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Abstract—Data visualization (DV) is the fundamental and
premise tool to improve the efficiency in conveying the insights
behind the big data, which has been widely accepted in existing
data-driven world. Task automation in DV, such as converting
natural language queries to visualizations (i.e., text-to-vis), gener-
ating explanations from visualizations (i.e., vis-to-text), answering
DV-related questions in free form (i.e. FeVisQA), and explicating
tabular data (i.e., table-to-text), is vital for advancing the field.
Despite their potential, the application of pre-trained language
models (PLMs) like T5 and BERT in DV has been limited by high
costs and challenges in handling cross-modal information, leading
to few studies on PLMs for DV. We introduce DataVisT5, a novel
PLM tailored for DV that enhances the T5 architecture through a
hybrid objective pre-training and multi-task fine-tuning strategy,
integrating text and DV datasets to effectively interpret cross-
modal semantics. Extensive evaluations on public datasets show
that DataVisT5 consistently outperforms current state-of-the-art
models and higher-parameter Large Language Models (LLMs) on
various DV-related tasks. We anticipate that DataVisT5 will not
only inspire further research on vertical PLMs but also expand
the range of applications for PLMs.

Index Terms—pre-trained language model, data visualization,
text-to-vis, vis-to-text, FeVisQA, table-to-text

I. INTRODUCTION

Data visualizations (DVs) utilize graphical representation to
convey insights to summarize the massive raw data, which is a
common practice in existing big data era [1], [2]. Popular data
analysis and database applications, such as Google Sheets1

and Microsoft Power BI2, all support DV features. Many
institutions realize the value of DV and have applied it as their
daily fundamental tools. Thus the ability of creating suitable
DVs has become a necessary skill for data analysts, engineers,
and data scientists [3]–[5]. However, creating appropriate
DVs remains challenging, even for experts, since it requires
visual analysis expertise and familiarity with the domain data.
Furthermore, users must master the complex grammar of
Declarative Visualization Languages (DVLs), such as Vega-
Lite [6], ggplot2 [7], and Vega-Zero [8], to accurately define
DV specification in the visualization engine.

To lower the barriers to creating DVs and further unlock
the power of DV for the general public, researchers have
proposed a variety of DV-related tasks that have attracted sig-
nificant attention from both industrial and academic researchers.
Numerous studies on these topics have been presented in
leading conferences and journals such as VLDB [2], [9], [10],
ICDE [11], [12], SIGMOD [13]–[15], and TKDE [16], [17].

1https://www.google.com/sheets/about/
2https://powerbi.microsoft.com/

These tasks include text-to-vis (i.e., automatically generating
DVs from natural language questions) [8], [15], vis-to-text
[18] (i.e., automatically generating interpretations of complex
DVs for educational purposes), FeVisQA [12] (i.e., free-form
question answering over data visualization), and table-to-text
(i.e., describing a given table) [19].

A vivid example is given in Figure 1, which shows four
important tasks central to the domain knowledge of DV: text-to-
vis, vis-to-text, FeVisQA and table-to-text. The figure presents
a natural language (NL) question, “Give me a pie chart about
the proportion of the number of countries in the artist table.”
This example demonstrates the text-to-vis task’s capability
to interpret the NL question and transform it into a Vega-
Lite specification, resulting in a pie chart. The DV query,
introduced by [15], serves as a bridge in the text-to-vis process,
encapsulating visualization details and data operations with a
grammar akin to SQL. Translations between DV queries and
DVLs are seamless, with text-to-vis tasks primarily focusing
on converting NL questions into DV queries. Conversely,
the vis-to-text task aims to generate accessible and user-
friendly explanations of complex visualizations for individuals
without expertise in the field. The FeVisQA task addresses
user inquiries regarding DV by providing detailed answers
to common questions. We present four typical DV-related
questions, including understanding the semantics of a DV query,
resolving numerical issues within a chart, and evaluating the
compatibility of a DV query with a given database. Lastly,
the table-to-text task generates informative NL description of
tabular data, which are essential for visual analytics, thereby
reducing the perceptual effort needed for data interpretation.

Meanwhile, PLMs such as BERT [20] and T5 [21] have
received considerable attention in the realms of natural lan-
guage processing (NLP) and data mining, becoming widely
recognized for their efficacy. These PLMs greatly promote
the development of effective text-driven applications, since
they show dominating performance in understanding the
semantics in natural language. The operational paradigm for
these PLMs typically unfolds in two stages: initially, they
undergo unsupervised pre-training on expansive, open-domain
datasets (such as Wikipedia) to acquire foundational capabilities
in language representation and comprehension; subsequently,
they are fine-tuned on specialized corpora pertinent to targeted
downstream tasks, thereby enhancing task-specific performance.
Despite their success [22]–[24], there are still significant
challenges when it comes to the DV field : (i) Limited studies
have been conducted to explore the effectiveness of PLMs in
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<NL> What are the ids and details of events that have more than one participants , and I want to 
rank in descending by the X-axis . <schema> | local_govt_in_alabama | participants : 
participants.participant_id , participants.participant_type_code , participants.participant_details | 
events : events.event_id , events.service_id , events.event_details

<VQL> visualize bar select events.event_details , 
events.event_id from events join participants_in_events
on events.event_id = participants_in_events.event_id
group by events.event_details order by 
events.event_details desc

<NL> Bar chart of total number of height from each sex 
, and list from high to low by the X-axis .

<Answer> Show how many country from each country , 
and display total number from high to low order .

<Table> Most popular social networks of female beauty consumers in the United States as of 
August 2016 | col : Response | Percentage of respondents row 1 : Facebook | 93% row 2 : 
Pinterest | 73% row 3 : YouTube | 63% row 4 : Twitter | 63% row 5 : Instagram | 62% row 6 : 
LinkedIn | 36% row 7 : Snapchat | 32% row 8 : Etsy | 31% row 9 : Sephora Community | 25% 
row 10 : WhatsApp | 11%

<NL> This statistic presents the reach of the most 
popular social networks among female beauty 
consumers in the United States as of August 2016 . 
During this period there were approximately 39 
thousand hectares of peas grown in England .

DataVisT5
Hybrid 

Pre-training

<VQL> visualize bar select people.sex , sum(people.height) from people group by people.sex
order by people.sex desc <schema> | candidate_poll | people : people.people_id , people.sex , 
people.name , people.date_of_birth , people.height , people.weight

Text-to-Vis

DV Question Answering

Table-to-Text

Mask Language Modeling

<VQL> visualize <M1> select people.sex , 
sum(people.height) from <M2> by people.sex <M3> desc 

visualize <Mask_1> select people.sex , sum(people.height) from <Mask_2>  by people.sex 
order <Mask_3> people.sex <Mask_4> 

<Mask_1> bar <Mask_2> people group <Mask_3> by
<Mask_4> desc

<Question> What is the meaning of this VQL ? <VQL> visualize bar select artist.country , 
count(artist.country) from artist group by artist.country order by count(artist.country) desc 
<schema> | theme_gallery | artist : artist.artist_id , artist.name , artist.country , artist.year_join , 
artist.age <Table> | col : artist.country | count(artist.country) row 1 : United States | 5 row 2 : 
Zimbabwe | 1 row 3 : Fiji | 1

Text-to-Vis

Vis-to-Text

FeVisQA

Table-to-Text

MLM

Visualize pie
Select (country Artist)
Count (country Artist)
Grouping (country Artist)

Give me a pie chart about the proportion of the number of 
countries in the artist table.

DV Query

NL Question

Text-to-Vis

Render

Vis-to-Text

Visualization Chart

Database/Dataset

Table description 

This table provides a concise summary of key details about seven artists, 
including their unique ID, name, country of origin, and ages.

Table-to-Text

{  "data": {“url”: 
“data/artist.json”},

"mark": “pie",
"encoding": {

"x": { "field": “country "},
"y": {“aggregate": “count"}}

}

Visualization Specification

Vega-Lite

Question 3:
Is this DV 
suitable for this 
given dataset?

DV Question

FeVisQA FeVisQA

Question 2:
How many 
parts are there 
in the chart?

Question 1:
What is the 
meaning of this 
DV?

Question 4:
What is the 
value of the 
largest part  in 
the chart?

Answer 1:
Show all 
countries in 
the artist 
table with a 
pie chart 
showing their 
proportions.

DV Answering

Answer 2:
3

Answer 3:
Yes

Answer 4:
5

Artist_ID Name Country Age

1 Vijay Singh Fiji 45
2 John Daly United States 46
3 Paul Azinger United States 47
… … … …

7 Nick Price Zimbabwe 48

Fiji
United States
Zimbabwe

Country

This table provides a concise 
summary of key details about 
seven artists, including their 
unique ID, name, country of 
origin, and ages.

DV Query

This table provides a concise summary of key details about seven 
artists, including their unique ID, name, country of origin, and ages.

Table description

Table description 

This table provides a concise summary of key details about seven artists, 
including their unique ID, name, country of origin, and ages

Fig. 1: An illustration depicting the text-to-vis, vis-to-text, table-to-text, and free-form question-answering over data visualization
problems, showcasing examples including a NL question, a DV query, a DVL visualization specification, a table description, a
visualization chart, and four question-answer pairs.

capturing the DV semantics. (ii) Since there is a substantial
modal gap between the DV modality and the text modality,
satisfied performances cannot be achieved by directly applying
existing PLMs (e.g., T5) to DV-related tasks mentioned above.
(iii) In the DV area, a possible PLM needs the ability of
handling cross-modal information (i.e., text and DV), while
also being capable of managing multiple distinct tasks.

To alleviate above-mentioned problems, we propose a novel
PLM for jointly understanding text and DV, refereed as
DataVisT5 in this paper. Based on text-centric T5 architec-
ture, we enhance the pre-training process by incorporating a
comprehensive array of cross-modal datasets that integrate
natural language with DV knowledge, encompassing DV
queries, database schemas, and tables. Since DV queries
resemble programming language-like queries, we employ
CodeT5+ [25] as the starting checkpoint in our work. This
choice leverages the robust code semantic understanding and
generation capabilities of CodeT5+, providing DataVisT5 with
a substantial advantage in generating and comprehending the
unique programming language of our DV tasks. Building on
this foundation, we apply table-level database schema filtration
to reduce training complexity. Addressing the challenges of
format consistency between DV and textual modalities, we
introduce a unified encoding format for DV knowledge that
facilitates the convergence of text and DV modalities. To
eliminate stylistic discrepancies in manually curated datasets,
we adopt standardized encoding.

Additionally, the pre-training objectives for DataVisT5 are
twofold: (i) the span corruption approach of Masked Language
Modeling as utilized by the original T5 model, and (ii) a
Bidirectional Dual-Corpus objective that operates on source-

target pairings. After the mixed-objective pre-training, we
conduct multi-task fine-tuning (MFT) of our DataVisT5 on
DV-related tasks including text-to-vis, vis-to-text, FeVisQA,
and table-to-text. To substantiate the rationale behind our
proposed model, we performed comprehensive experimental
evaluations on various public datasets. The results consistently
demonstrate that DataVisT5 surpasses the state-of-the-art
(SOTA) models and higher-parameter LLMs. In summary, our
main contributions are as follows:

• We introduce and release DataVisT5: the first Pre-trained
Language Model (PLM) tailored for the joint understand-
ing of text and DV. This innovation opens avenues for
future research on task-specific PLMs and enriches the
landscape of PLM designs.

• We enhance the text-centric T5 architecture to handle
cross-modal information. Our novel hybrid pre-training
objectives are conceived to unravel the complex interplay
between DV and textual data, fostering a deeper integration
of cross-modal insights.

• Extensive experiments on public datasets for diverse DV
tasks including text-to-vis, vis-to-text, FeVisQA, and table-
to-text demonstrate that DataVisT5 excels in multi-task
settings, consistently outperforming strong baselines and
establishing new SOTA performances.

II. PRELIMINARY

This section provides the foundational concepts and def-
initions pivotal to DV-related tasks, with the objective of
cultivating a more profound understanding.
Natural Language Question. An NL question enables users,
even those with a minimal background in DV and programming



skills, to formulate queries intuitively. Figure 1 demonstrates
such an instance, with the user’s request articulated as, “Give
me a pie chart about the proportion of the number of countries
in the artist table”.
Declarative Visualization Language. Transforming data into
a graphical representation typically involves the use of a
declarative visualization language (DVL). This kind of language
provides a set of specifications that determine the construction
of visualizations. These specifications include various elements
such as chart type, colors, sizes, and mapping functions, as
well as properties for visual marks like canvas dimensions
and legends. Several DVLs are prevalent in the field, such as
Vega-Lite [6], ggplot2 [7], ZQL [10], ECharts [26], Vega-Zero
[8], and VizQL [13], each offering unique features to facilitate
the visualization process.
Visualization Specification. A visualization specification
comprises a JSON format object that delineates the dataset and
its visual attributes (such as chart types and data transformation
functions) in accordance with the syntax of a specific DVL.
It is noteworthy that each DVL possesses a unique grammar,
necessitating distinct visualization specifications for rendering
the same DV chart.
Data Visualization Query. Introduced by [11], [14], a frame-
work for querying a database for visual data representations
seeks to encapsulate the full spectrum of potential DVLs. As
depicted in Figure 1, a DV query specifies a ”pie” chart and
integrates SQL-like operations (e.g. Count and Order By). This
versatile DV query format can be converted into visualization
specifications for different DVLs, enabling visualization engines
to render the specified chart.
Data Visualization Chart. The DV charts are the visual
representations such as scatters, bars, or maps used to convey
the data summary and insights defined by the visualization
specification. In Figure 1, the final visualization result is the
bar chart that corresponds to the NL question.

III. OUR PROPOSED MODEL: DATAVIST5

We present our proposed DataVisT5 model, with the pipeline
overview in Section III-A. This is followed by details on
database schema filtration in Section III-B, DV knowledge
encoding in Section III-C, and standardized encoding in
Section III-D. We discuss our hybrid pre-training objectives
in Section III-E and conclude with our multi-task fine-tuning
strategy in Section III-F.

A. Pipeline Overview

Figure 2 provides an overview of the complete pipeline,
comprising five main stages: (1) Database schema filtration, (2)
DV knowledge Encoding, (3) Standardized Encoding, (4)Model
Pre-training, and (5) Model Fine-tuning. The Database schema
filtration process involves comparing n-grams extracted from
the given database schema with those present in the text under
consideration, enabling us to identify referenced tables in the
question and acquire a sub-database schema that aligns seman-
tically. During the DV knowledge Encoding phase, we linearize
DV knowledge encompassing DV queries, database schemas,

DV knowledge

User Input

Data
Pre-processing DV Knowledge  Encoding

Standardized  Encoding

Database Schema Filtration

Model
Pre-training

T5-based Masked Language
Modeling Objectives

Bidirectional 
Dual-Corpus 

Objectives

Model 
Fine-tuning

Vis-to-Text Task

FeVisQA Task

Text-to-Vis Task

Table-to-Text Task

Database: theme_gallery
artist

artist_id name country year_join age

exhibition_record
exhibition_id date attendance

Give me a pie chart 
about the proportion of 
the number of countries 
in the artist table

NL question

Database Schema Filtration

DV Query Database sub-schema Table
Country COUNT(Country)

Fiji 1
United States 5

Zimbabwe 1

DV Knowledge  Encoding

| theme_gallery | artist : age 
, name , country , year_join 
, artist_id

| col : Country | COUNT(Country) 
row 1 : Fiji | 1 
row 2 : United States | 5 
row 3 : Zimbabwe | 1

Standardized  Encoding

Visualize pie Select 
country , Count (country) 
from artist group by 
country

visualize pie select 
artist.country ,
count (artist.country) from 
artist group by 
artist.country

| theme_gallery | artist : 
  artist.age , artist.name , 
  artist.country , 
  artist.year_join , 
  artist.artist_id

| col : artist .country | 
    count(artist.country) 

row 1 : Fiji | 1 
row 2 : United States | 5 
row 3 : Zimbabwe | 1

Database: theme_gallery
artist

artist_id name country year_join age

Visualize pie
Select (country Artist)
Count (country Artist)
Grouping (country Artist)

Database: theme_gallery
artist

artist_id name country
year_join age

Visualize BAR SELECT Years_Played , COUNT(*) FROM player 
AS T1 JOIN team AS T2 ON T1.Team = T2.Team_id WHERE 
T2.Name = "Columbus Crew" GROUP BY Years_Played ORDER 
BY Years_Played

Original 
DV Query

visualize bar select player.years_played , 
count(player.years_played) from player join team on player.team = 
team.team_id where team.name = 'columbus crew' group by 
player.years_played order by player.years_played asc

Standardized
DV Query

Standardized  Encoding

DV knowledge

User Input

DV Knowledge  Encoding

Standardized  Encoding

Database Schema Filtration

Model
Pre-training

T5-based Masked Language
Modeling Objectives

Bidirectional 
Dual-Corpus 

Objectives

Model 
Fine-tuning

Vis-to-Text Task

FeVisQA Task

Text-to-Vis Task

Table-to-Text Task

Fig. 2: The pipeline of DataVisT5.

and tables. Subsequently, in the Standardized Encoding phase,
we normalize the DV knowledge to facilitate more efficient
learning. The resulting corpus, in its unified form, is then
employed to train our proposed DataVisT5 model.

B. Database Schema Filtration

Before the integration of DV and text modalities, it is critical
to recognize that NL questions can incorporate keywords
related to the database schema. This requires the explicit
identification of references to columns, tables, and conditional
values within the NL questions. To address this challenge, we
employ N -gram matching as a method due to its simplicity
of implementation and notable effectiveness for a variety of
applications. In an effort to minimize information loss, our
primary focus is at the table level, where we compare N -
grams extracted from the NL questions to those present in the
database tables. Following the initial comparison, we refine
the obtained sub-schema by considering the implicated tables
and their respective columns.

C. DV Knowledge Encoding

To address the disparity between text and DV modalities,
we propose investigating unified formats for DV knowledge.
The connection between natural language and DV knowledge
poses challenges due to limited data accessibility. Nevertheless,
a unified format allows models to capitalize on extensive
pretraining for smaller datasets. Employing consistent format-
ting, as recommended by [27], offers advantages in multi-task
training and mitigates performance decline caused by data
heterogeneity compared to single-task training. The subsequent
sections provide a comprehensive introduction to the unified
representation of three distinct types of DV knowledge: DV
queries, database schemas, and tables.
Encoding DV query. While most existing NLP models, such
as [20], consider NL inputs as flat text sequences, we adopt a
similar approach for modeling a DV query by treating it as a
plain text sequence in a straightforward manner.



DV knowledge

User Input

Data
Augmentation DV Knowledge  Encoding

Standardized  Encoding

Database Schema Filtration

Model
Pre-training

T5-based Masked Language
Modeling Objectives

Bidirectional 
Dual-Language 

Objectives

Model 
Fine-tuning

Vis-to-Text Task

QA Task

Text-to-Vis Task

Table-to-Text Task

Database: theme_gallery
artist

artist_id name country year_join age

exhibition_record
exhibition_id date attendance

Give me a pie chart 
about the proportion of 
the number of countries 
in the artist table

NL question

Database Schema Filtration

DV Query Database sub-schema Table
Country COUNT(Country)

Fiji 1
United States 5

Zimbabwe 1

DV Knowledge  Encoding

| theme_gallery | artist : age 
, name , country , year_join 
, artist_id

| col : Country | COUNT(Country) 
row 1 : Fiji | 1 
row 2 : United States | 5 
row 3 : Zimbabwe | 1

Standardized  Encoding

Visualize pie Select 
country , Count (country) 
from artist group by 
country

visualize pie select 
artist.country ,
count (artist.country) from 
artist group by 
artist.country

| theme_gallery | artist : 
  artist.age , artist.name , 
  artist.country , 
  artist.year_join , 
  artist.artist_id

| col : artist .country | 
 count(artist.country) 

row 1 : Fiji | 1 
row 2 : United States | 5 
row 3 : Zimbabwe | 1

Database: theme_gallery
artist

artist_id name country year_join age

Visualize pie
Select (country Artist)
Count (country Artist)
Grouping (country Artist)

Database: theme_gallery
artist

artist_id name country
year_join age

Fig. 3: Examples of DV Knowledge Encoding and Standardized
Encoding from NVBench.

Encoding Database schema. The database schema comprises
tables and columns. For each table in the schema, the table
name is followed by a list of its columns formatted as ”table :
column1, ... columnn”. Different tables are joined using the
symbol ”|”. Additionally, the database name is prefixed to the
generated sequence with boundaries indicated by ”|”.
Encoding Table. Following [28], we employ a sequential
representation of tables, akin to the schema encoding technique,
which uses distinctive tokens to delineate table structure. The
table is linearly represented as “col : c1 | · · · | cN row 1 : v11 |
· · · | v1N · · · row M : vM1 | · · · | vMN”, with N indicating
the total column count and M representing the row count.
Example. An presented in Figure 3, where (1) the DV query
is sequentially encoded into text sequences based on the
data manipulation operations: Visualize, Select, Count, and
Grouping, (2) the filtered database sub-schema, including
the database name (theme gallery), table name (artist), and
columns, is encoded into a corresponding text sequence, and
(3) the table content is linearly encoded in the format “col:
Country | COUNT(Country)”, along with the remaining three
rows of the table.

D. Standardized Encoding

Due to the manual generation of queries by multiple
annotators with diverse annotation habits, subtle stylistic dif-
ferences are prevalent in the final annotated DV queries within
NVbench, including variations in the capitalization of keywords.
Similar to issues encountered with SQL queries, these stylistic
inconsistencies, while not affecting the model’s execution
results, pose an additional learning challenge that must be
addressed. To address the stylistic variations in DV queries, a
preprocessing strategy was implemented before training. This
strategy includes: (1) affixing the primary table name T to the
selected columns col, resulting in the notation T.col across DV
queries; particularly, for instances where the wildcard symbol
* is employed in a COUNT function, COUNT(*) is replaced
with COUNT(T.col) to maintain uniformity; (2) the insertion of
spaces surrounding parentheses and the replacement of double

quotes with single quotes; (3) the inclusion of the ASC keyword
subsequent to the ORDER BY clause when ordering is not
explicitly specified; (4) the elimination of the AS clause and
the substitution of table aliases (e.g., T1, T2) with their actual
table names; (5) the lowercase conversion.

DV knowledge

User Input

Data
Augmentation DV Knowledge  Encoding

Standardized  Encoding

Database Schema Filtration

Model
Pre-training

T5-based Masked Language
Modeling Objectives

Bidirectional 
Dual-Language 

Objectives

Model 
Fine-tuning

Vis-to-Text Task

QA Task

Text-to-Vis Task

Table-to-Text Task

Database: theme_gallery
artist

artist_id name country year_join age

exhibition_record
exhibition_id date attendance

Give me a pie chart 
about the proportion of 
the number of countries 
in the artist table

NL question

Database Schema Filtration

DV Query Database sub-schema Table
Country COUNT(Country)

Fiji 1
United States 5

Zimbabwe 1

DV Knowledge  Encoding

| theme_gallery | artist : age 
, name , country , year_join 
, artist_id

| col : Country | COUNT(Country) 
row 1 : Fiji | 1 
row 2 : United States | 5 
row 3 : Zimbabwe | 1

Standardized  Encoding

Visualize pie Select 
country , Count (country) 
from artist group by 
country

visualize pie select 
artist.country ,
count (artist.country) from 
artist group by 
artist.country

| theme_gallery | artist : 
  artist.age , artist.name , 
  artist.country , 
  artist.year_join , 
  artist.artist_id

| col : artist .country | 
    count(artist.country) 

row 1 : Fiji | 1 
row 2 : United States | 5 
row 3 : Zimbabwe | 1

Database: theme_gallery
artist

artist_id name country year_join age

Visualize pie
Select (country Artist)
Count (country Artist)
Grouping (country Artist)

Database: theme_gallery
artist

artist_id name country
year_join age

Visualize BAR SELECT Years_Played , COUNT(*) FROM player 
AS T1 JOIN team AS T2 ON T1.Team = T2.Team_id WHERE 
T2.Name = "Columbus Crew" GROUP BY Years_Played ORDER 
BY Years_Played

Original 
DV Query

visualize bar select player.years_played , 
count(player.years_played) from player join team on player.team = 
team.team_id where team.name = 'columbus crew' group by 
player.years_played order by player.years_played asc

Standardized
DV Query

Standardized  Encoding

Fig. 4: An Standardized DV Query with join operation example.
Example. In a DV query with a Join operation, as depicted
in Figure 4, standardization involves renaming table aliases
T1 and T2 to player and team, respectively. The query’s
COUNT (∗) is specified as COUNT (player.years played),
’Columbus Crew’ is quoted with single quotes, the ASC
keyword is appended if sort order is absent, and the entire
query is cast to lowercase.

In alignment with the standardization of DV queries, similar
encoding steps are applied to database schemas and tables to
ensure consistency. This includes affixing the table name T to
each column name col and converting them to T.col.
Example. As depicted in Figure 3, within a specific database
schema, column names such as ”age, name, country, year join,
and artist id” are transformed to ”artist.age, artist.name,
artist.country, artist.year join, and artist.artist id”, respec-
tively. Similarly, within the table context, an entry like ”col
: Country | COUNT(Country)” is reformulated to ”col :
artist.country | count(artist.country)”.

E. Hybrid Pre-training Objectives

Bidirectional Dual-Corpus Objectives. To address divergence
between the pretraining and fine-tuning phases, we introduce
Bidirectional Dual-Corpus (BDC) objectives during pretrain-
ing.In this approach, both the source and target corpora are
randomly selected with equal probability (0.5) during model
training to serve as the input. The remaining corpus is then
used as the output for translation purposes. Accordingly, for a
target sequence of T tokens, we define the BDC loss function,
LBDC(θ), as follows:

LBDC(θ) =

T∑
i=1

− logPθ(ti | s, t<i), (1)

where s signifies the source input, t<i represents the sequence
of tokens generated by the decoder up to but not including the
i-th token, and ti is the token that the decoder is tasked with
predicting. The term θ denotes the model parameters.

As depicted in Figure 5, the segment highlighted by arrows
elucidates the deployment of the BDC Objectives, encom-
passing four discrete tasks germane to DV. A comprehensive



<NL> What are the ids and details of events that have more than one participants , and I want to 
rank in descending by the X-axis . <schema> | local_govt_in_alabama | participants : 
participants.participant_id , participants.participant_type_code , participants.participant_details | 
events : events.event_id , events.service_id , events.event_details

<VQL> visualize bar select events.event_details , 
events.event_id from events join participants_in_events
on events.event_id = participants_in_events.event_id
group by events.event_details order by 
events.event_details desc

<NL> Bar chart of total number of height from each sex 
, and list from high to low by the X-axis .

<Answer> Show how many country from each country , 
and display total number from high to low order .

<Table> Most popular social networks of female beauty consumers in the United States as of 
August 2016 | col : Response | Percentage of respondents row 1 : Facebook | 93% row 2 : 
Pinterest | 73% row 3 : YouTube | 63% row 4 : Twitter | 63% row 5 : Instagram | 62% row 6 : 
LinkedIn | 36% row 7 : Snapchat | 32% row 8 : Etsy | 31% row 9 : Sephora Community | 25% 
row 10 : WhatsApp | 11%

<NL> This statistic presents the reach of the most 
popular social networks among female beauty 
consumers in the United States as of August 2016 . 
During this period there were approximately 39 
thousand hectares of peas grown in England .

DataVisT5
Hybrid 

Pre-training

<VQL> visualize bar select people.sex , sum(people.height) from people group by people.sex
order by people.sex desc <schema> | candidate_poll | people : people.people_id , people.sex , 
people.name , people.date_of_birth , people.height , people.weight

Text-to-Vis

DV Question Answering

Table-to-Text

Mask Language Modeling

<VQL> visualize <M1> select people.sex , 
sum(people.height) from <M2> by people.sex <M3> desc 

visualize <Mask_1> select people.sex , sum(people.height) from <Mask_2>  by people.sex 
order <Mask_3> people.sex <Mask_4> 

<Mask_1> bar <Mask_2> people group <Mask_3> by
<Mask_4> desc

<Question> What is the meaning of this VQL ? <VQL> visualize bar select artist.country , 
count(artist.country) from artist group by artist.country order by count(artist.country) desc 
<schema> | theme_gallery | artist : artist.artist_id , artist.name , artist.country , artist.year_join , 
artist.age <Table> | col : artist.country | count(artist.country) row 1 : United States | 5 row 2 : 
Zimbabwe | 1 row 3 : Fiji | 1

Text-to-Vis

Vis-to-Text

FeVisQA

Table-to-Text

MLM

Visualize pie
Select (country Artist)
Count (country Artist)
Grouping (country Artist)

Give me a pie chart about the proportion of the number of countries 
in the artist table.

DV Query

NL Question

Text-to-Vis

Render

Vis-to-Text

Visualization Chart

Database/Dataset

Table description 

This table provides information about seven artists, including their 
unique ID, name, country of origin, year of joining, and ages. The table 
serves as a concise summary of key details about each artist.

Table-to-Text

{  "data": {“url”: “data/artist.json”},
"mark": “pie",
"encoding": {

"x": { "field": “country "},
"y": {“aggregate": “count"}}

}

Visualization Specification

Vega-Lite

Question 3:
Is this DV 
suitable for this 
given dataset?

DV Question

Answer 1:
Show all 
countries with 
a pie chart.

DV Answering

QA QA

Question 2:
How many 
parts are there 
in the chart?

Answer 2:
3

Question 1:
What is the 
meaning of this 
DV?

Question 4:
What is the 
value of the 
largest part  in 
the chart?

Answer 3:
Yes

Answer 4:
5

Artist_ID Name Country Year_Join Age
1 Vijay Singh Fiji 1998 45
2 John Daly United States 1991 46
3 Paul Azinger United States 1993 47
… … … … …
7 Nick Price Zimbabwe 1994 48

Fiji
United States
Zimbabwe

Country

Fig. 5: Overview of hybrid pre-training objectives. The solid lines denote the Bidirectional Dual-Corpus objectives, which
facilitate the learning of language representation by leveraging bidirectional context. The dashed lines represent the T5-based
MLM objectives, designed to reconstruct the original input from masked tokens.

definition of these tasks is deferred to Section V. To enhance
task-specific processing and facilitate knowledge transfer across
different modalities, we introduce unique special tokens. For
example, as demonstrated in Figure 5, the Text-to-Vis task
utilizes a special token <NL> to prefix the NL question
corpus and <V QL> for the DV query corpus. In contrast, for
the FeVisQA task, DV question-answer pairings are delineated
with the tokens <Question> and <Answer> to signify their
respective components.
T5-based MLM Objectives. The application of Masked
Language Modeling (MLM) as a pretraining objective is pivotal
for pretraining encoder-decoder models. In our study, we
employed the span corruption MLM strategy from [21], where
consecutive words in the input are replaced by sentinel tokens,
and the decoder generates the omitted text, each instance
preceded by its respective sentinel. To ensure consistency
with the pretraining checkpoint, we maintained an average
span length of 3 subword tokens across the input corpus and
masked 15% of the subwords. This MLM objective was applied
to a cross-modal corpus comprising text, DV query, database
schema, and table. Over a sequence of N tokens, our T5-based
MLM loss is defined as:

LMLM (θ) =

N∑
n=1

− logPθ

(
xm
n | x\m ,xm

<n

)
, (2)

where θ are the model parameters, xm
n is the masked token

predicted by the decoder, x\m represents the unmasked encoded
inputs, and xm

<n is the sequence of tokens generated by the
decoder up to but not including the n-th token.

An illustration is presented in Figure 5, where the segments
linked by dashed lines pertain to the T5-based MLM Objectives.
This figure showcases the application of span denoising targets
to a DV query. Within this query, the terms ”bar”, ”people
group”, ”by”, and ”desc” are selected at random. Subsequently,
a subset of these terms is replaced by sentinel tokens, illustrated
as <Mask 1>, <Mask 2>, <Mask 3>, and <Mask 4>.

Hybrid Objectives. After achieving the aforementioned two
objectives, we create a hybrid objective by sampling from both
the MLM Objectives and the BDC Objectives corpora. Con-
sequently, each training mini-batch is composed of examples
drawn from a cross-modal corpus, each formatted to align with
diverse learning objectives. We adopt a final hybrid loss LH :

LH(θ) = LBDC(θ) + LMLM (θ), (3)

which enables DataVisT5’s readiness for multiple DV-related
downstream tasks demanding contextual comprehension and
pattern recognition.

F. Multi-Task Fine-tuning

To achieve better performance in multiple downstream
tasks related to DataVisT5, we employ temperature mixing
to combine the training data of all tasks. The temperature
value is set to 2, following [21]. Temperature up-sampling
helps balance the influence of each task on the model by
adjusting the probability of selecting data from each task
during training. This prevents larger datasets from overpowering
smaller ones. By merging training data from different tasks, the
model is encouraged to learn representations that are beneficial
across various corpora. Consequently, this leads to improved
generalization and a more robust model capable of handling
diverse DV tasks.

IV. PRETRAINING DATASET CONSTRUCTION

We have constructed a dataset tailored for our Hybrid
Pretraining Objectives by integrating four public datasets. The
following sections outline our pretraining dataset construction,
detailing data collection in Section IV-A, data processing in
Section IV-B, and data partitioning in Section IV-C.

A. Data Collection

1) NVBench: The NVBench dataset [15] represents a
publicly accessible NL2Vis corpus, containing 7,219 pairs
of NL questions and their corresponding DV queries. It



TABLE I: The statistics of the NVBench dataset

Number of instances Number of databases
Split NVBench w/o join NVBench NVBench w/o join NVBench
Train 10564 16780 98 106
Valid 2539 3505 15 16
Test 2661 5343 27 30
Total 15764 25628 140 152

was originally curated to evaluate the efficacy of models in
transforming textual queries into visual representations. As
the most commonly utilized dataset in this domain, NVBench
has been employed in several prominent studies, including
those by [8], [18], [29] Table I offers a detailed overview
of the NVBench dataset, comprising 25,628 entries that have
been collated from 152 distinct databases originating from the
Spider dataset [30]. To facilitate fair comparison with other
established baselines as discussed in Section V, we meticulously
separated the DV queries involving non-join operations from
those that include join operations and performed an in-depth
statistical analysis. Specifically, the dataset contains 15,764
samples without join operations. DV queries that employ non-
join operations, utilizing a single table, are showcased in
Figure 3. Conversely, DV queries featuring join operations,
where multiple tables are engaged, are illustrated in Figure 4.

2) Chart2text.: The chart-to-text conversion process, as
introduced by [31], constitutes a comprehensive benchmark
incorporating two distinct datasets, cumulatively consisting
of 44,096 charts that span an extensive array of subjects
and graphical representations. The data for this benchmark
originates from two primary sources: Statista3 and the Pew
Research Center4. The dataset derived from Statista includes
various elements such as a screenshot of the chart image, the
accompanying data table, the title, axis labels, and expertly
crafted descriptive narratives concerning the chart content.
Conversely, the datasets sourced from the Pew Research Center
typically lack the provision of underlying data tables for
the majority of their charts. To align with our pre-training
objectives, we have selectively utilized only the Statista
component of the Chart2Text dataset. The quantitative details of
the Chart2Text dataset are systematically tabulated in Table II,
with a total of 34,811 instances documented for analysis.

3) WikiTableText.: The WikiTableText dataset [32] consists
of 13,318 descriptive sentences that are aligned with 4,962
tables extracted from Wikipedia5. These tables were retrieved
via web scraping techniques and a subset of 5,000 tables
was carefully curated to ensure that each table contained
at least three rows and two columns, thereby meeting a
predefined structural criterion. Quantitative characteristics
of the WikiTableText dataset are meticulously cataloged in
Table II, which enumerates a total of 13,318 instances for
subsequent analysis.

4) FeVisQA: The FeVisQA dataset, as presented in [12],
represents a pivotal asset in the nascent field of DV Question
Answering. This dataset amalgamates a diverse set of rules

3https://www.statista.com/
4https://www.pewresearch.org/
5https://www.wikipedia.org/

TABLE II: The statistics of the Chart2text and WikiTableText
datasets

Number of instances Number of cells
Split Chart2Text WikiTableText Metrics Chart2Text WikiTableText
Train 24368 10000 Min. 4 27
Valid 5222 1318 Max. 8000 108
Test 5221 2000 ≤150 34272 13318
Total 34811 13318 >150 539 0

TABLE III: The statistics of the FeVisQA dataset

Number of instances Number of questions
Spilt databases QA pair DV query Type 1 Type 2 Type 3
Train 106 54406 9169 4799 9166 31272
Valid 16 9290 1603 844 1579 5264
Test 30 15609 2542 1453 2501 9113
Total 152 79305 13313 7096 13246 45650

and data sources to compile a comprehensive collection of
question-and-answer pairs, integral for advancing research in
this domain. It covers three principal types of questions:

• Type 1: This question type probes the semantic interpre-
tation of DVs. An example is, ”What is the meaning of
this DV ?” which is illustrated as Question 1 in Figure 1.

• Type 2: Stemming from the associated task of DV
recommendation, this category includes questions that
assess the suitability of a DV for a given dataset. For
instance, ”Is this DV suitable for the given dataset?” The
answers are structured to affirm compatibility or denote
incompatibility, thus evaluating the alignment between a
DV and its corresponding dataset.

• Type 3: Questions pertaining to data retrieval and the
structural aspects of DV. These are generated using a
rule-based approach, ensuring a robust and consistent set
of questions and answers. Question 3 and Question 4 in
Figure 1 serve as exemplary instances of this category.

Comprehensive statistics of the FeVisQA dataset are encapsu-
lated in Table III. Similar to NVBench, the FeVisQA leverages
the 152 databases originating from the Spider dataset [30],
comprising a total of 79,305 free-form question-answer pairs.

B. Data Pre-processing

To enhance the data quality and ensure compatibility with
downstream tasks, we instituted the following pre-processing.
Initially, we excluded incomplete natural language ques-
tion samples (34/25662) from the NVBench dataset. Subse-
quently, to prevent sequence truncation during the Bidirectional
Dual-Corpus objective—which operates with a fixed token
length—we retained only those entries in the Chart2Text dataset
where the total number of cells (determined by multiplying
the number of rows by the number of columns) did not exceed
150. This step was deemed unnecessary for the WikiTableText
dataset, as it inherently possesses a maximum cell count of
108, as delineated in Table II. After employing the filtration
and encoding methods described in Sections III-B, III-C, and
III-D, we constructed our pretraining corpus based on the type
of data. The corpus is bifurcated into two segments:
Dual-Corpus Objectives Datasets. This segment is arranged
according to the following mappings:

• NL+ Schema ↔ DV query

https://www.statista.com/
https://www.pewresearch.org/
https://www.wikipedia.org/


• DV query + Schema ↔ Description
• Table ↔ Description
• Question + DV query + Schema + Table ↔ Answer

As shown in Figure 5, the aforementioned four data types are
sequentially presented.
MLM Objectives Datasets. This segment amalgamates NL
questions and database schemas from NVbench, DV queries,
questions and answers from FeVisQA, and tables with their
descriptions from Chart2Text and WikiTableText. These ele-
ments are integrated and then utilized to formulate the Masked
Language Model (MLM) pretraining tasks. To illustrate this, a
sample DV query from NVBench, which has been subjected
to masking, is provided in Figure 5.

C. Data Partitioning

After preprocessing the data, we proceeded with the partition-
ing process. Originating from the Spider dataset [30], NVBench
features a wide range of domains, including academic, railway,
and scholar, which is conducive to cross-domain evaluation.
The data from NVBench was divided into training, validation,
and testing subsets, constituting 70%, 10%, and 20% of the
dataset, respectively, to facilitate this cross-domain assessment.
Furthermore, considering that FeVisQA utilizes databases from
Spider, we maintained consistency with NVBench by applying
the same cross-domain partitioning scheme. The partitioning of
the data adheres to the original division as specified in Table II.

V. EXPERIMENTS AND RESULTS

To comprehensively assess our pre-trained architecture
and promote further study, we have assembled the Jointly
Understanding Text and Data Visualization benchmark. This
benchmark encompasses four extensively studied tasks: text-
to-vis (Section V-B), vis-to-text (Section V-C), FeVisQA
(Section V-D), and table-to-text (Section V-E). We incorporate
established datasets pertinent to these tasks. For each task,
we delineate the task definition, baselines, evaluation metrics,
corresponding results, and case studies. Additionally, we
perform ablation studies on the critical design elements.
A. Implementation Details

We conducted the pre-training of DataVisT5 over the course
of five epochs using four NVIDIA 40GB A40 GPUs. And
we standardized the maximum sequence lengths for both
the input and output at 512 tokens. Our training regimen
adopted a linear warm-up schedule with a 0.1 warm-up
rate and set the learning rate to 5e-6. For optimization, we
utilized the DeepSpeedCPUAdam optimizer with a weight
decay of 0.01. Further enhancing our training efficiency, we
implemented DeepSpeed’s ZeRO Stage 2 offloading strategy
with mixed precision (FP16) as described in [33].During the
fine-tuning phase, the model exhibited significant sensitivity to
hyperparameters, notably the learning rate and training epochs.
A grid search was executed to determine the optimal parameters,
with selection based on the performance metrics from the
validation set across all models. Specifically, for multi-task
fine-tuning, parameter optimization was informed by the mean
performance across four tasks.

B. Text-to-Vis

Defination. For a natural language query {q, S} consisting of
a question q that articulates a user’s request for a visualization
and S, the schema of the relevant database D, the goal of the
text-to-vis task is to generate the appropriate DV query y.
Baselines. We evaluate DataVisT5 against several established
baselines for the text-to-vis task. The Seq2Vis approach [15]
interprets the task as machine translation using a Seq2Seq
model equipped with attention. The renowned Transformer
architecture [34] and the ncNet framework [8], which enhances
the Transformer with attention-forcing, serve as additional
baselines. RGVisNet [29] utilizes a two-stage process for
retrieving DV queries and modifying the prototype. For the
performance of LLMs, we explored in-context learning through
5-shot similarity prompting with GPT-4 [35] and fine-tuning
open-source LLMs such as Llama2-7b [36] and Mistral-7b [37]
using LoRA [38]. Using the CodeT5+ model [25] as our base
architecture, we employ single-task fine-tuning (SFT) without
our novel pretraining as a comparison.
Task-specific Corpus. For the fine-tuning phase of our text-
to-vis task, we engaged the NVBench dataset, which was
delineated in Section IV-A1, originally derived from our pre-
training datasets. Contrasting with the pre-training phase, the
fine-tuning was conducted with a singular training objective:
NL + Schema → DV query.
Evaluation Metrics. The performance evaluation of our
experiment adopts four metrics, analogous to those utilized
in [15]. Before delving into the specifics, it is necessary to
know that each DV query comprises three key elements: the
type of visualization (such as bar chart), the configuration
of axis (x/y/z), and data with transformation functions (e.g.
group). Additionally, let N denote the total count of test
samples. The metrics are: (1) Exact Match (EM), which
requires a complete match between the predicted and reference
DV queries (EM = Nequal/N ), (2) Visualization EM (Vis
EM), assessing the accuracy of predicted visualization types
(V is EM = Nvis/N ), (3) Data EM, focused on data points
with transformation functions (Data EM = Ndata/N ), and
(4) Axis EM, evaluating the congruence of axis components
(Axis EM = Naxis/N ).
Results. Results from Table IV show that foundational models
like Seq2Vis and Transformer underperform in cross-domain
settings. Compared to the previous state-of-the-art, RGVisNet,
our multi-task finetuned model exhibited a significant 46.15%
improvement in the EM metric on datasets without join
operations. Furthermore, it outperformed the in-context learning
approach using GPT-4 in scenarios involving join operations,
enhancing the EM metric by 44.59% and 49.2%. Notably, in
these scenarios, where models such as ncNet and RGVisNet
have historically struggled, our model achieved an EM of
0.3451. In comparison to high-parameter (7b) open-source
LLMs, our 220M DataVisT5 model performed comparably,
while the 770M DataVisT5, with only 11% of the parameters,
achieved optimal performance.
Case Study. We illustrate the effectiveness of our DataVisT5



TABLE IV: Comparative evaluation of text-to-vis models and LLMs performance on the cross-domain NVBench test dataset:
non-join operations and complete NVBench with join operations. Best results are highlighted in bold.

Model Setting NVBench w/o join operation NVBench w/ join operation
- Vis EM Axis EM Data EM EM Vis EM Axis EM Data EM EM
Seq2Vis 0.8027 0.0000 0.0024 0.0000 0.8342 0.0000 0.0000 0.0000
Transformer 0.8598 0.0071 0.0646 0.0024 0.9798 0.0021 0.0404 0.0000
ncNet 0.9311 0.2442 0.5152 0.1465 — — — —
RGVisNet 0.9701 0.5963 0.5423 0.4675 — — — —
CodeT5+ (220M) +SFT 0.9795 0.7889 0.6239 0.6010 0.9843 0.4065 0.3425 0.2968
CodeT5+ (770M) +SFT 0.9827 0.7850 0.6696 0.6668 0.9865 0.4024 0.3713 0.3399
GPT-4 (5-shot) +Similarity 0.9700 0.5507 0.6425 0.4726 0.9790 0.2755 0.3708 0.2313
LLama2-7b +LoRA 0.9323 0.7432 0.6203 0.6420 0.9446 0.4281 0.3174 0.3327
Mistral-7b +LoRA 0.9821 0.7753 0.6649 0.6761 0.9246 0.4310 0.3386 0.3374
DataVisT5 (220M) +MFT 0.9827 0.8078 0.6680 0.6688 0.9873 0.4123 0.3586 0.3324
DataVisT5 (770M) +MFT 0.9850 0.7983 0.6770 0.6833 0.9884 0.4112 0.3863 0.3451

model in generating DV queries compared to other baseline
models in Table V. When processing a NL input, the Seq2Vis
model fails to recognize essential keywords such as visualize
and group by, and incorrectly identifies the chart type as scatter.
The Transformer model, although correct in predicting the
visualization type, omits significant information. A similar
limitation is observed with ncNet, which, despite generating
complex DV queries, fails to include the group by transforma-
tion function. RGVisNet accurately maps the term ’price’ to the
’baseprice’ column in the rooms table but does not produce the
correct aggregate functions, avg and min. The SFT CodeT5+
incorrectly predicts the elements for group by. In contrast, our
MFT DataVisT5 model accurately constructs the query: ”visu-
alize scatter select avg(rooms.baseprice), min(rooms.baseprice)
from rooms group by rooms.decor”, uniquely achieving the
correct visualization results.

C. Vis-to-Text

Definition. When provided with a DV query q and a database
D that includes a schema S, the vis-to-text task is focused on
creating an intelligible textual description z that explains the
DV query within database schema.
Baselines. For our evaluation, we selected several established
models and LLMs: an enhanced Seq2Seq model, which
incorporates an attention mechanism as described by [34] to
improve its interaction between the encoder and decoder; the
vanilla Transformer model as introduced in the context of
text-to-vis tasks; BART [39], a transformer-based model that
combines bidirectional encoding with auto-regressive decoding;
CodeT5+, our base architecture; GPT-4 in a zero-shot setting;
and Llama2-7b and Mistral-7b, both with LoRA fine-tuning.
Task-specific Corpus. The unidirectional training target for
the vis-to-text task was structured as DV query + Schema →
Description. We employed the NVBench dataset, as referenced
in Section IV-A1, analogous to the dataset used for the text-
to-vis task. A notable distinction for the vis-to-text task lies
in the inherent one-to-many relationship, where a singular DV
query may correspond to multiple descriptions. To establish a
definitive corpus for subsequent fine-tuning and evaluation, we
selected a single representative description from the multiples.

Evaluation Metrics. To assess the quality of the generated
textual descriptions, we employed three metrics: BLEU [40],
ROUGE [41], and METEOR [42]. (1) BLEU measures the
precision of N -gram overlaps with reference texts, modified by
a brevity penalty. (2) In contrast, ROUGE emphasizes recall,
assessing the extent of n-gram overlap. (3) METEOR surpasses
BLEU in mimicking human judgement by considering exact
matches, stemming, synonyms, and penalizing for word order
differences. Specifically, we report BLEU scores for unigram,
bigram, and four-gram levels (BLEU-1, BLEU-2, BLEU-4),
and ROUGE F1 scores for unigrams (ROUGE-1), bigrams
(ROUGE-2), and longest common subsequences (ROUGE-L).
Results. As detailed in Table VI, the traditional Seq2Seq
and Transformer models significantly underperform compared
to other models, limited by their parameter size. Although
GPT-4 outperforms traditional models in a zero-shot setting,
the SFT BART, benefiting from its structure that combines
context awareness with autoregressive features, shows superior
performance. Moreover, LoRA fine-tuned open-source LLMs
Llama2-7b and Mistral-7b, even with larger parameters, do
not perform as well as BART, which has significantly fewer
parameters, in the vis-to-text task. Despite our base architecture
CodeT5+, enhanced through single-task fine-tuning, showing
competitive performance, our proposed DataVisT5 in both
220M and 770M configurations achieves the best performance.
Case Study. In the comparative analysis presented in Table VII,
the Seq2Seq model produces outputs that significantly deviate
from the ground truth, indicating a disjointed understanding.
The Transformer model, while capturing the basic structure of
a bar chart and its ascending order, uses imprecise language
that muddles the details. The SFT BART model makes progress
by accurately suggesting a bar chart in ascending order but is
hampered by suboptimal phrasing. The SFT CodeT5+ model,
although closely aligned with the ground truth, fails to grasp
the significance of the term lname in the visualization context.
In stark contrast, our DataVisT5 model, powered by a 770M
parameter architecture and enhanced through MFT, excels by
providing a concise and clear directive that adeptly delineates
the required bar chart with an ascending Y-axis, categorizing
students by last name who are without food allergies, thus
closely mirroring the ground truth.
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Fig. 6: Visualization formats of DV Query generated by various text-to-vis models

TABLE V: The DV query examples generated by various text-to-vis models from NVBench
NL Question Just show the average and minimum price of the rooms in different decor using a scatter.
Database Schema | inn 1 | rooms : rooms.roomid, rooms.roomname, rooms.bedtype, rooms.baseprice, rooms.decor
Ground-truth visualize scatter select avg(rooms.baseprice), min(rooms.baseprice) from rooms group by rooms.decor

Seq2Vis (×) visualize bar select location, count(company.location) from company group by
company.location → Figure 6a

Transformer (×) visualize scatter select addresses.address id, election.vote percent from → Figure 6b

ncNet (×) visualize scatter select rooms.name, rooms.employee id from rooms where
rooms.first name like ’%s%’ → Figure 6c

RGVisNet (×) visualize scatter select max(rooms.baseprice), rooms.decor from rooms → Figure 6d

CodeT5+ (×) visualize scatter select avg(rooms.baseprice), min(rooms.baseprice) from rooms
group by rooms.baseprice → Figure 6e

Ours (✓) visualize scatter select avg(rooms.baseprice), min(rooms.baseprice) from rooms
group by rooms.decor → Figure 6f

TABLE VI: Comparative performance analysis of models and LLMs for vis-to-text task . Best results are highlighted in bold.
Method Setting BLEU-1 BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
Seq2Seq 0.2766 0.1520 0.0296 0.3571 0.1343 0.2893 0.2528
Transformer 0.2825 0.1635 0.0345 0.3634 0.1476 0.2958 0.2755
BART +SFT 0.4301 0.2892 0.1009 0.4721 0.2209 0.3647 0.4586
CodeT5+(220M) +SFT 0.4431 0.3060 0.1236 0.4873 0.2403 0.3770 0.4872
CodeT5+(770M) +SFT 0.4518 0.3154 0.1278 0.4898 0.2431 0.3928 0.4965
GPT-4 (0-shot) 0.3843 0.2210 0.0387 0.4180 0.1527 0.2925 0.4350
LLama2-7b +LoRA 0.3029 0.1520 0.0314 0.3581 0.1055 0.2733 0.3028
Mistral-7b +LoRA 0.3512 0.2431 0.0897 0.4402 0.2158 0.3549 0.3925
DataVisT5 (220M) +MFT 0.4584 0.3160 0.1245 0.5000 0.2437 0.3978 0.4986
DataVisT5 (770M) +MFT 0.4566 0.3155 0.1332 0.4974 0.2460 0.3986 0.4851

D. FeVisQA

Definition. The FeVisQA task is designed to formulate an
answer A to a DV-related question Q, by leveraging a database
D that encompasses a schema S and tables T , all in service
of elucidating DV concepts.
Baselines. In addressing the FeVisQA task, we adopted the

same ensemble of baseline models previously applied to the
vis-to-text task. This ensemble includes an attention-enhanced
Seq2Seq model, the Transformer model, the SFT versions of
the base BART and CodeT5+ models, along with a zero-shot
GPT-4, and LoRA fine-tuned Llama2-7b and Mistral-7b.

Task-specific Corpus. The FeVisQA task necessitated the



TABLE VII: The description examples generated by various vis-to-text methods

DV query
Figure 7 → visualize bar select student.lname, count(student.lname) from student where stuid not in
(select has allergy.stuid from has allergy join allergy type on has allergy.allergy = allergy type.allergy
where allergy type.allergytype = ’food’) group by lname order by count(student.lname) asc

Database Schema
| allergy 1 | allergy type : allergy type.allergy, allergy type.allergytype | has allergy : has allergy.
stuid, has allergy.allergy | student : student.stuid, student.lname, student.fname, student.age, student.sex,
student.major, student.advisor, student.city code

Ground-truth List the last name of the students who do not have any food type allergy and count them in a bar chart,
show Y-axis from low to high order.

Seq2Seq (×) for a bar chart for the the number of the that have the that have the , and a bar chart, and a bar chart.

Transformer (×) Find the last names that some last name when that are not steered by any last name as well using a
bar chart , and rank by the number of last name in asc .

BART (×) A bar chart for finding the number of the names of all students who do not have any allergy with
the allergy type ”Food”, and could you display in ascending by the y-axis?

CodeT5+ (×) Find the number of students who do not have any allergy type for food in each lname with a bar chart.

Ours (✓) Give the number of students who do not have any allergy for food in each last name, show by the
y-axis from low to high with a bar chart.

TABLE VIII: Comparative performance analysis for FeVisQA and table-to-text tasks highlighted by top metric scores.

Method Setting FeVisQA Table-to-Text
- BLEU-1 ROUGE-1 ROUGE-L METEOR BLEU-4 ROUGE-1 ROUGE-L METEOR
Seq2Seq 0.3642 0.3755 0.3683 0.1955 0.1575 0.4539 0.3995 0.3324
Transformer 0.2868 0.2984 0.2903 0.1556 0.0875 0.3838 0.3152 0.2642
BART +SFT 0.7379 0.7391 0.7290 0.4376 0.3824 0.6314 0.5549 0.5845
CodeT5+(220M) +SFT 0.6813 0.6801 0.6694 0.4086 0.3814 0.6183 0.5450 0.5844
CodeT5+(770M) +SFT 0.7039 0.7032 0.6930 0.4211 0.3848 0.6284 0.5511 0.5946
GPT-4 (0-shot) 0.1148 0.1731 0.1599 0.2312 0.1565 0.4277 0.3281 0.4146
LLama2-7b +LoRA 0.4214 0.4336 0.4223 0.2582 0.2010 0.4988 0.4523 0.3923
Mistral-7b +LoRA 0.7404 0.7671 0.7574 0.4251 0.2003 0.5002 0.4538 0.3948
DataVisT5 (220M) +MFT 0.7164 0.7158 0.7051 0.4273 0.3822 0.6259 0.5478 0.5926
DataVisT5 (770M) +MFT 0.7893 0.7895 0.7788 0.4671 0.4199 0.6520 0.5775 0.6227
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Fig. 7: Visualization Chart

formulation of a unidirectional training objective, structured as:
Question + DV query + Schema + Table → Answer. We utilized
the FeVisQA dataset for this purpose, which is elaborated upon
in Section IV-A4 and originates from pre-training datasets.
Results. From Table VIII In the FeVisQA task, the MFT
DataVisT5 model with 770M parameters outperforms com-
petitors across all metrics. Compared to SFT CodeT5+ with
an identical parameter setting of 770M, DataVisT5 exhibited
a significant 10.92% increase in the METEOR score post
fine-tuning, underscoring its remarkable proficiency in answer-
ing free-form questions. This enhanced performance can be
attributed to the integration of textual information and DV
knowledge during the DataVisT5 pre-training phase, which
effectively facilitates the model’s understanding of the complex
cross-domain relationship between text and DV.
Case Study. Upon reviewing the outcomes documented in

Table X, we observe that the Seq2Seq, Transformer, and SFT
BART models exhibit various discrepancies from the ground
truth. The Seq2Seq model consistently produces incorrect
responses, indicating significant misalignment. The Transformer
model correctly identifies the smallest chart segment but lacks
consistency in other queries. SFT BART correctly identifies the
number of chart segments but often overestimates numerical
values. While the SFT CodeT5+ model answers most questions
correctly, it inaccurately responds to ”What is the total number
of count(film.type)?”. In contrast, our DataVisT5 model is the
only one that consistently provides accurate answers across
both binary and numerical inquiries.
E. Table-to-Text

Defination. With a table T as the input, the table-to-text task
is concentrated on producing a clear, readable narrative z that
captures and clarifies the essence of the data within T .
Baselines. Consistent with the previous vis-to-text and Fe-
VisQA tasks, which also focus on text generation modalities,
we selected foundational seq-to-seq models for our analysis: the
Seq2Seq with an attention mechanism, the original Transformer
model, and fine-tuned versions of the base BART and CodeT5+
models, specifically tailored for single-task applications. Ad-
ditionally, we included a zero-shot GPT-4 model and LoRA
fine-tuned Llama2-7b and Mistral-7b in our evaluation.
Task-specific Corpus. For the table-to-text task, we formulated
the unidirectional training target to Table → Description,
utilizing a pre-processed pre-training corpus. We amalgamated
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Fig. 8: Visualization formats of DV Knowledge used in FeVisQA case study
TABLE IX: Sequence formats of DV Knowledge used in FeVisQA case study

DV query Figure 8a → visualize bar select film.type, count(film.type) from film join film market estimation
on film.film id = film market estimation.film id group by type order by type asc

Table Figure 8b → | col : film.type | count(film.type) row 1 : Mass human sacrifice | 1 row 2 : Mass suicide
| 6 row 3 : Mass suicide murder | 2

Database Schema

| film rank | film : film.film id, film.title, film.studio, film.director, film.gross in dollar
| film market estimation : film market estimation.estimation id, film market estimation.low estimate,
film market estimation.high estimate, film market estimation.film id, film market estimation.type,
film market estimation.market id, film market estimation.year

TABLE X: The answer examples generated by various FeVisQA methods
DV Question Ground-truth Seq2Seq Transformer BART CodeT5+ Ours
Is any equal value of y-axis in the chart? No Yes (×) Yes (×) Yes (×) No (✓) No (✓)
How many parts are there in the chart? 3 5 (×) 4 (×) 3 (✓) 3 (✓) 3 (✓)
What is the value of the smallest part in the chart? 1 2 (×) 1 (✓) 1 (✓) 1 (✓) 1 (✓)
What is the total number of count(film.type)? 9 11 (×) 12 (×) 15 (×) 10 (×) 9 (✓)

Fig. 9: Table used in table-to-text case study
TABLE XI: The description examples generated by various table-to-text methods

Table Figure 9 → | col : subjtitle | subjsubtitle | year | english title | publisher | notes row 1 :
so ji-sub | books | 2010 | so ji-sub’s journey | sallim | photo-essays

Ground-truth Sallim was the publisher of so ji-sub’s journey in 2010.
Seq2Seq (×) the format of was was was was was was.
Transformer (×) In movie brand played in 2010.
BART (×) So ji-sub’s journey was published by photo-essays in 2010.
CodeT5+ (✓) So ji-sub’s journey was published by sallim in 2010.
Ours (✓) Sallim was the publisher of so ji-sub’s journey in 2010.

two publicly accessible datasets, Chart2Text and WikiTableText,
which are elaborated upon in Section IV-A2 and Section IV-A3.

Results. As shown in Table VIII, our MFT 770M DataVisT5
model outperforms competing approaches in the table-to-text
task, achieving the highest METEOR score of 0.6227. This
demonstrates DataVisT5’s exceptional ability to generate textual
descriptions from tabular data. Foundational models such as
Seq2Vis and the Transformer struggle with understanding
tables, while the commonly used SFT BART model performs
closely to the SFT CodeT5+ (770M) but is still outpaced
by DataVisT5. Moreover, the GPT-4 and open-source LLMs
also underperform compared to our model. This superior
performance is attributed to DataVisT5’s integration of textual
information and DV knowledge during pre-training.

Case Study. As detailed in Table XI, the Seq2Seq model’s
output significantly diverged from the ground truth, producing
redundant and irrelevant text without the needed factual content.
The Transformer model inaccurately identified the subject as a
movie brand rather than a publisher, missing essential details.
Although SFT BART correctly identified the publication year
and the work’s nature, it misattributed the publisher. In contrast,
while the SFT CodeT5+ model’s responses were semantically
close to the ground truth, our model consistently generated
descriptions that precisely matched the ground truth.

F. Ablation Studies

We conduct experiments to verify the effectiveness of each
critical design in the proposed DataVisT5. Specifically, we
establish the MFT DataVisT5 (770M) with all designed com-



TABLE XII: Ablation study results: average metric values per task multipled by 100

Model Method text-to-vis vis-to-text FeVisQA table-to-text Mean
DataVisT5 (770M) MFT 65.22 36.18 70.62 56.80 57.21

w/o BDC 64.49 -0.73↓ 36.16 -0.02↓ 69.26 -1.36↓ 55.83 -0.97↓ 56.44 -0.77↓
w/o up-sampling 62.95 -2.27↓ 36.41 +0.23↑ 70.69 +0.07↑ 56.34 -0.46↓ 56.60 -0.61↓
w/o MFT 62.36 -2.87↓ 37.12 +0.94↑ 67.35 -3.27↓ 53.98 -2.82↓ 54.93 -2.28↓

DataVisT5 (770M) SFT 65.01 -0.21↓ 36.50 +0.32↑ 70.73 +0.11↑ 55.67 -1.13↓ 56.98 -0.23↓
CodeT5+ (770M) SFT 62.79 -2.43↓ 35.96 -0.22↓ 63.03 -7.59↓ 53.97 -2.83↓ 53.94 -3.27↓
T5-large SFT 61.34 -3.88↓ 33.58 -2.60↓ 61.90 -8.72↓ 52.03 -4.77↓ 52.21 -5.00↓

ponents as the baseline. We created variants of DataVisT5 by
omitting the BDC objective in the pretraining stage, removing
temperature up-sampling during MFT, and evaluating without
MFT in a zero-shot setting. Additionally, we compare the use
of SFT and MFT, and CodeT5+ versus T5-large as the starting
point. From Table XII, it is evident that removing or replacing
designed components results in performance degradation across
the mean performance of the four tasks, which indicates the
effectiveness of the critical design components in DataVisT5.

VI. RELATED WORK

A. Pre-training for Data Engineering Tasks

Pre-trained models have been shown to be effective for
language representations and beneficial for downstream tasks
by substantial work [20], [21], [43]–[48]. All the success has
also driven the development of machine language pretraining,
which is in special format of text such as code and sql.
CodeBert [49] is a bimodal pre-trained model for natural
language and programming language in a bert-like architecture,
showing that pretraining can improve the performance for
code-related tasks. TaBert [50], TAPAS [28] and GraPPa [51]
extend pre-trained models to learn a joint representation of NL
text and database tables and demonstrate the effectiveness of
semantic parsing tasks. Based on pre-trained language models,
Rat-SQL [52] and Proton [53] enhance text-to-SQL parsing
by focusing on schema linking and alignment, whereas StruG
[54] specifically targets improvements in text-table alignment.

Moreover, the development of domain-adapted pre-trained
models, such as CodeT5 [22] for code understanding and
generation, MolT5 [23] for molecule captioning and generation,
and BioT5 [55] which integrates cross-modal data in the
biological domain with chemical structures and linguistic
contexts, highlights the importance of specialized training
beyond a generic T5 framework. These adaptations emphasize
the necessity of domain-specific fine-tuning to effectively
capture the contextual nuances inherent in specialized corpora.

B. DV-related Tasks

Benefiting from the convenience of visualization, various
studies related to DV, including text-to-vis, vis-to-text, free-
form question answering over DV and table-to-text, have
attracted considerable research interest within the community.
The initial text-to-vis systems were based on predefined rules
or templates [56]–[59]. Although efficient, these systems were
limited in their ability to handle the linguistic variability
of user queries. To overcome these limitations, researchers
have turned to neural network-based methods. For example,

Data2Vis [60] conceptualizes visualization generation as a
sequence translation task, employing an encoder-decoder neural
architecture. Similarly, RGVisNet [29] initiates the text-to-
vis process by retrieving a relevant query prototype, refining
it through a graph neural network (GNN) model, and then
adjusting the query to fit the target scenario. Concurrently,
vis-to-text has been proposed as a complementary task, with
improvements in performance demonstrated through a dual
training framework [18]. Song et al. [12] further define the
task of free-form question answering over DV and introduce
the FeVisQA dataset, aiming to enhance the understanding of
data and its visualizations.

Moreover, learning-based approaches have demonstrated ex-
ceptional performance in visually data wrangling and analytical
tasks. For instance, Liu et al. [61] and Obeid and Hoque [62]
have successfully translated visual data into textual descriptions
and automated natural language summaries for charts using
transformer-based architectures, respectively. In a similar vein,
Spreafico and Carenini [63] have employed LSTM-based and
neural network models to summarize time-series and chart
data. Additionally, Kantharaj et al. [31] have contributed to
the evolving benchmark in chart summarization. Furthermore,
Juno [64], a cross-modal entity matching framework, has
been developed to contextualize information retrieved from
visually rich documents and gather actionable insights, thereby
addressing challenges posed by the ad-hoc and often incomplete
information in such documents.

VII. CONCLUSION

In this study, we propose DataVisT5, a novel PLM specifi-
cally designed for DV, which enhances the integration of cross-
modal information in DV knowledge and natural language
associations. This model introduces a unique mechanism to
capture highly relevant database schemas from natural language
mentions of tables, effectively unifying and normalizing the
encoding of DV knowledge, including DV queries, database
schemas, and tables. Our novel hybrid pre-training objectives
unravel the complex interplay between DV and textual data,
fostering a deeper integration of cross-modal insights. By
extending the text-centric T5 architecture to adeptly process
cross-modal information, DataVisT5 addresses multiple tasks
related to DV with remarkable performance. Our extensive
experimental results demonstrate that DataVisT5 consistently
outperforms SOTA models and even higher-parameter LLMs
across a wide range of DV tasks, expanding PLM applications
and pushing the boundaries of what is achievable in automated
data visualization and interpretation.
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