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Abstract—Text-to-Vis is an emerging task in the data engineer-
ing and mining area that aims to automatically generate data
visualizations from natural language questions (NLQs). Despite
their progress, existing text-to-vis models often heavily rely on
lexical matching between words in the questions and tokens in
data schemas. This overreliance on lexical matching may lead to
a diminished level of model robustness against input variations.
In this study, we thoroughly examine the robustness of current
text-to-vis models, an area that has not previously been explored.
In particular, we construct the first robustness dataset nvBench-
Rob, which contains diverse lexical and phrasal variations based
on the original text-to-vis benchmark nvBench. Then, we found
that the performance of existing text-to-vis models on this
new dataset dramatically drops, implying that these methods
exhibit inadequate robustness overall. Finally, we propose a novel
framework based on Retrieval-Augmented Generation (RAG)
technique, named GRED, specifically designed to address input
perturbations in these two variants. The framework consists
of three parts: NLQ-Retrieval Generator, Visualization Query-
Retrieval Retuner and Annotation-based Debugger, which are
used to tackle the challenges posed by natural language variants,
programming style differences and data schema variants, respec-
tively. Extensive experimental evaluations show that, compared
to the state-of-the-art model Prompt4Vis in the Text-to-Vis field,
GRED performs better in terms of model robustness, with a 40 %
increase in accuracy on the proposed nvBench-Rob dataset.

Index Terms—text-to-visualization, model robustness, large
language model, retrieval-augmented generation, input variation

I. INTRODUCTION

Data visualization (DV) has emerged as an indispensable
tool in the industry for extracting insights from massive data.
It surpasses verbal expressions, offering a clear and effective
presentation of insights derived from raw data. The process
of creating DVs involves programming declarative visualiza-
tion languages (DVLs) to select relevant data and determine
how to present it. With a wide variety of different DVLs
available—each characterized by its own distinctive grammar
and syntax, such as Vega-Lite [1], ggplot2 [2], ZQL [3], and
ECharts [4]—the need for considerable domain knowledge and
proficiency in DVL is required, posing a particularly challenge
to those who lack technical expertise.

To enhance the accessibility of DV, a task named text-to-vis
has been proposed, which offers a mechanism to automati-
cally transform natural language questions (NLQs) into DV
charts [5], [6]. Exemplified in Figure 1, the text-to-vis system
requires users to upload a database and then simply ask a
NLQ, such as, “Draw a bar chart about the change of salary

over hire_date, sort x axis in asc order.” It then automatically
generates the final DV, such as a bar chart, by interfacing with
the database, thereby circumventing the need for users to code
directly in a DVL.

To deploy text-to-vis models in real-life, it is crucial for
these models to possess the capability to handle NLQs from
diverse users. Therefore, the robustness of the model, which
refers to its ability to maintain consistent performance and
accurate predictions in the face of input variations, plays
a crucial role in evaluating the performance of text-to-vis
models. High model performance requires robust performance
on noisy inputs. However, the robustness of text-to-vis models
poses a significant challenge. In our analysis (Section 1V),
we found that even small perturbations in the input may
significantly reduce the performance of existing text-to-vis
models. Furthermore, there is still a lack of dedicated robust-
ness datasets and studies in the field to effectively evaluate the
robustness of text-to-vis models.

We notice that the NLQs in the original text-to-vis dataset
nvBench [5] usually explicitly mention the information present
in the database, like explicit mentions of column names. This
characteristic makes the test results of nvBench unsuitable
for evaluating the robustness of the text-to-vis models. It is
difficult to ascertain whether the model simply memorizes the
explicitly mentioned schema, such as column names, or if it
genuinely learns the natural mapping relationship between the
NLQ and data schema.

The lack of large-scale datasets is one of the significant
factors that limits the robustness studies in the text-to-vis field.
In this work, we propose the first comprehensive robustness
dataset named nvBench-Rob to evaluate the robustness of the
text-to-vis models. nvBench-Rob aims to provide a compre-
hensive evaluation of models based on two variants: NLQ and
data schema, as shown in Figure 1. With these two variants,
we thoroughly examine the robustness of the current text-to-
vis models, an area that has not previously been explored.
We found that the performance of existing text-to-vis models
dramatically drop, implying these methods exhibit inadequate
robustness.

To enhance the robustness of text-to-vis models, we propose
a novel framework named GRED based on the Retrieval-
Augmented Generation (RAG)-based technique for Large Lan-
guage Models (LLMs) [7]-[11]. This framework comprises
three core components: NLQ-Retrieval Generator, DVQ-
Retrieval Retuner, and Annotation-based Debugger, aimed at
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Fig. 1: (a) Text-to-vis is dedicated to converting natural language questions (NLQs) into data visualizations (DVs). The current
approach heavily relies on explicit matching between words within the NLQs and the table schema. (b) The robustness of
existing text-to-vis methods is limited. When small variations in NLQs and table schemas appear, the text-to-vis model fails

to generate correct outputs (marked with ‘<’ in red color).

addressing variants of NLQs, differences in programming
styles, and changes in data schema, respectively. '
Specifically, in the preparation phase, GRED utilizes a
pre-trained text embedding model [12], [13] to convert all
NLQs and DVQs contained in the nvBench training set
into embedding vectors, thus creating an embedding vector
repository. Then, ChatGPT is used to generate natural lan-
guage annotations for each database, creating a collection
of annotated database sets. Once ready, for NLQs sent into
the text-to-vis system, GRED first uses the pre-trained text
embedding model to convert them into embedding vectors
and calculates their cosine similarity with the embedding
vectors of NLQs in the training set. Then, the top-K most
similar NLQs are selected, and their corresponding examples
are combined into a generation prompt in descending order
of similarity, which is input into ChatGPT to generate the
corresponding DVQ, referred to as DVQgeq. Next, DVQgey, is
converted into embedding vectors, and its cosine similarity
with DVQ embedding vectors in the library is calculated.
The top-K most similar DVQs are selected to construct a
tuning prompt, which is then input into ChatGPT to mimic
a similar programming style, resulting in DVQyy,. Finally, the
database with natural language annotations and DVQ,, are
combined into a debugging prompt, inputted into ChatGPT

IDVQ refers to Data Visualization Query [5], [6], which is a widely-used
intermediate representation that connects NLQ with the DVLs like Vega-Lite
and ECharts.

to replace inappropriate data schema in DVQyy,, obtaining the
final DVdeg.

Experimental results on nvBench-Rob indicate that GRED
significantly surpasses existing text-to-vis models in terms
of model robustness. Compared to the current state-of-the-
art (SOTA) text-to-vis model RGVisNet, GRED achieves an
accuracy improvement of almost 20% on the single-variant
test set and 30% on the dual-variant test set. These results
verify the effectiveness of GRED in enhancing the robustness
of text-to-vis models.

In a nutshell, the contributions of our work are threefold:

o To our knowledge, we are the first to comprehensively
study the robustness of the text-to-vis task; We hope this
work will inspire more research on improving the robust
data visualization models.

o We construct and release nvBench-Rob 2, the first ded-
icated dataset to evaluate the robustness of text-to-vis
models. We observed significant performance drops of
SOTA text-to-vis models on this robustness scenario,
revealing that even SOTA models still possess significant
potential for further exploration.

o« We designed a novel framework called GRED, based
on RAG technique. This framework effectively addresses

2The robustness test set nvBench-Rob, the source code of

the newly designed framework GRED, and the online technical
report are all available at https:/1drv.ms/f/c/80e862c5ba9a0a46/
EmSwdjXJgRIEhCrnsOcYzhYBLOe28qMF8ICZIHolpzqCAA?e=e90Kfs



the high sensitivity of text-to-vis models to input per-
turbations and inconsistencies in programming styles. It
provides an innovative paradigm for leveraging LLMs to
tackle robustness issues in the text-to-vis field.

e We conducted extensive experiments on the new ro-
bustness test set. Through a detailed analysis of the
experimental results, we demonstrate that existing text-to-
vis models, when trained on benchmark datasets, exhibit
a lack of generalization to practical situations. In contrast,
our proposed framework, GRED, outperforms current
state-of-the-art (SOTA) models by 30% in accuracy,
suggesting that GRED demonstrates superior robustness,
enabling better generalization to real-world contexts.

The subsequent sections of this paper are organized as

follows. Section II provides a review of the related literature.
Section III outlines the construction process and features of
the proposed dataset, nvBench-Rob. Section IV conducts a
detailed analysis of the performance of current models on the
new robustness test set, nvBench-Rob, through case studies.
Section V introduces the GRED framework, which is founded
on RAG and tailored to real-world scenarios, offering an
elaborate explanation. Experimental findings are presented in
Section VI. Lastly, Section VII serves as the conclusion of our

paper.
II. RELATED WORK

This research intersects three key fields: automatic data
visualization, robustness in data engineering, and RAG for
LLM. In this section, we will provide a concise overview of
the most relevant works within each domain.

A. Automatic Data Visualization

Recent years, there has been significant growth in the
adoption of Data Visualization (DV) in the fields of nat-
ural language processing [14], data mining [6], [15]-[17],
and database community [5], [18]-[21]. Various advanced
techniques have been developed to simplify the use of DV.
We will cover two typical approaches: text-to-vis and DV
Recommendation.

Text-to-vis primarily aims to convert a natural language
question (NLQ) into its equivalent DV, simplifying the process
for non-specialist users. The prevailing approach treats this
conversion similarly to machine translation, engaging deep
neural networks to map NLQs to DVs [22]-[24]. For instance,
Cui et al. introduced the concept of text-to-viz, employing
rule-based systems to convert text into infographics [25]. Luo
et al. also delineated a methodology for synthesizing the NLQ-
DV dataset, known as nvBench, predicated upon the renowned
NL2SQL benchmark, Spider [26]. A Seq2Seq model was
subsequently trained on this benchmark [5], corroborating the
viability of engendering DV queries from NLQs. RGVisNet
[6] represents another seminal study in which a DNN-based
approach is employed to transform NLQ into DV. On the
other hand, automated DV recommendation systems output
probable DVs from datasets without any NLQ involvement.
DataEye [21] simplifies this problem into recognition, ranking,

and selection steps. Qian et al. [15] introduced an end-to-end
learning-based approach for constructing DVs from extensive
datasets.

Despite the abundance of models in text-to-vis, the robust-
ness of these models remains underexplored. We introduce
nvBench-Rob, the first dataset designed to comprehensively
evaluate the robustness of existing text-to-vis models. Fur-
thermore, we propose a novel RAG-based framework called
GRED, designed to address perturbations in the model’s
input from three aspects: NLQ variants, programming style
differences, and data schema variants. With the benchmark
and the method proposed in this paper, nvBench-Rob would
become a popular dataset for evaluating the robustness of
text-to-vis models and inspire further research in the NLP for
Visualization direction.

B. Robustness in Data Engineering

The robustness of a model is a crucial evaluation criterion
for its deployment in real-life scenarios. In the field of NLP,
there have been numerous studies on model robustness. Some
studies have investigated the influence of model inputs on
robustness [27]-[30]. Other studies have proposed domain-
specific optimization methods for model robustness [31]-[33].
Besides, some studies have introduced evaluation metrics to
evaluate model robustness across various domains [33]. In
another study, Zhao et al. [31] introduced a benchmark named
ROBUT, which incorporates human-annotated perturbations
in table headers, table content, and questions to evaluate the
robustness of Table QA models. A comprehensive survey on
Robustness in NLP can be found in [34].

In our research, to thoroughly assess the robustness of text-
to-vis models, we introduce a robustness evaluation dataset
called nvBench-Rob. Through collaboration between a LLM
and human annotators, this dataset not only removes explicit
mentions of column names in NLQs but also integrates a
variety of language styles in the NLQs. Furthermore, it encom-
passes a variety of naming conventions for the table schemas
in the dataset, thus creating an exceptionally robust evaluation
dataset.

C. RAG for LLM

Retrieval-Augmented Generation (RAG) technology has be-
come the primary method to fully utilize the capabilities
of LLMs in downstream tasks [35], [36]. It has achieved
notable results in various tasks such as open-domain QA [37],
dialogue [38], domain-specific question answering [39] and
code generation [40]. Additionally, a noteworthy work is
PURPLE [41], which combines RAG technology, in-context
learning techniques, and the use of small language models
to assist LLM. This work has achieved new SOTA results
on the NL2SQL benchmark dataset Spider [26] and has been
published by ICDE’23.

We introduced a RAG-based framework called GRED,
which effectively addresses this issue by breaking down the
visualization query generation process into subprocess, pro-
gressively approximating the ultimate goal. This approach
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Fig. 2: The pipeline of dataset construction. In the ChatGPT Modification step, the NLQs from the development set separated
from nvBench were restructured, and synonymous replacements were made to the table schemas of the databases involved;
subsequently, in the Manual Correction step, the entire new dataset was manually inspected, and cases that were incorrect were

manually corrected.

fully utilizes the role of outdated external knowledge. We are
the first to validate the effectiveness of the RAG technique in
the robust text-to-vis scenario.

III. ROBUSTNESS DATASET: NVBENCH-ROB

In this chapter, we will provide a detailed introduction to the
construction process of nvBench-Rob, which can be broadly
divided into two steps: ChatGPT Modification (Section III-B)
and Manual Correction (Section III-C). The ChatGPT Mod-
ification step can further be divided into two sub-processes:
NLQ Reconstruction and Schema Synonymous Substitution.

A. Overview

The construction process of nvBench-Rob is shown in
Figure 2. We constructed nvBench-Rob benchmark, the first
comprehensive robustness evaluation dataset in the field of
text-to-vis, through a collaboration between LLMs and hu-
mans. Specifically, we utilized LLMs to first modify the
original dataset and then manually corrected the modified
dataset, which not only saved labor costs but also allowed
for diverse language styles and database naming habits within
the dataset.

In nvBench-Rob, we have meticulously designed three ro-
bustness test sets to comprehensively evaluate the models from
various perspectives: robustness to NLQs, robustness to table
schemas, and robustness to the combination of both.

B. ChatGPT Modification

The LLM is a kind of large-scale models trained on a mas-
sive corpus, demonstrating outstanding capability in natural
language processing (NLP) tasks. ChatGPT is one of these
representative models. Through ChatGPT [11], we can harness
its powerful NLP capability to process the dataset.

The existing nvBench dataset usually explicitly mentions
table schema (such as column names) and DVQ keywords
(e.g., Bin and Group) in the NLQs. This makes it difficult for
models trained on this dataset to perform well in scenarios
where users have limited knowledge of DV. For instance,
users may lack knowledge of table schemas and DVQ syntax
(Figure 1). During training, the model may only learn the
explicit alignment between NLQ, table schemas, and DVQ,

rather than truly understanding how to conduct schema linking
semantically. This also reflects that nvBench cannot effectively
evaluate the robustness of the model.

LLMs can be potentially used to address the above issues.
With its powerful NLU capability, we can utilize LLMs
like ChatGPT to simulate various user interaction behaviors,
thereby enhancing the robustness of the text-to-vis dataset.

NLQ Reconstruction. We reconstructed the NLQs in nvBench
using ChatGPT, without focusing on explicit mentions of table
schema and DVQ keywords within the sentences. Specifically,
we replaced most of the nouns in the sentences with synonyms
based on the context, aiming to minimize the explicit mention
of table schema in the NLQs. With these modifications, we
simulated the interaction between a user who is unfamiliar
with both the database information and DVQ syntax and the
text-to-vis model.

Schema Synonymous Substitution. We attempted to utilize
the approach used in MultiSpider [42] by inputting the format
“table(column)[type]” into ChatGPT, with the aim of having
it to return a column name with equivalent meaning in that
context. However, the results were consistently unsatisfactory.
As a result, we refined the method by constructing prompts
that included database name, table names, column names, and
column types, such as “In the ‘cinema’ table ‘cinema’ based
on the filmdom’ database, what alternative name could be
used for a column with the data type ‘Text’ that conveys a
similar meaning to ‘Movie’? Please return only one English
word rather than a sentence.” It was empirically demonstrated
that this approach yielded superior results. Nevertheless, this
method still has several limitations. For instance, in most
cases, a table named “happy_hour” may have a column named
“HH_ID”, and the model is unaware that “HH” represents
“happy_hour”. To address these limitations, we made manual
modifications.

C. Manual Correction

The output of LLM is characterized by instability. To ensure
the efficacy of the dataset, it is necessary for us to undertake
manual corrections on the entire dataset. In particular, as
mentioned in Section III-B, ChatGPT often fails to meet the
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robustness requirements when performing schema synonym
substitution. Hence, we conducted a comprehensive and de-
tailed manual modification of the entire nvBench-Rob dataset.
This step constitutes the most critical and valuable aspect of
dataset construction.

IV. ANALYSIS ON NVBENCH-ROB

In this chapter, we will first conduct a detailed analysis of
nvBench-Rob and present its comprehensive features. Then,
through the analysis of experimental results, we will examine
the performance of existing text-to-vis models on this dataset,
thereby reflecting their ability to generalize to real-world
scenarios.

A. Dataset Analysis

Following the 80/4.5/15.5 ratio identified in ncNet [43], we
randomly divided nvBench into three segments. Ultimately, we
obtained a development set consisting of 1182 pairs of (NL,
VIS), involving a total of 104 databases. We then constructed
the following three levels of robustness test sets:

o nvBench-Rob,;,: For the 1182 pairs of (NL, VIS) in
the development set, we applied NLQ Reconstruction
and Manual Correction, as described Section III, to
create a test set that underwent only NLQ robustness
modifications. This test set is used to evaluate how text-
to-vis models perform when faced with NLQ variants,
simulating questions posed by real users.

« nvBench-Rob,,,..: For the 104 databases included in
the development set, we conducted Schema Synonymous
Substitution and Manual Correction, following the guide-
lines in Section III, to robustly modify the databases. The
resulting test set mirrors the creation of databases under
diverse naming conventions commonly seen in real-world
scenarios, evaluating the ability of text-to-vis models to
handle diverse schema naming rules.

o nvBench-Roby,;; schema): For the 1182 pairs of (NL, VIS)
and the 104 databases in the development set, we car-
ried out comprehensive robustness modifications included
NLQ Reconstruction and Schema Synonymous Substitu-
tion. As a result, we created the most challenging and
representative test set of real-world scenarios for text-to-
vis models.
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Fig. 4: The performance of existing text-to-vis models dramat-
ically drops on the nvBench-Rob datasets.

All three of these test sets have identical distributions of visu-
alization chart types and DVQ difficulty levels, as illustrated
in Figure 3.

B. Robustness Analysis on nvBench-Rob

As shown in Figure 4, the accuracy of existing text-to-vis
models significantly decreased on the nvBench-Rob test set
compared to the nvBench test set. Specifically, on a no-cross-
domain split, the previous SOTA text-to-vis model, RGVisNet,
achieved an accuracy of 85.17% on the nvBench test set,
and other text-to-vis models also performed satisfactorily.
However, even RGVisNet’s accuracy dropped to 24.81% on
the nvBench-Rob test set, which comprises both NLQs and
data schema variants, marking a 60.36% decrease compared
to its performance on the nvBench test set. This highlights
the lack of robustness of the nvBench dataset and the high
sensitivity of models trained on it to perturbations in model
input.

For example, in the nvBench training set, data schemas
like column names are explicitly mentioned in the NLQs,
such as “ACC_Percent,” enabling text-to-vis models to easily
learn the explicit connection between NLQ and data schema.
In the nvBench-Rob test set, NLQs no longer explicitly
mention database column names, and sentences are recon-
structed. Moreover, the column names in the database have
been replaced with synonyms, for example, “ACC_Percent”
has been replaced with “percentage_of ACC.” In these cases,
previous text-to-vis models all fail to perform schema linking
correctly, with RGVisNet still choosing the same column name
”ACC_Percent” as in the training data, while models like
Seq2Vis and Transformer are unable to generate the correct
DVQ keywords.

V. GRED: A ROBUSTNESS FRAMEWORK BASED ON
RETRIEVAL-AUGMENTED GENERATION

To enhance the robustness of text-to-vis models, we pro-
pose a novel RAG-based framework, named GRED. This
framework comprises three core components: NLQ-Retrieval
Generator, DVQ-Retrieval Retuner, and Annotation-based
Debugger, aimed at addressing variants of NLQ, differences in
programming styles, and changes in data schema, respectively.
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the final result DVQ_Dbg.

Before all the main processes of GRED, there are some
preparatory works that need to be completed.

A. Preparatory Phase

The preparatory phase comprises two key steps: the es-
tablishment of an embedding vector library and the con-
struction of an annotated database collection. Specifically,
for the training set partitioned by nvBench, each NLQ and
its corresponding DVQ are input into a pre-trained text em-
bedding model to derive the associated embedding vectors,
thereby populating the embedding vector library. The pre-
trained text embedding model utilized in this work is the texz-
embedding-3-large model released by OpenAl. Regarding the
construction of the annotated database collection, this process
entails supplying database information to GPT-3.5-Turbo as
prompts to generate corresponding NL annotations, which are
then stored collectively.

B. Pipeline of GRED

NLQ-Retrieval Generator. For the NLQs input into the
text-to-vis system, GRED first converts them into embedding

vectors using the text-embedding-3-large model mentioned
in Section V-A, and then calculates their cosine similarity
with the embedding vectors of NLQs in the embedding
vector library constructed during the preparation. After that,
it selects the top-K most similar NLQs and assembles their
corresponding examples into a generation prompt. This prompt
is then input into LLM like GPT-3.5-Turbo to generate the
corresponding DVQ, referred to as DVQge,. This approach
allows the LLM to achieve more accurate results based on the
examples, thus reducing the model’s hallucinations.

#### Given Natural Language Questions,
Generate DVQs based on their correspoding
Database Schemas.
{Top—-K_Examples}

### Database Schemas:
{Schemas_str}

### Chart Type: [ BAR , PIE ,
### Natural Language Question:
# M {NLQ}’

### Data Visualization Query:
Visualize

LINE , SCATTER ]




The above is the prompt template used in the NLQ-Retrieval
Generator. By using structured text expression and clear con-
text organization, the task objectives for the LLM and the
exemplary cases to be referenced when completing the task
are clearly defined.

DVQ-Retrieval Retuner. Similar to the retrieval process with
NLQ, convert DVQ,, into embedding vectors, and calculate
the cosine similarity with the DVQ embedding vectors in the
embedding library constructed in Section V-A. Select the top-
K most similar DVQs to construct retuning prompts, and then
input them into LLM, such as GPT-3.5-Turbo, to mimic similar
programming styles, thereby generating DVQy,. The purpose
of this step is to perform fine adjustments to the DVQ, such
as choosing between “IS NOT NULL” and “!= "null””.

The following is the prompt template used in the DVQ-
Retrieval Retuner. This template is similar to the structured
expression in the NLQ-Retrieval Generator. However, the
difference lies in the fact that the purpose of the DVQ-
Retrieval Retuner is solely to address the issue of diverse DVQ
styles in the dataset. Therefore, in this step, it is only necessary
to provide the reference DVQ and the DVQge, that needs to
be modified.

### Reference DVQs:

{Top—-K_DVQs}

#### Given the Reference DVQs, please modify
the Original DVQ to mimic the style of the
Reference DVQs.

### Original DVQ:

# {DVQ_Rtn}

A: Let’s think step by step!

Annotation-based Debugger. The examples in the embedding
vector library constructed in Section V-A all come from
nvBench, which means these examples do not contain data
schema variations. This will cause LLMs to experience illu-
sions when encountering data schema variants, resulting in the
generation of DVQs with incorrect column names. To tackle
this problem, an annotation-based debugger component is
introduced. Specifically, this involves combining the database
with NL annotations and DVQ, into debugging prompts.
Then, inputting them into GPT-3.5-Turbo and asking it to
replace the inappropriate column names in DVQy, to obtain
the final DVdeg.

#### Please generate detailed natural language
annotations to the following database schemas
### Database Schemas:

{Schemas_str}

### Natural Language Annotations:
{Annotation_of_ DB}

#### Given Database Schemas and their
corresponding Natural Language Annotations,
Please replace the column names in the Data

Visualization Query that do not exist in the
database.

### Original DVQ:

# {Original_DVQ}

A: Let’s think step by step!

Algorithm 1: GRED Algorithm

Inputs : NLQ list in Test Set Q;
Schema list in Test Set S;
NLQ list in Training Set Q’;
DVQ list in Training Set D’
Output: DVQ list D
1 Procedure GRED (Q, S):

// Preparatory Phase

2 AV« {}
3 for each db € S do

//
4 A.append(GENANN (db))
5 for each (¢',d') € (Q',D') do

//
6 V.append(GENEME (¢'), GENEMB (d))

// Pipeline of GRED

7 D+ []
8 for each (q,s) € (Q,S) do

//
9 Qret & RETRIEVE-BY-NLQ (g, V)
10 Peen < PrROMPT-Maker (q, S, Q)
11 Dgen <= CALL-LLM (Pgen)

//
12 Dret <= RETRIEVE-BY-DVQ (Dgepn, V)
13 Prn < ProMPT-Maker (Dgen, q, S, Drey)
14 Ditn-append(CALL—LLM (Pr) )

//
15 Pin <+ PrOMPT-Maker (D, s, A[MATCH (S) ])
16 D.append(CALL-LLM (Pn) )
17 return D

The prompt template used in the Annotation-based Debug-
ger is as above. This step’s template does not use NLQ because
the words in the NLQ might cause hallucinations in the LLM,
leading it to mistakenly believe that the incorrect schemas in
the DVQ are correct (since the schema matches the words in
the NLQ). In reality, these schemas are stored in the database
in the form of their synonyms. For example, ’date_of_hire’
mentioned in the NLQ actually refers to the "hire_date’ column
in the database.

In summary, the NLQ-Retrieval Generator ensures that the
model’s output is structurally similar to the target DVQ. The
DVQ-Retrieval Retuner ensures that the model’s output closely
aligns with the target DVQ in terms of minor programming
styles. Lastly, the Annotation-based Debugger guarantees the
correctness of the data schema mentioned in the model’s
output DVQ.

The algorithm for the complete GRED process is repre-
sented as Algorithm 1. GRED requires all cases from the
training and test sets, namely Q' and D’ (the NLQ list and
DVQ list from the training set) and Q and S (the NLQ list and
Schemas list from the test set). During the preparation phase,
it constructs the annotation set A for the database and uses Q'
and D’ from the training set to build a retrieval library V for
supplementing external knowledge to the LLM. Subsequently,
in the formal workflow of GRED, for each example in Q
and S, it performs the steps of NLQ-Retrieval Generator,
DVQ-Retrieval Retuner, and Annotation-based Debugger. The
results obtained are added to the final result list D. Finally, D



is returned, and the workflow ends.

VI. EXPERIMENTS AND ANALYSIS

In this section, we present the experimental setup and report
the evaluation results. Through comparative analysis with
other baselines, we demonstrate that our model outperforms
baselines in terms of robustness, thus verifying the effective-
ness of GRED.

A. Experimental Setup

Datasets We evaluate the robustness of the previous text-to-vis
model on the nvBench-Rob test set. The nvBench-Rob test set
comprehensively evaluates the model’s robustness from three
different dimensions: the NLQ single-variant test set, the Data
schema single-variant test set, and the dual-variant test set.
Therefore, there are three sets of evaluations:

« nvBench-Rob,,,;: a testing set from nvBench-Rob, con-
taining only NLQ variants, is specifically designed to test
the robustness of models against NLQ variants.

« nvBench-Rob,...,: a testing set from nvBench-Rob,
containing only data schema variants, is specifically
designed to test the robustness of models against data
schema variants.

o nvBench-Roby,;; schema): a testing set from nvBench-Rob,
containing both NLQ variants and data schema variants,
is specifically designed to test the robustness of models
against both NLQ variants and data schema variants.

Baselines. We evaluated GRED and previous text-to-vis mod-
els on nvBench-Rob, with the baseline models as follows:

o Seq2Vis: Adopting the Seq2Vis model from ncNet [5]
as a baseline, Seq2Vis is a sequence-to-sequence model
comprising an encoder and a decoder.

« Transformer: Utilizing the Transformer model from [44]
which is primarily constructed on attention mechanisms,
enabling it to understand the input effectively and gener-
ate the output.

« RGVisNet: RGVisNet [6] utilizes a hybrid retrieval-
revision network structure to retrieve the code repos-
itory for relevant code based on the NLQ and table
schemas, and then revises it accordingly, leading to high-
performance outcomes.

o Few-Shot LLM: Few-Shot Prompting is an important
technique in in-context learning. By providing a few
examples in the context, it enables LLMs to understand
and follow the instruction.

o Prompt4Vis: Prompt4Vis [45] is currently the state-of-
the-art (SOTA) solution for the text-to-vis task. This
method is mainly divided into three processes: Exam-
ple Mining, Schema Filtering, and the final generation
process by the LLM.

o Self-correct LLM: To introduce a more powerful LLM
framework based on the self-correct mechanism as a
baseline model, we designed an LLM framework that
performs self-correction mechanism based on execution
results of DVQ, inspired by self-debug [46]. This frame-
work employs the same DVQ generation module as

GRED and uses a specially designed execution-based
debugger to correct the DVQ.

« Fine-tuned Llama: To address the issue of DNN-based
models experiencing a sharp decline in performance when
encountering unknown tokens, we specifically fine-tuned
a small LLM to represent the performance of the model
training approach when dealing with NLQ variants and
database schema variants. The small LLM we used is
Llama-3.2-1B. The training method employed is full-
parameter fine-tuning.

e GRED: GRED is a framework proposed in this work,
consisting of three components that address the issues of
weak robustness in text-to-visualization models caused by
NLQ variants, DVQ programming style differences, and
Data Schema variants. To fully validate the effectiveness
of GRED on other LLMs, we conducted experiments on
both GPT-3.5-turbo and Qwen—-plus.

All these baseline models are trained or acquire external
knowledge on the training set of the benchmark dataset
nvBench, and their performance is tested and detailed robust-
ness analysis is conducted on nvBench-Rob.

Detailed Definitions of the Evaluation Metrics. Following
[5], [6], four popular metrics, namely Vis Accuracy, Data
Accuracy, Axis Accuracy, and Overall Accuracy, are used
in our experiment to evaluate the performance. The detailed
definitions of these four metrics are as follows.

e Overall Accuracy: This metric measures exact matches
between the predicted DV query and the target DV query.
The accuracy calculation formula is:

Acc. = N. / N
where N, represents the number of the matched DV
queries and N represents the size of the test set. This
metric directly reflects the comprehensive performance
of the model.

o Vis Accuracy: Each DVQ consists of three types of
components: the DV chart type, the x/y-axis, and the
data transformation. This evaluation metric reflects the
matches between the generated DVQ and the target DVQ
in terms of the type of DV chart. The accuracy calculation
formula is:

Vis Acc. / N
Where Ny;s represents the number of DV chart types in
the generated DVQs that match the DV chart types in the
target DVQs.

o Axis Accuracy: This evaluation metric calculates the
matches of the x/y axis components between the gener-
ated DVQs and the real DVQs. The accuracy calculation
formula is:

= Nyis

Axis Acc. = Nayis / N
where Nayis represents the number of x/y-axis compo-
nents in the generated DVQs that match the x/y-axis
components in the target DVQs.
e Data Accuracy: Similarly, this measurement reflects the
matches of the data transformation components between
the generated DVQs and the target DVQs. The accuracy



nvBench-Rob,,

Model Vis Acc. Data Acc. Axis Acc. Acc.

Seq2Vis 93.91% 38.83% 42.23% 34.52%
Transformer 91.62% 48.22% 49.24% 36.04%
RGVisNet 96.37% 53.04% 70.12% 45.87%
Few-Shot LLM 97.04% 33.93% 44.92% 22.17%
Prompt4Vis 86.67% 29.63% 35.82% 17.49%
Self-correct LLM 97.88% 45.01% 70.98% 41.29%
Fine-tuned Llama 98.22% 74.20% 84.01%  71.91%
GRED (gwen-plus) 98.39% 58.46% 76.99% 53.47%
GRED (gpt-3.5-turbo)  97.63% 61.93% 88.41% 59.98%

TABLE I: Results in nvBench-Rob,,,
nvBench-Rob;maq

Model Vis Acc. Data Ace. Axis Acc. Acc.

Seq2Vis 96.79% 18.02% 15.40% 14.55%
Transformer 92.22% 41.88% 38.16% 29.61%
RGVisNet 98.33% 55.09% 60.83% 4491%
Few-Shot LLM 96.79% 30.29% 31.64% 17.26%
Prompt4Vis 88.06% 28.45% 25.90% 14.84%
Self-correct LLM 97.72% 71.32% 50.08% 45.43%
Fine-tuned Llama 98.05% 57.28% 57.78% 49.41%
GRED (gwen-plus) 98.48 % 59.90% 81.22% 55.75%
GRED (gpt-3.5-turbo)  97.72% 65.48% 85.03% 61.93%

TABLE II: Results in nvBench-Roby.¢n.
nvBench-Roby,;y schema)

Model Vis Acc. Data Ace. Axis Acc. Acc.

Seq2Vis 94.16% 7.45% 7.11% 5.50%
Transformer 92.13% 22.59% 18.87% 12.77%
RGVisNet 96.76% 47.04% 34.07% 24.81%
Few-Shot LLM 97.38% 30.37% 30.03% 17.18%
Prompt4Vis 85.95% 27.04% 27.66% 13.70%
Self-correct LLM 98.14% 43.97% 68.35% 40.00%
Fine-tuned Llama 98.22% 50.51% 53.05% 41.37%
GRED (gwen-plus) 98.65% 53.98% 74.70% 49.24%
GRED (gpt-3.5-turbo)  98.14% 58.48% 81.52%  54.85%

TABLE III: Results in nvBench-Roby,;y, schema)

calculation formula is:

Data Acc. = Npata / N
where Np,, represents the number of data transformation
components in the generated DVQs that match the Ddata
transformation components in the target DVQs.

Implementation  Details. For the data preparation
phase,  specifically  for  generating NL  annota-
tions for each database, the parameters of the

openai.ChatCompletion.create method are set

as follows:

temperature=0.0,
frequency_penalty=0.0,
presence_penalty=0.0

However, during the formal working phase of GRED, the
parameters of this function are set as follows:

temperature=0.0,
frequency_penalty=-0.5,
presence_penalty=-0.5

In addition, the large language model used in the experimental
process is GPT-3.5-Turbo and uses the version released by
OpenAl on January 25, 2024.

B. Performance Comparison

As shown in Figure 4, previous text-to-vis models have
achieved satisfactory performance on the nvBench test set.
Even the simplest model, Seq2Vis, can easily achieve high
precision. However, when the model input is perturbed, even
the state-of-the-art(SOTA) model Prompt4Vis experiences a
significant drop in accuracy.

To comprehensively assess the robustness of the models,
we trained all baseline models on nvBench and tested them
on the three test sets of nvBench-Rob. The results are shown
in Table I, Table II and Table IIl. The previous SOTA model
in the text-to-vis field, Prompt4Vis, achieved an accuracy of
70.73% on the randomly split nvBench dataset, but its perfor-
mance dropped sharply when facing variations, with accuracy
decreasing by 53.24% or 55.89% on single-variant datasets
and by 57.03% on the dual-variant dataset. Due to our random
split method (rather than cross-domain split), the training set
included most of the databases, leading to the DNN-based
model RGVisNet outperforming the previous SOTA model
after training (85.17% vs. 70.73%). Nevertheless, RGVisNet’s
accuracy still significantly dropped on the single-variant test
sets, by 39.3% and 40.26%, respectively. The most notable
difference was observed on nvBench-Robig,schema), Where the
accuracy dropped by 60% compared to the original nvBench
test set. Meanwhile, GRED demonstrated impressively high
accuracy across the three test sets of nvBench-Rob, with
improvements of 42.49% and 47.09% on the single-variant
test sets compared to the previous SOTA model Prompt4Vis,
and an improvement of 41.15% on the most challenging dual-
variant test set. These results indicate that GRED has a strong
ability to resist interference with model inputs, showcasing its
excellent robustness.

Additionally, after a detailed analysis of the baseline mod-
els, we found that model training-based methods and Prompt-
ing LLM-based methods exhibit different performances when
facing NLQ variants and data schema variants. As shown in
Table I and II, we used Fine-tuned Llama as a representative of
model training methods because it is not surprising that model
training methods like RGVisNet experience significant per-
formance drops when encountering sequences and tokens not
present in the training set (this is their out-of-domain knowl-
edge). We used GRED as a representative of Prompting LLM-
based methods. We found that model training-based methods
showed impressive performance when facing NLQ variants
alone, achieving the best accuracy (although it dropped by
18.71% compared to its accuracy on nvBench). However, their
performance significantly declined when facing data schema
variants, with accuracy dropping by 42.21%. This could be
due to the strong natural language understanding (NLU)
capabilities of LLMs, which can establish good mappings
between NLQ variants and data schemas in the training corpus,
but fail to correctly execute the schema linking process when
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Fig. 6: Parameter Study on nvBench-Rob g schema)- The vertical axis represents accuracy, and the horizontal axis represents the

number of retrieved examples.

encountering data schemas not present in the training corpus.
On the other hand, the performance of Prompting LLM-based
methods was more stable, with accuracy dropping by 8.72%
when facing NLQ variants alone and by 6.77% when facing
data schema variants alone. This indicates that Prompting-
based methods are more robust than model training-based
methods and can still establish correct mappings when facing
entirely new schema linking scenarios.

Additionally, to fully validate the advanced nature of the
GRED framework, we introduced Few-Shot LLM and Self-
correct LLM as baseline models. The low accuracy per-
formance of Few-Shot LLM (with accuracies of 22.17%,
17.26%, and 17.18% on the three test sets of nvBench-Rob,
respectively) demonstrates that GRED’s strong performance
does not stem from the inherent capabilities of the under-
lying LLM, but rather from the specially designed multi-
step execution framework. Furthermore, the Self-correct LLM,
which generates code based on RAG technology and then self-
corrects according to the DVQ execution results, showed a
decrease in accuracy of over 15% on all test sets of nvBench-
Rob compared to GRED. This proves the advanced robustness
of GRED in the text-to-vis field.

Finally, based on our analysis of GRED (gpt-3.5-turbo) and
GRED (qwen-plus) on nvBench-Rob, we found that even when
using qwen-plus, GRED still achieves the second-highest ac-
curacy on the most challenging test set nvBench-Robig schemas
just behind GRED (gpt-3.5-turbo). This validates that GRED
is applicable to non-GPT models, demonstrating the general-
izability of GRED.

C. Parameter Study

To study the impact of parameter changes on the per-
formance of GRED, we conducted another’s performance is
the number of retrieved examples in the RAG technique. To
best reflect the model’s performance when generalizing to
real-world scenarios, we used nvBench-Robigschema)) as the
test set and employed the evaluation metrics described in
Section VI-A. The experimental results are shown in Figure 6.
We obtained four subfigure, each describing the accuracy
curves of GRED under four different evaluation metrics as the
number of retrieved examples varies. It can be observed that as
the number of reference examples increases, the performance

of GRED in Vis Acc., Axis Acc., and Data Acc. shows a
certain decline when the number of retrieved examples is 4 or
8. However, for the Overall Acc., which best demonstrates the
model’s performance, there is a stable upward trend. Among
the four evaluation metrics, the accuracy is highest when the
number of retrieved examples is 10. Since further increasing
the number of retrieved examples would result in a prompt
context length that is too long to be input into the LLM, we
could not conduct experiments with more retrieved examples.

D. Ablation Study

In this section, we conduct ablation studies to demonstrate
the effectiveness and contribution of each design component
in GRED. Specifically, we first evaluate GRED with all
components included. Then, we remove some components of
GRED to assess its performance with the following config-
urations: (i) utilizing only NLQ-Retrieval Generator without
DVQ-Retrieval Retuner and Annotation-based Debugger (w/o
RTN&DBG); (ii) removing the Annotation-based Debugger
(w/o DBG); (iii) removing the DVQ-Retrieval Retuner (w/o
RTN).

Additionally, we also evaluated the Few-shot Prompting
method and Self-correct LLM for the LLM. To ensure a
fair comparison, the number of examples in the few-shot
scenarios was kept consistent with those in GRED, to verify
that each component in GRED outperforms the direct Few-
shot Prompting method. In the Self-correct LLM method, we
also used a RAG-based DVQ generator. The difference is that
the debugger we used corrects the code based on the execution
results of the DVQ, to verify the advanced nature of the retuner
and debugger in GRED.

The ablation study results shown in Table IV confirm the
importance of the three design components in our proposed
model. We observed that the NLQ-Retrieval Generator plays
a crucial role in countering input perturbations caused by
NLQ variants, while the Annotation-based Debugger plays
a key role in countering input perturbations caused by data
schema variations. This is because they significantly improve
the model’s performance in their respective variant-specific
test sets. The DVQ-Retrieval Retuner is also found to be
very important because it helps the LLM adjust the generated
DVQ style to better match the dataset’s style, thereby reducing



nvBench-Rob,.ns  nVBench-Rob i schema)

Model | nvBench-Rob,,
Few-shot LLM 22.17%
Prompt4Vis (SOTA) 17.49%
Self-correct LLM 41.29%
GRED (Ours) 59.98%

- w/o RIN&DBG 62.77 %

- w/o RTN 61.08%

- w/o DBG 61.68%

17.26% 17.18%
14.84% 13.70%
45.43% 40.00%
61.93% 54.85%
42.13% 36.46%
62.10% 51.90%
42.47% 38.57%

TABLE IV: Ablation Study Results on nvBench-Rob. This table shows the performance of GRED on nvBench-Rob after
removing each component. Additionally, to demonstrate the advancement of each component in GRED, we added Few-Shot

LLM and Self-correct LLM as supplementary experiments.

errors in programming style and achieving higher accuracy.
Therefore, these three components all contribute to the model’s
robustness. In contrast, the Few-shot LLM performs worse
than all experimental settings of GRED across all three test
sets. This discrepancy underscores that each component in
GRED outperforms the direct Few-shot Prompting method.
The Self-correct method performs better than the w/o DBG
setting when facing data schema variations but significantly
worse than GRED and the w/o RTN setting, indicating that
the Annotation-based Debugger component is better at han-
dling data schema variability compared to the Execution-
based Debugger. Additionally, the Self-correct LLM performs
significantly worse than all experimental settings of GRED
when facing NLQ variants. Thus, the advanced nature of the
retuner and debugger in GRED is validated.

E. Case Study

Table V presents a case study illustrating the DVQ gen-
erated by GRED and all baseline models, along with the
final DV charts. As shown in the table, Seq2Vis generates
incorrect column names and aggregation keywords on the y-
axis, resulting in no legend being displayed in the chart in
Table Vb. RGVisNet and Transformer generate DVQs with
the correct aggregation keywords. However, due to a lack of
robustness to perturbations in model inputs, both RGVisNet
and Transformer fail to accurately generate the column names
“Fname” and “Dept_ID”. Instead, they retain the column
names “FIRST_NAME” and “DEPARTMENT _ID” from the
training set, which also results in no chart being produced in
Table Vc. The previous SOTA model Prompt4Vis is severely
affected by NLQ and data schema variations, resulting in a
DVQ that selects a chart type not conforming to DVQ syntax
and misinterprets the data on the XY axes. Due to these syntax
errors, Prompt4Vis ultimately fails to produce a chart. Fine-
tuned Llama is more susceptible to NLQ and data schema
variations, selecting a non-existent data schema (“Dpt_ID”)
and severely affecting data operations, ultimately failing to
generate a chart. Self-correct LLM fails to correctly understand
the XY axis data and data operations, resulting in a chart with
no legend(as shown in Table Vd). Unlike the aforementioned
models, GRED is capable of not only generating a structure
identical to the target query but also producing the correct
column names, thereby resulting in accurate charts as shown
in Table Va.

F. Summary

The experimental results demonstrate that: (i) Previous text-
to-vis models, after being trained on the benchmark dataset
nvBench, fail to generalize to real-world contexts, as evidenced
by a significant drop in accuracy on the robustness test set
nvBench-Rob in comparison to their performance on the
benchmark test set. (ii) The study introduces a framework
named GRED, specifically designed to address the poor gener-
alization capabilities of text-to-vis models by leveraging RAG
technology. Through extensive experimentation, GRED has
demonstrated superior performance compared to previous text-
to-vis models in terms of generalization, effectively addressing
challenges encountered in real-world scenarios. Specifically,
GRED exhibits proficiency in handling inquiries from non-
technical users who may not explicitly mention table schemas
or DVQ syntax keywords and may present questions in various
formats. Additionally, GRED demonstrates efficient schema
linking capabilities when faced with databases created under
diverse naming conventions. (iii) All components within the
GRED framework are effective; optimal accuracy is achieved
only when all components collaboratively participate in gen-
erating the DVQ code. (iv) The superior performance of the
GRED framework is not solely attributed to the inherent
powerful natural language understanding (NLU) capabilities
of LLM itself; instead, it primarily arises from the advanced
framework design. (v) GRED is versatile and applicable to
both GPT and non-GPT models. In summary, we introduced
nvBench-Rob to highlight the shortcomings of previous text-
to-vis models in terms of robustness. In response, we devel-
oped GRED, which delivers optimal performance in real-world
settings, boasting a 30% improvement in accuracy over past
SOTA models.

Due to space limitations in this paper, the comparative
analysis of GRED with non-RAG methods (such as data
augmentation), the detailed evaluation of each method’s per-
formance under specific metrics (Vis Acc., Data Acc., and
Axis Acc.) when facing NLQ and data schema variations
, error analysis of examples that GRED Fails and more
robustness cases analysis can be found in the online technical
report provided in the footnote of Section I.

VII. CONCLUSION AND FUTURE WORK

Robustness is a crucial factor for evaluating model per-
formance. In this study, we introduce the first comprehen-
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TABLE V: Case Study. DVQs generated by other baselines like Prompt4Vis and GRED, together with their corresponding
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sive robustness benchmark, nvBench-Rob, for evaluating the
robustness of text-to-vis models. Then, we found that the
performance of existing text-to-vis models is not satisfac-
tory on the robustness scenario. Finally, we propose a novel
framework named GRED based on the RAG-techniques using
LLMs, which addresses challenges posed by NLQ variations,
programming style differences, and data schema variations
through three components: NLQ-Retrieval Generator, DVQ-
Retrieval Retuner, and Annotation-based Debugger. Our ex-
periments reveal the inherent difficulty of developing robust
text-to-vis models, and simultaneously demonstrate the effec-
tiveness of GRED through extensive empirical validation.

Although nvBench-Rob provides a comprehensive robust-
ness evaluation of text-to-vis models through NLQ variations
and in nvBench-Rob is insufficient to fully simulate the variety
of NLQs posed by different groups in real-world scenarios.
To further optimize nvBench-Rob, we will refer to existing
diversity research [47] for the next steps of improvement.

Additionally, considering the efficiency issues in real-world
scenarios, we will further explore the combination of small
language models (SLM, such as Llama-3.2-1B) with the
GRED method. For instance, we will use retrieval-augmented
fine-tuning (RAFT) [48] techniques to enable the small lan-
guage model to fully utilize the effective information from
retrieved examples, thereby achieving high performance while
maintaining high efficiency.
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