol. 34, no. 1, pp. 475–490, 2020.

[9] C. Chai, G. Li, J. Fan, and Y. Luo, “Crowdchart: Crowdsourced data
extraction from visualization charts,” IEEE Transactions on Knowledge
and Data Engineering, vol. 33, no. 11, pp. 3537–3549, 2020.

[10] D. Ji, H. Luo, and Z. Bao, “Visualization recommendation through visual
relation learning and visual preference learning,” in 2023 IEEE 39th
International Conference on Data Engineering (ICDE). IEEE, 2023,
pp. 1860–1873.

[11] Y. Luo, X. Qin, N. Tang, and G. Li, “Deepeye: Towards automatic
data visualization,” in 2018 IEEE 34th international conference on data
engineering (ICDE). IEEE, 2018, pp. 101–112.

[12] A. Eldawy, M. F. Mokbel, and C. Jonathan, “Hadoopviz: A mapreduce
framework for extensible visualization of big spatial data,” in 2016 IEEE
32nd International Conference on Data Engineering (ICDE). IEEE,
2016, pp. 601–612.

[13] Y. Park, M. Cafarella, and B. Mozafari, “Visualization-aware sampling
for very large databases,” in 2016 IEEE 32nd International Conference
on Data Engineering (ICDE). IEEE, 2016, pp. 755–766.

[14] M. Krommyda and V. Kantere, “Visualization systems for linked
datasets,” in 2020 IEEE 36th International Conference on Data En-
gineering (ICDE). IEEE, 2020, pp. 1790–1793.

[15] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-
lite: A grammar of interactive graphics,” IEEE transactions on visual-
ization and computer graphics, vol. 23, no. 1, pp. 341–350, 2016.

[16] C. Liu and X. Wan, “Codeqa: A question answering dataset for source
code comprehension,” in Findings of the Association for Computational
Linguistics: EMNLP 2021, 2021, pp. 2618–2632.

[17] C. Lee, Y. Seonwoo, and A. Oh, “Cs1qa: A dataset for assisting code-
based question answering in an introductory programming course,” in
Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, 2022, pp. 2026–2040.

[18] R. A. M. Villanueva and Z. J. Chen, “ggplot2: elegant graphics for data
analysis,” 2019.

[19] D. Li, H. Mei, Y. Shen, S. Su, W. Zhang, J. Wang, M. Zu, and W. Chen,
“Echarts: a declarative framework for rapid construction of web-based
visualization,” Visual Informatics, vol. 2, no. 2, pp. 136–146, 2018.

[20] P. Hanrahan, “Vizql: a language for query, analysis and visualization,”
in Proceedings of the 2006 ACM SIGMOD international conference on
Management of data, 2006, pp. 721–721.

[21] K. Kafle, B. Price, S. Cohen, and C. Kanan, “Dvqa: Understanding
data visualizations via question answering,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 5648–
5656.

[22] J. Herzig, P. K. Nowak, T. Mueller, F. Piccinno, and J. Eisenschlos,
“Tapas: Weakly supervised table parsing via pre-training,” in Proceed-
ings of the 58th Annual Meeting of the Association for Computational
Linguistics, 2020, pp. 4320–4333.

[23] P. Yin and G. Neubig, “A syntactic neural model for general-purpose
code generation,” in Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
2017, pp. 440–450.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[25] A. Masry, X. L. Do, J. Q. Tan, S. Joty, and E. Hoque, “Chartqa: A
benchmark for question answering about charts with visual and logical
reasoning,” in Findings of the Association for Computational Linguistics:
ACL 2022, 2022, pp. 2263–2279.

[26] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in ICLR, 2015.

[27] S. M. Lakew, M. Cettolo, and M. Federico, “A comparison of trans-
former and recurrent neural networks on multilingual neural machine
translation,” in Proceedings of the 27th International Conference on
Computational Linguistics, 2018, pp. 641–652.

[28] A. Currey and K. Heafield, “Incorporating source syntax into
transformer-based neural machine translation,” in ACL 2019 Fourth
Conference on Machine Translation. Association for Computational
Linguistics, 2019, pp. 24–33.

[29] X. Zhao, L. Wang, R. He, T. Yang, J. Chang, and R. Wang, “Multiple
knowledge syncretic transformer for natural dialogue generation,” in
Proceedings of The Web Conference 2020, 2020, pp. 752–762.

[30] H. Le, D. Sahoo, N. Chen, and S. Hoi, “Multimodal transformer net-
works for end-to-end video-grounded dialogue systems,” in Proceedings
of the 57th Annual Meeting of the Association for Computational
Linguistics, 2019, pp. 5612–5623.

[31] A. Zeyer, P. Bahar, K. Irie, R. Schlüter, and H. Ney, “A comparison of
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