
Minimizing Seed Set for Viral Marketing
Cheng Long, Raymond Chi-Wing Wong

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

{clong, raywong}@cse.ust.hk

Abstract—Viral marketing has attracted considerable concerns
in recent years due to its novel idea of leveraging the social
network to propagate the awareness of products. Specifically,
viral marketing is to first target a limited number of users
(seeds) in the social network by providing incentives, and these
targeted users would then initiate the process of awareness
spread by propagating the information to their friends via their
social relationships. Extensive studies have been conducted for
maximizing the awareness spread given the number of seeds.
However, all of them fail to consider the common scenario of viral
marketing where companies hope to use as few seeds as possible
yet influencing at least a certain number of users. In this paper,
we propose a new problem, called 𝐽-MIN-Seed, whose objective
is to minimize the number of seeds while at least 𝐽 users are
influenced. 𝐽-MIN-Seed, unfortunately, is proved to be NP-hard
in this work. In such case, we develop a greedy algorithm that
can provide error guarantees for 𝐽-MIN-Seed. Furthermore, for
the problem setting where 𝐽 is equal to the number of all users
in the social network, denoted by Full-Coverage, we design other
efficient algorithms. Extensive experiments were conducted on
real datasets to verify our algorithm.

I. INTRODUCTION

Viral marketing is an advertising strategy that takes the ad-
vantage of the effect of “word-of-mouth” among the relation-
ships of individuals to promote a product. Instead of covering
massive users directly as traditional advertising methods [1]
do, viral marketing targets a limited number of initial users
(by providing incentives) and utilizes their social relationships,
such as friends, families and co-workers, to further spread the
awareness of the product among individuals. Each individual
who gets the awareness of the product is said to be influenced.
The number of all influenced individuals corresponds to the
influence incurred by the initial users. According to some
recent research studies [2], people tend to trust the information
from their friends, relatives or families more than that from
general advertising media like TVs. Hence, it is believed
that viral marketing is one of the most effective marketing
strategies [3]. In fact, extensive commercial instances of viral
marketing succeed in real life. For example, Nike Inc. used so-
cial networking websites such as orkut.com and facebook.com
to market products successfully [4].

The propagation process of viral marketing within a social
network can be described in the following way. At the begin-
ning, the advertiser selects a set of initial users and provides
these users incentives so that they are willing to initiate
the awareness spread of the product in the social network.
We call these initial users seeds. Once the propagation is
initiated, the information of the product diffuses or spreads

.8

.9 .6

.7

.7

Ada

Bob

David

.6

Connie

Fig. 1. Social network (IC model)

1

1

1

n1

n2

n3 n4

Fig. 2. Counter example (𝛼(⋅))

via the relationships among users in the social network. A
lot of models about how the above diffusion process works
have been proposed [5-10]. Among them, the Independent
Cascade Model (IC model) [5, 6] and the Linear Threshold
Model (LT model) [7, 8] are the two that are widely used in
the literature. In the social network, the IC model simulates
the situation where for each influenced user 𝑢, each of its
neighbors has a probability to be influenced by 𝑢, while the LT
model captures the phenomenon where each user’s tendency
to become influenced increases when more of its neighbors
become influenced.

Consider the following scenario of viral marketing. A
company wants to advertise a new product via viral marketing
within a social network. Specifically, it hopes that at least a
certain number of users, says 𝐽 , in the social network must be
influenced yet the number of seeds for viral marketing should
be as small as possible. Clearly, the above problem can be
formalized as follows. Given a social network 𝐺(𝑉,𝐸), we
want to find a set of seeds such that the size of the seed set
is minimized and at least 𝐽 users are influenced at the end of
viral marketing. We call this problem 𝐽-MIN-Seed.

We use Figure 1 to illustrate the main idea of the 𝐽-MIN-
Seed problem. The four nodes shown in Figure 1 represent four
members in a family, namely Ada, Bob, Connie and David,
respectively. In the following, we use the terms “nodes” and
“users” interchangeably since they correspond to the same
concept. The directed edge (𝑢, 𝑣) with the weight of 𝑤𝑢,𝑣

indicates that node 𝑢 has the probability of 𝑤𝑢,𝑣 to influence
node 𝑣 for the awareness of the product. Now, we want to
find the smallest seed set such that at least 3 nodes can be
influenced by this seed set. It is easy to verify that the expected
influence incurred by seed set {𝐴𝑑𝑎} is about 3.571 under the
IC model and no smaller seed set can incur at least 3 influenced
nodes. Hence, seed set {𝐴𝑑𝑎} is our solution.

𝐽-MIN-Seed can be applied to most (if not all) applica-

1The computation of the expected influence incurred by a seed is calculated
by considering all cascades from this seed. E.g., the expected influence on
Bob incurred by Ada is 1− (1− 0.8) ⋅ (1− 0.6 ⋅ 0.7) = 0.884.

2011 11th IEEE International Conference on Data Mining

1550-4786/11 $26.00 © 2011 IEEE

DOI 10.1109/ICDM.2011.99

427

tions of viral marketing. Intuitively, 𝐽-MIN-Seed asks for the
minimum cost (seeds) while satisfying an explicit requirement
of revenue (influenced nodes). Clearly, in the mechanism of
viral marketing, a seed and an influenced node correspond to
cost and potential revenue of a company, respectively, Because
the company has to pay the seeds for incentives, while an
influenced node might bring revenue to the company. In many
cases, companies face the situation where the goal of revenue
has been set up explicitly and the cost should be minimized.
Thus, 𝐽-MIN-Seed meets these companies’ demands.

Another area where 𝐽-MIN-Seed can be widely used is
the “majority-decision rule” (e.g., the three-fifths majority
rule in the US Senate). By majority-decision rule, we mean
the principle under which the decision is determined by the
majority (or a certain portion) of participants. That is, in order
to affect a group of people to make a decision, e.g., purchasing
our products, we only need to convince a certain number of
members in this group, says 𝐽 , which is the threshold of
the number of people to agree on the decision. Clearly, for
these kinds of applications, 𝐽-MIN-Seed could be used to
affect the decision of the whole group and yield the minimum
cost. In fact, 𝐽-MIN-Seed is particularly useful in the election
campaigns where the “majority-decision rule” is adopted.

No existing studies have been conducted for 𝐽-MIN-Seed
even though it plays an essential role in the viral marketing
field. In fact, most existing studies related to viral marketing
focus on maximizing the influence incurred by a certain
number of seeds, says 𝑘 [11-16]. Specifically, they aim at
maximizing the number of influenced nodes when only 𝑘 seeds
are available. We denote this problem by 𝑘-MAX-Influence.
Clearly, 𝐽-MIN-Seed and 𝑘-MAX-Influence have different
goals with different given resources.

Naı̈vely, we can solve the 𝐽-MIN-Seed problem by adapting
an existing algorithm for 𝑘-MAX-Influence. Let 𝑘 be the
number of seeds. We set 𝑘 = 1 at the beginning and increment
𝑘 by 1 at the end of each iteration. For each iteration, we
use an existing algorithm for 𝑘-MAX-Influence to calculate
the maximum number of nodes, denoted by 𝐼 , that can
be influenced by a seed set with the size equal to 𝑘. If
𝐼 ≥ 𝐽 , we stop our process and return the current number 𝑘.
Otherwise, we increment 𝑘 by 1 and perform the next iteration.
However, this naı̈ve method is very time-consuming since
it issues the existing algorithm for 𝑘-MAX-Influence many
times for solving 𝐽-MIN-Seed. Note that 𝑘-MAX-Influence is
NP-hard [12]. Any existing algorithm for 𝑘-MAX-Influence
is computation-expensive, which results in this naı̈ve method
with a high computation cost. Hence, we should resort to other
more efficient solutions.

In this paper, 𝐽-MIN-Seed is, unfortunately, proved to
be NP-hard. Motivated by this, we design an approximate
(greedy) algorithm for 𝐽-MIN-Seed. Specifically, our algo-
rithm iteratively adds into a seed set one node that generates
the greatest influence gain until the influence incurred by
the seed set is at least 𝐽 . Besides, we work out an additive
error bound and a multiplicative error bound for this greedy
algorithm.

In some cases, the companies would set the parameter 𝐽 for
𝐽-MIN-Seed to be the total number of users in the underlying
social network since they want to influence as many users as
possible. Motivated by this, we further discuss our 𝐽-MIN-
Seed problem under the special setting where 𝐽 = ∣𝑉 ∣ (the
total number of users). We call this special instance of 𝐽-MIN-
Seed as Full-Coverage for which we design other efficient
algorithms.

We summarize our contributions as follows. Firstly, to the
best of our knowledge, we are the first to propose the 𝐽-MIN-
Seed problem, which is a fundamental problem in viral market-
ing. Secondly, we prove that 𝐽-MIN-Seed is NP-hard in this
paper. Under such situation, we develop a greedy algorithm
framework for 𝐽-MIN-Seed, which, fortunately, can provide
error guarantees for the approximation error. Thirdly, for the
Full-Coverage problem (i.e., 𝐽-MIN-Seed where 𝐽 = ∣𝑉 ∣),
we observe some interesting properties and thus design some
other efficient algorithms. Finally, we conducted extensive
experiments which verified our algorithms.

The rest of the paper is organized as follows. Section II
covers the related work of our problem, while Section III
provides the formal definition of the 𝐽-MIN-Seed problem and
some relevant properties. We show how to calculate the influ-
ence incurred by a seed set in Section IV, which is followed
by Section V discussing our greedy algorithm framework.
In Section VI, we discuss the Full-Coverage problem. We
conduct our empirical studies in Section VII and conclude
our paper in Section VIII.

II. RELATED WORK

In Section II-A, we discuss two widely used diffusion
models in a social network, and in Section II-B, we give the
related work about the influence maximization problem.

A. Diffusion Models

Given a social network represented in a directed graph 𝐺,
we denote 𝑉 to be the set containing all the nodes in 𝐺 each
of which corresponds to a user and 𝐸 to be the set containing
all the directed edges in 𝐺. Each edge 𝑒 ∈ 𝐸 in form of (𝑢, 𝑣)
is associated with a weight 𝑤𝑢,𝑣 ∈ [0, 1]. Different diffusion
models have different meanings on weights. In the following,
we discuss the meanings for two popular diffusion models,
namely the Independent Cascade (IC) model and the Linear
Threshold (LT) model.

1) Independent Cascade (IC) Model [7, 8]: The first model
is the Independent Cascade (IC) model. In this model, the
influence is based on how a single node influences each
of its single neighbor. The weight 𝑤𝑢,𝑣 of an edge (𝑢, 𝑣)
corresponds to the probability that node 𝑢 influences node
𝑣. Let 𝑆0 be the initial set of influenced nodes (seeds in our
problem). The diffusion process involves a number of steps
where each step corresponds to the influence spread from
some influenced nodes to other non-influenced nodes. At step
𝑡, all influenced nodes at step 𝑡 − 1 remain influenced, and
each node that becomes influenced at step 𝑡 − 1 for the first
time has one chance to influence its non-influenced neighbors.

428

Specifically, when an influenced node 𝑢 attempts to influence
its non-influenced neighbor 𝑣, the probability that 𝑣 becomes
influenced is equal to 𝑤𝑢,𝑣 . The propagation process halts at
step 𝑡 if no nodes become influenced at step 𝑡−1. The running
example in Figure 1 is based on the IC model.

For a graph under the IC model, we say that the graph is
deterministic if all its edges have the probabilities equal to 1.
Otherwise, we say that it is probabilistic.

2) Linear Threshold (LT) Model [5, 6]: The second model
is the Linear Threshold (LT) model. In this model, the in-
fluence is based on how a single node is influenced by its
multiple neighbors together. The weight 𝑤𝑢,𝑣 of an edge (𝑢, 𝑣)
corresponds to the relative strength that node 𝑣 is influenced
by its neighbor 𝑢 (among all of 𝑣’s neighbors). Besides, for
each 𝑣 ∈ 𝑉 , it holds that

∑
(𝑢,𝑣)∈𝐸 𝑤𝑢,𝑣 ≤ 1. The dynamics

of the process proceeds as follows. Each node 𝑣 selects a
threshold value 𝜃𝑣 from range [0, 1] randomly. Same as the IC
model, let 𝑆0 be the set of initial influenced nodes. At step
𝑡, the non-influenced node 𝑣, for which the total weight of
the edges from its influenced neighbors exceeds its threshold
(
∑

(𝑢,𝑣)∈𝐸 and 𝑢 is influenced 𝑤𝑢,𝑣 ≥ 𝜃𝑣), becomes influenced.
The spread process terminates when no more influence spread
is possible.

For a graph under the LT model, we say that the graph is
deterministic if the thresholds of all its nodes have been set
before the process of influence spread. Otherwise, we say that
it is probabilistic.

B. Influence Maximization

Motivated by the fact that social network plays a funda-
mental role in spreading ideas, innovations and information,
Domingoes and Richardson proposed to use social networks
for marketing purpose, which is called viral marketing [11,
17]. By viral marketing, they aimed at selecting a limited
number of seeds such that the influence incurred by these
seeds is maximized. We call this fundamental problem as the
influence maximization problem.

In [12], Kempe et al. formalized the above influence max-
imization problem as a discrete optimization problem called
𝑘-MAX-Influence for the first time. Given a social network
𝐺(𝑉,𝐸) and an integer 𝑘, find 𝑘 seeds such that the incurred
influence is maximized. Kempe et al. proved that 𝑘-MAX-
Influence is NP-hard for both the IC model and the LT
model. To achieve better efficiency, they provided a (1−1/𝑒)-
approximation algorithm for 𝑘-MAX-Influence.

Recently, several studies have been conducted to solve 𝑘-
MAX-Influence in a more efficient and/or scalable way than
the aforementioned approximate algorithm in [12]. Specif-
ically, in [13], Leskovec et al. employed a “lazy-forward”
strategy to select seeds, which has been shown to be ef-
fective for reducing the cost of the influence propagation
of nodes. In [14], Kimura et al. proposed a new shortest-
path cascade model, based on which, they developed efficient
algorithms for 𝑘-MAX-Influence. Motivated by the drawback
of non-scalability of all aforementioned solutions for 𝑘-MAX-
Influence, Chen et al. proposed an arborescence-based heuris-

tic algorithm, which was verified to be quite scalable to large-
scale social networks [15].

The influence maximization problem has been extended into
the setting with multiple products instead of a single product.
Bharathi et al. solved the influence maximization problem for
multiple competitive products using game-theoretical meth-
ods [18, 19], while Datta et al. proposed the influence maxi-
mization problem for multiple non-competitive products [16].
Apart from these studies aiming at maximizing the influence,
considerable efforts have been devoted to the diffusion models
in social networks [9, 10].

Clearly, most of the existing studies related to viral mar-
keting aim at maximizing the influence incurred by a limited
number of seeds (i.e., 𝑘-MAX-Influence). While our problem,
𝐽-MIN-Seed, is targeted to minimize the number of seeds
while satisfying the requirement of influencing at least a
certain number of users in the social network. As discussed
in Section I, a naı̈ve adaption of any existing algorithm for
𝑘-MAX-Influence is time-consuming.

III. PROBLEM

We first formalize 𝐽-MIN-Seed in Section III-A. In Sec-
tion III-B, we provide several properties related to 𝐽-MIN-
Seed.

A. Problem Definition

Given a set 𝑆 of seeds, we define the influence incurred
by the seed set 𝑆 (or simply the influence of 𝑆), denoted by
𝜎(𝑆), to be the expected number of nodes influenced during
the diffusion process initiated by 𝑆. How to calculate 𝜎(𝑆)
under different diffusion models given 𝑆 will be discussed in
Section IV.

Problem 1 (𝐽-MIN-Seed): Given a social network 𝐺(𝑉,𝐸)
and an integer 𝐽 , find a set 𝑆 of seeds such that the size of
the seed set is minimized and 𝜎(𝑆) ≥ 𝐽 .

We say that node 𝑢 is covered by seed set 𝑆 if 𝑢 is
influenced during the influence diffusion process initiated by
𝑆. It is easy to see that 𝐽-MIN-Seed aims at minimizing the
number of seeds while satisfying the requirement of covering
at least 𝐽 nodes. Given a node 𝑥 in 𝑉 and a subset 𝑆 of 𝑉 ,
the marginal gain of inserting 𝑥 into 𝑆, denoted by 𝐺𝑥(𝑆),
is defined to be 𝜎(𝑆 ∪ {𝑥})− 𝜎(𝑆).

We show the hardness of 𝐽-MIN-Seed with the following
theorem.

Theorem 1: The 𝐽-MIN-Seed problem is NP-hard for both
the IC model and the LT model.
Proof. The proof can be found in [20].

B. Properties

Since the analysis of the error bounds of our approximate
algorithms to be discussed is based on the property that
function 𝜎(⋅) is submodular, we first briefly introduce the
concept of submodular function, denoted by 𝑓(⋅). After that,
we provide several properties related to the influence diffusion
process in a social network.

Definition 1 (Submodularity): Let 𝑈 be a universe set of
elements and 𝑆 be a subset of 𝑈 . Function 𝑓(⋅) which maps

429

𝑆 to a non-negative value is said to be submodular if given any
𝑆 ⊆ 𝑈 and any 𝑇 ⊆ 𝑈 where 𝑆 ⊆ 𝑇 , it holds for any element
𝑥 ∈ 𝑈 − 𝑇 that 𝑓(𝑆 ∪ {𝑥})− 𝑓(𝑆) ≥ 𝑓(𝑇 ∪ {𝑥})− 𝑓(𝑇).

In other words, we say 𝑓(⋅) is submodular if it satisfies the
“diminishing marginal gain” property: the marginal gain of
inserting a new element into a set 𝑇 is at most the marginal
gain of inserting the same element into a subset of 𝑇 .

According to [12], function 𝜎(⋅) is submodular for both the
IC model and the LT model. The main idea is as follows. When
we add a new node 𝑥 into a seed set 𝑆, the influence incurred
by the node 𝑥 (without considering the nodes in 𝑆) might
overlap with that incurred by 𝑆. The larger 𝑆 is, the more
overlap might happen. Hence, the marginal gain is smaller
on a (larger) set compared to that on any of its subsets. We
formalize this statement with the following Property 1. The
proof can be found in [12].

Property 1: Function 𝜎(⋅) is submodular for both the IC
model and the LT model.

To illustrate the concept of submodular functions, consider
Figure 1. Assume that a seed set 𝑇 is {𝐴𝑑𝑎}. Let a subset 𝑆 of
𝑇 be ∅. We insert into seed sets 𝑇 and 𝑆 the same node 𝐵𝑜𝑏.
In fact, it is easy to calculate 𝜎(∅) = 0, 𝜎({𝐴𝑑𝑎}) = 3.57,
𝜎({𝐵𝑜𝑏}) = 2.64 and 𝜎({𝐴𝑑𝑎,𝐵𝑜𝑏}) = 3.83. Consequently,
we know the marginal gain of adding a new node 𝐵𝑜𝑏 into set
𝑇 , i.e., 𝜎({𝐴𝑑𝑎,𝐵𝑜𝑏}) − 𝜎({𝐴𝑑𝑎}) = 0.26, is smaller than
that of adding 𝐵𝑜𝑏 into one of its subsets 𝑆, i.e., 𝜎({𝐵𝑜𝑏})−
𝜎(∅) = 2.64.

In the 𝑘-MAX-Influence problem, we have a submodular
function 𝜎(⋅) which takes a set of seeds as an input and returns
the expected number of influenced nodes incurred by the
seed set as an output. Similarly, in the 𝐽-MIN-Seed problem,
we define a function 𝛼(⋅) which takes a set of influenced
nodes as an input and returns the smallest number of seeds
needed to influence these nodes as an output. One may ask:
Is function 𝛼(⋅) also submodular? Unfortunately, the answer
is “no” which is formalized with the following Property 2.

Property 2: Function 𝛼(⋅) is not submodular for both the
IC model and the LT model.
Proof. We prove Property 2 by constructing a problem instance
where 𝛼(⋅) does not satisfy the aforementioned conditions of
a submodular function. We first discuss the case for the IC
model. Consider the example as shown in Figure 2. In this
figure, there are four nodes, namely 𝑛1, 𝑛2, 𝑛3 and 𝑛4. We
assume that each edge is associated with its weight equal to
1, which indicates that an influenced node 𝑢 will influence a
non-influenced node 𝑣 definitely when there is an edge from
𝑢 to 𝑣. Let set 𝑇 be {𝑛1, 𝑛3, 𝑛4} and a subset of 𝑇 , says 𝑆,
be {𝑛3, 𝑛4}. Obviously, when node 𝑛1 is influenced, it will
further influence node 𝑛3 and node 𝑛4, i.e., all the nodes in
𝑇 will be influenced when 𝑛1 is selected as a seed. Thus,
𝛼(𝑇) = 1. Similarly, we know that 𝛼(𝑆) = 1. Now, we add
node 𝑛2 into both 𝑇 and 𝑆 and then obtain 𝛼(𝑇 ∪ {𝑛2}) = 2
(by the seed set {𝑛1, 𝑛2}) and 𝛼(𝑆 ∪ {𝑛2}) = 1 (by the seed
set {𝑛2}). As a result, we know that 𝛼(𝑇 ∪ {𝑛2})− 𝛼(𝑇) =
1 > 𝛼(𝑆 ∪ {𝑛2}) − 𝛼(𝑆) = 0, which, however, violates the
conditions of a submodular function.

Next, we discuss the case for the LT model. Consider
the special case where each node’s threshold is equal to a
value slightly greater than 0. Consequently, a node will be
influenced whenever one of its neighbors becomes influenced.
The resulting diffusion process is actually identical to the
special case for the IC model where the weights of all edges
are 1s. That is, the example in Figure 2 can also be applied
for the LT model. Hence, Property 2 also holds for the LT
model.

Property 2 suggests that we cannot directly adapt existing
techniques for the 𝑘-MAX-Influence problem (which involves
a submodular function as an objective function) to our 𝐽-MIN-
Seed problem (which involves a non-submodular function as
an objective function).

IV. INFLUENCE CALCULATION

We describe how we compute the influence of a given seed
set (i.e., 𝜎(⋅)) under the IC model (Section IV-A) and the LT
model (Section IV-B).

A. IC model

It has been proved in [15] that the process of calculating
the influence given a seed set for the IC model is #P-hard.
That is, computing the exact influence is hard. Thus, we have
to resort to approximate algorithms for efficiency.

Intuitively, the hardness of calculating the influence is due to
the fact that the edges in the social network under the IC model
are probabilistic in the sense that the propagation of influence
via an edge happens with probability. In contrast, when the
social network is deterministic, i.e., the probability associated
with each edge is exactly 1, we only need to traverse the graph
from each seed in a breadth-first manner and return all visited
nodes as the influenced nodes incurred by the seed set, thus
resulting in a linear-time algorithm for influence calculation.

In view of the above discussion, we use sampling to cal-
culate the (approximate) influence as follows. Let 𝐺(𝑉,𝐸) be
the original probabilistic social network and 𝑆 be the seed set.
Instead of calculating the influence on 𝐺 directly, we calculate
the influence on each sampled graph from 𝐺 using the same
seed set 𝑆 and finally average the incurred influences on all
sampled graphs to obtain the approximate one for the original
probabilistic graph. To obtain the sampled graph of 𝐺(𝑉,𝐸)
each time, we keep the node set 𝑉 unchanged, remove the
edge (𝑢, 𝑣) with the probability of 1 − 𝑤𝑢,𝑣 for each edge
(𝑢, 𝑣) ∈ 𝐸 and assign each remaining edge with the weight
equal to 1. In this way, we can obtain that the probability that
an edge (𝑢, 𝑣) remains in the resulting graph is 𝑤𝑢,𝑣 . Note
that the resulting sampled graph is deterministic. We call such
a process as social network sampling.

Conceptually, given a probabilistic graph 𝐺(𝑉,𝐸), each 𝐺’s
sampled graph is generated with probability equal to a certain
value. As a result, the influence calculated based on each 𝐺’s
sampled graph has one specific probability to be equal to the
exact influence on the original probabilistic graph 𝐺 given
the same seed set. That is, the exact influence for 𝐺 is the
expected influence for a sampled graph of 𝐺. Based on this,

430

we can use Hoeffding’s Inequality to analyze the error incurred
by our sampling method. We state our result with the following
Lemma 1.

Lemma 1: Let 𝑐 be a real number between 0 and 1. Given
a seed set 𝑆 and a social network 𝐺(𝑉,𝐸) under the IC
model, the sampling method stated above achieves a (1± 𝜖)-
approximation of the influence incurred by 𝑆 on 𝐺 with the
confidence at least 𝑐 by performing the sampling process at
least (∣𝑉 ∣−1)2𝑙𝑛(2/(1−𝑐))

2𝜖2∣𝑆∣2 times.
Proof: The proof can be found in our technical report [20].

B. LT model

Similar to the case under the IC model, the influence
calculation for the LT model is much easier when the graph
is deterministic (i.e., the threshold of each node has been
specified before the process of influence spread). We illustrate
the main idea as follows. For an influenced node 𝑢, all we
need to do is to add the corresponding influence to each of its
non-influenced neighbors and check whether each of its non-
influenced neighbors, says 𝑣, has received enough influence
(𝜃𝑣) to be influenced. If so, we change node 𝑣 to be influenced.
Otherwise, we leave node 𝑣 non-influenced. At the beginning,
we initialize the set of influenced nodes to be the seed set 𝑆.
Then, we perform the above process for each influenced node
until no new influenced nodes are generated.

With the view of the above discussion, we perform the influ-
ence calculation on a probabilistic graph for the LT model in
the same way as the IC model except for the sampling method.
Specifically, to sample a probabilistic graph 𝐺 under the LT
model, we pick a real number from range [0, 1] uniformly
as the threshold of each node in 𝐺 to form a deterministic
graph. We perform the sampling process multiple times, and
for each resulting deterministic graph, we run the algorithm
for a deterministic graph (just described above) to obtain the
incurred influence. Finally, we average the influences on all
sampled graphs to obtain the approximate influence.

Clearly, we can derive a similar lemma as Lemma 1 for the
LT model.

V. GREEDY ALGORITHM

We present in Section V-A the framework of our greedy
algorithm which finds a seed set by adding a seed into the
seed set iteratively. Section V-B provides the analysis of
this algorithm framework, while Section V-C discusses two
different implementations of this algorithm framework.

A. Algorithm Framework

As proved in Section III, 𝐽-MIN-Seed is NP-hard. It is
expected that there is no efficient exact algorithm for 𝐽-MIN-
Seed. As discussed in Section I, if we want to solve 𝐽-MIN-
Seed, a naı̈ve adaption of any existing algorithm originally
designed for 𝑘-MAX-Influence is time-consuming. The major
reason is that it executes an existing algorithm many times
and the execution of this existing algorithm for an iteration
is independent of the execution of the same algorithm for
the next iteration. Motivated by this observation, we propose

Algorithm 1 Greedy Algorithm Framework
Input: 𝐺(𝑉,𝐸): a social network.

𝐽 : the required number of nodes to be influenced
Output: 𝑆: a seed set.

1: 𝑆 ← ∅
2: while 𝜎(𝑆) < 𝐽 do
3: 𝑢← argmax𝑥∈𝑉−𝑆(𝜎(𝑆 ∪ {𝑥})− 𝜎(𝑆))
4: 𝑆 ← 𝑆 ∪ {𝑢}
5: return 𝑆

a greedy algorithm which solves 𝐽-MIN-Seed efficiently by
executing an iteration based on the results from its previous
iteration.

Specifically, we first initialize a seed set 𝑆 to be an empty
set. Then, we select a non-seed node 𝑢 such that the marginal
gain of inserting 𝑢 into 𝑆 is the greatest and then we insert
𝑢 into 𝑆. We repeat the above steps until at least 𝐽 nodes
are influenced. Algorithm 1 presents this greedy algorithm
framework.

This greedy algorithm is similar to the algorithm from [12]
for 𝑘-MAX-Influence except the stopping criterion, but they
have different theoretical results. The stopping criterion in this
greedy algorithm is 𝜎(𝑆) ≥ 𝐽 and the stopping criterion in the
algorithm from [12] is ∣𝑆∣ ≥ 𝑘 where 𝑘 is a user parameter
of 𝑘-MAX-Influence. Note that our greedy algorithm for 𝐽-
MIN-Seed has theoretical results which guarantee the number
of seeds used while the algorithm for 𝑘-MAX-Influence has
theoretical results which guarantee the number of influenced
nodes.

B. Theoretical Analysis

In this part, we show that the greedy algorithm framework
in Algorithm 1 can return the seed set with both an additive
error guarantee and a multiplicative error guarantee.

The greedy algorithm gives the following additive error
bound.

Lemma 2 (Additive Error Guarantee): Let ℎ be the size of
the seed set returned by the greedy algorithm framework in
Algorithm 1 and 𝑡 be the size of the optimal seed set for 𝐽-
MIN-Seed. The greedy algorithm framework in Algorithm 1
gives an additive error bound equal to 1/𝑒 ⋅ 𝐽 + 1. That is,
ℎ− 𝑡 ≤ 1/𝑒 ⋅𝐽 +1. Here, 𝑒 is the natural logarithmic base.

Before we give the multiplicative error bound of the greedy
algorithm, we first give some notations. Suppose that the
greedy algorithm terminates after ℎ iterations. We denote 𝑆𝑖

to be the seed set maintained by the greedy algorithm at the
end of iteration 𝑖 where 𝑖 = 1, 2,, ℎ. Let 𝑆0 denote the
seed set maintained before the greedy algorithm starts (i.e., an
empty set). Note that 𝜎(𝑆𝑖) < 𝐽 for 𝑖 = 1, 2, ..., ℎ − 1 and
𝜎(𝑆ℎ) ≥ 𝐽 .

In the following, we give the multiplicative error bound of
the greedy algorithm framework in Algorithm 1.

Lemma 3 (Multiplicative Error Guarantee): Let 𝜎′(𝑆) =
min{𝜎(𝑆), 𝐽}. The greedy algorithm framework in Algo-
rithm 1 is a (1 + min{𝑘1, 𝑘2, 𝑘3})-approximation of 𝐽-MIN-
Seed, where 𝑘1 = ln 𝐽

𝐽−𝜎′(𝑆ℎ−1)
, 𝑘2 = ln 𝜎′(𝑆1)

𝜎′(𝑆ℎ)−𝜎′(𝑆ℎ−1)
, and

431

𝑘3 = ln(max{ 𝜎′({𝑥})
𝜎′(𝑆𝑖∪{𝑥})−𝜎′(𝑆𝑖)

∣𝑥 ∈ 𝑉, 0 ≤ 𝑖 ≤ ℎ, 𝜎′(𝑆𝑖 ∪
{𝑥})− 𝜎′(𝑆𝑖) > 0}).
C. Implementations

As can be seen, the efficiency of Algorithm 1 relies on the
calculation of the influence of a given seed set (operator 𝜎(⋅)).
However, the influence calculation process for the IC model
is #P-hard [15]. Under such a circumstance, we adopt the
sampling method discussed in Section IV when using operator
𝜎(⋅). We denote this implementation by Greedy1.

In fact, we have an alternative implementation of Algo-
rithm 1 as follows. Instead of sampling the social network
to be deterministic when calculating the influence incurred
by a given seed set, we can sample the social network to
generate a certain number of deterministic graphs only at the
beginning. Then, we solve the 𝐽-MIN-Seed problem on each
such deterministic graph using Algorithm 1, where the cost of
operator 𝜎(⋅) simply becomes the time to traverse the graph.

At the end, we return the average of the sizes of the seed sets
returned by the algorithm based on all samples (deterministic
graphs). We call this alternative implementation as Greedy2.

VI. FULL-COVERAGE

In some applications, we are interested in influencing all
nodes in the social network. For example, a government wants
to promote some campaigns like an election and an awareness
of some infectious diseases. In these applications, 𝐽 is set
to ∣𝑉 ∣. We call this special instance of 𝐽-MIN-Seed as Full-
Coverage. In Section VI-A, we give some interesting observa-
tions and present an efficient algorithm on deterministic graphs
for the IC model, while in Section VI-B, we develop our
probabilistic algorithm which can provide an arbitrarily small
error for the IC model.

A. Full-Coverage on Deterministic Graph (IC Model)

According to Theorem 1, in general, it is NP-hard to solve
the 𝐽-MIN-Seed problem on a graph (either probabilistic or
deterministic) for the IC model. However, on a deterministic
graph for the IC model, Full-Coverage is not NP-hard yet easy
to solve. In the following, we design an efficient algorithm to
handle Full-Coverage on a deterministic graph 𝐺(𝑉,𝐸).

Before illustrating our efficient method for Full-Coverage,
we first introduce the following two observations.

Observation 1: On a deterministic graph, if a node within
a strongly connected component (SCC) is influenced, then it
will influence all nodes in this SCC.

Observation 2: Any node with in-degree equal to 0 must be
selected as a seed in order to be influenced. This is because
it cannot be influenced by other nodes.

Based on the above two observations, we design our method
called Decompose-and-Pick as follows.

At the first step, we decompose the deterministic graph into
a number of strongly connected components (SCCs), namely
𝑠𝑐𝑐1, 𝑠𝑐𝑐2, ..., 𝑠𝑐𝑐𝑚. This step can be achieved by adopting
some existing methods in the rich literature for finding all
SCCs in a graph. In our implementation for this step, we adopt

the SCC computation algorithm developed by Kosaraju et al
[21], which runs in 𝑂(∣𝑉 ∣+ ∣𝐸∣) time.

For the second step, we construct a new graph 𝐺(𝑉 ′, 𝐸′)
based on 𝐺(𝑉,𝐸). Specifically, for constructing 𝑉 ′, we create
a new node 𝑣𝑖 for each SCC 𝑠𝑐𝑐𝑖 obtained in Step 1. We
construct 𝐸′ as follows. Initially, 𝐸′ is set to an empty set.
For each (𝑢, 𝑣) ∈ 𝐸, we find the SCC containing 𝑢 (𝑣)
in 𝐺(𝑉,𝐸), says 𝑠𝑐𝑐𝑖 (𝑠𝑐𝑐𝑗). Then, we find the node 𝑣𝑖
(𝑣𝑗) representing 𝑠𝑐𝑐𝑖 (𝑠𝑐𝑐𝑗) in 𝐺(𝑉 ′, 𝐸′). We check whether
(𝑣𝑖, 𝑣𝑗) ∈ 𝐸′. If not, we insert (𝑣𝑖, 𝑣𝑗) into 𝐸′. Clearly, the cost
for constructing 𝑉 ′ is 𝑂(∣𝑉 ∣), while the cost for generating
𝐸′ is 𝑂(∣𝐸∣ ⋅ 𝐶𝑐ℎ𝑒𝑐𝑘), where 𝐶𝑐ℎ𝑒𝑐𝑘 indicates the cost for
checking whether a specific edge (𝑣𝑖, 𝑣𝑗) has been constructed
before in 𝐸′. 𝐶𝑐ℎ𝑒𝑐𝑘 depends on the structure for storing
𝐺(𝑉 ′, 𝐸′). Specifically, 𝐶𝑐ℎ𝑒𝑐𝑘 is 𝑂(1) when 𝐺(𝑉 ′, 𝐸′) is
stored in an adjacency matrix. With this data structure, the
overall cost for Step 2 is 𝑂(∣𝑉 ∣+ ∣𝐸∣). In case that 𝐺(𝑉 ′, 𝐸′)
is maintained in an adjacency list, 𝐶𝑐ℎ𝑒𝑐𝑘 becomes 𝑂(∣𝐸′∣)
(bounded by 𝑂(∣𝐸∣)), resulting in Step 2’s complexity equal
to 𝑂(∣𝑉 ∣ + ∣𝐸∣2) in the worst case. To further reduce the
complexity of Step 2 in this case, we do not check the
existence of each newly formed edge in the new graph every
time we create a new edge. Instead, we create all newly formed
edges and perform sorting on all the newly formed edges to
filter out any redundant edges in 𝐸′, thus yielding the cost of
Step 2 equal to 𝑂(∣𝑉 ∣ + ∣𝐸∣ ⋅ log ∣𝐸∣). Note that there exist
no SCCs in the constructed graph 𝐺′(𝑉 ′, 𝐸′).

For the last step, we simply pick the nodes with in-degree
equal to 0 in 𝐺(𝑉 ′, 𝐸′) and for each such node 𝑣𝑖, we insert
into the seed set 𝑆 a node randomly from its corresponding
𝑠𝑐𝑐𝑖 in the original 𝐺(𝑉,𝐸). Since there exist no SCCs in
𝐺′(𝑉 ′, 𝐸′), it is possible to perform a topological sort on
𝐺′(𝑉 ′, 𝐸′). Hence, the seed set consisting of all the nodes with
in-degree equal to 0 in 𝐺′(𝑉 ′, 𝐸′) would influence all nodes
in 𝐺′(𝑉 ′, 𝐸′). Since each node in 𝐺′(𝑉 ′, 𝐸′) corresponds to
a SCC structure in 𝐺(𝑉,𝐸), according to Observation 2, we
conclude that the seed set 𝑆 constructed at the last step would
influence ∣𝑉 ∣ nodes in 𝐺(𝑉,𝐸) (deterministic). Clearly, the
cost of Step 3 is 𝑂(∣𝑉 ′∣+ ∣𝐸′∣) (DFS/BFS), which is bounded
by 𝑂(∣𝑉 ∣+ ∣𝐸∣).

In summary, the worst-case time complexity of Decompose-
and-Pick is 𝑂(∣𝑉 ∣ + ∣𝐸∣) and 𝑂(∣𝑉 ∣ + ∣𝐸∣ ⋅ log ∣𝐸∣) when
the new graph is maintained in an adjacency matrix and an
adjacency list, respectively.

B. Full-Coverage on Probabilistic Graph (IC Model)

At this moment, it is quite straightforward to perform
our probabilistic algorithm for Full-Coverage based on social
network sampling and Decompose-and-Pick as follows. We
first use social network sampling to generate a certain number
of deterministic graphs. Then, on each such deterministic
graph, we run Decompose-and-Pick to obtain its corresponding
seed set which covers all the nodes in the social network and
the corresponding size of the seed set. At the end, we average
the sizes of the seed sets obtained for all samples (deterministic
graphs) to approximate the solution of Full-Coverage on a

432

general (probabilistic) social network. Again, using Hoeffd-
ing’s Inequality, for a real number 𝑐 between 0 and 1, we can
provide users with a (1 ± 𝜖)-approximation solution for any
positive real number 𝜖 with confidence at least 𝑐 by performing
the sampling process at least (∣𝑉 ∣−1)2𝑙𝑛(2/(1−𝑐))

2𝜖2 times. The
proof is similar to that of Lemma 1.

VII. EMPIRICAL STUDY

We set up our experiments in Section VII-A and give the
corresponding experimental results in Section VII-B.

A. Experimental Setup

We conducted our experiments on a 2.26GHz machine with
4GB memory under a Linux platform. All algorithms were
implemented in C/C++.

1) Datasets: We used four real datasets for our empirical
study, namely HEP-T, Epinions, Amazon and DBLP. HEP-T is
a collaboration network generated from “High Energy Physics-
Theory” section of the e-print arXiv (http://www.arXiv.org). In
this collaboration network, each node represents one specific
author and each edge indicates a co-author relationship be-
tween the two authors corresponding to the nodes incident to
the edge. The second one, Epinions, is a who-trust-whom net-
work at Epinions.com, where each node represents a member
of the site and the link from member 𝑢 to member 𝑣 means that
𝑢 trusts 𝑣 (i.e., 𝑣 has a certain influence on 𝑢). The third real
dataset, Amazon, is a product co-purchasing network extracted
from Amazon.com with nodes and edges representing products
and co-purchasing relationships, respectively. We believe that
product 𝑢 has an influence on product 𝑣 if 𝑣 is purchased often
with 𝑢. Both of Epinions and Amazon are maintained by Jure
Leskovec. Our last real dataset, DBLP, is another collaboration
network of computer science bibliography database maintained
by Michael Ley. We summarize the features of the above
real datasets in Table I. For efficiency, we ran our algorithms
on the samples of the aforementioned real datasets with the
sampling ratio equal to one percent. The sampling process is
done as follows. We randomly choose a node as the root and
then perform a breadth-first traversal (BFT) from this root.
If the BFT from one root cannot cover our targeted number
of nodes, we continue to pick more new roots randomly and
perform BFTs from them until we obtain our expected number
of nodes. Next, we construct the edges by keeping the original
edges between the nodes traversed.

2) Configurations: (1) Weight generation for the IC model:
We use the QUADRIVALENCY model to generate the
weights. Specifically, for each edge, we uniformly choose a
value from set {0.1, 0.25, 0.5, 0.75}, each of which represents
minor, low, medium and high influence, respectively. (2)
Weight generation for the LT model: For each node 𝑢, let 𝑑𝑢
denote its in-degree, we assign the weight of each edge to 𝑢 as
1/𝑑𝑢. In this case, each node obtains the equivalent influence
from each of its neighbors. (3) No. of Times for Sampling:
For each influence calculation under both the IC model and
the LT model, we perform the graph sampling process 10000
times by default. (4) Parameter 𝐽: In the following, we denote

TABLE I
STATISTICS OF REAL DATASETS

Dataset HEP-T Epinions Amazon DBLP
No. of Nodes 15233 75888 262111 654628
No. of Edges 58891 508837 1234877 1990259

parameter 𝐽 as a relative real number between 0 and 1
denoting the fraction of the influenced nodes among all nodes
in the social network (instead of an absolute positive integer
denoting the total number of influenced nodes) because a
relative measure is more meaningful than an absolute measure
in the experiments. We set 𝐽 to be 0.5 by default. Alternative
configurations considered are {0.1, 0.25, 0.5, 0.75, 1}.

3) Algorithms: We compare our greedy algorithm with
several other common heuristic algorithms. We list all the algo-
rithms studied in our experiments as follows. (1) Greedy1: We
denote our first implementation of Algorithm 1 by Greedy1.
As stated before, we only conduct the graph sampling pro-
cess when performing the influence calculation. (2) Greedy2:
Greedy2 corresponds to the alternative implementation of Al-
gorithm 1. (3) Degree-heuristic: We implemented this baseline
algorithm using the heuristic of nodes’ out-degree. Specifi-
cally, we repeatedly pick the node with the largest out-degree
yet un-covered and add it into the seed set until the incurred
influence exceeds the threshold. We denote this heuristic algo-
rithm as Degree-heuristic. (4) Centrality-heuristic: Centrality-
heuristic indicates another heuristic algorithm based on the
nodes’ distance centrality. In sociology, distance centrality
is a common measurement of nodes’ importance in a social
network based on the assumption that a node with short
distances to other nodes would probably have a higher chance
to influence them. In Centrality-heuristic, we select the seeds
in a decreasing order of nodes’ distance centralities until the
requirement of influencing at least 𝐽 nodes is met. (5) Random:
Finally, we consider the method of selecting seeds from the
un-covered nodes at random as a baseline. Correspondingly,
we denote it by Random.

In the experiment, we do not compare our algorithms with
the naı̈ve adaption of an existing algorithm for 𝑘-MAX-
Influence described in Section I because this naı̈ve adaption is
time-consuming as discussed in Section V.

B. Experiment Results

For the sake of space, we show the results for the IC model
only. The results for the LT model can be found in [20].

1) No. of Seeds: We measure the quality of the algorithm
for 𝐽-MIN-Seed by using the number of seeds returned by the
algorithm. Clearly, the fewer the seeds an algorithm returns,
the better it is.

We study the qualities of the five aforementioned algorithms
by comparing the number of seeds returned by them. Specif-
ically, we vary parameter 𝐽 from 0.1 to 1. The experimental
results are shown in Figure 3. Consider the results on HEP-T
(Figure 3(a)) as an example. We find algorithms Greedy1 and
Greedy 2 are comparable in terms of quality. Both of them
outperform other heuristic algorithms significantly. Similar
results can be found in other real datasets.

433

 0

 20

 40

 60

0.1 0.25 0.5 0.75 1

E
rr

or
 (

N
um

be
r

of
 S

ee
ds

)

J

Greedy1
Greedy2

Additive-error-bound

 0

 2

 4

 6

0.1 0.25 0.5 0.75 1

E
rr

or
 (

R
at

io
 o

f N
o.

 o
f S

ee
ds

)

J

Greedy
Multiplicative-error-bound

(a) Additive Error (b) Multiplicative Error
Fig. 5. Error Analysis (IC Model)

2) Running Time: We explore the efficiency of different
algorithms by comparing their running times. Again, we vary
𝐽 , and for each setting of 𝐽 , we record the corresponding
running time of each algorithm.

According to the results shown in Figure 4, we find that
Greedy1 is the slowest algorithm. The reason is that Greedy1
selects the seeds by calculating the marginal gain of each non-
seed at each iteration and then picking the one with the largest
marginal gain while other heuristic algorithms simply choose
the non-seed with the best heuristic value (e.g., out-degree
and centrality). However, the alternative implementation of
our greedy algorithm, i.e., Greedy2, shows its advantage in
terms of efficiency. Greedy2 is faster than Greedy1 because
the total cost of sampling in Greedy2 is much smaller than
that in Greedy1. Besides, Random is slower than Greedy2,
though the cost of choosing a seed in Random is 𝑂(1). This
is because Random usually has to select more seeds than
Greedy2 in order to incur the same amount of influence and for
each iteration, Random also needs to calculate the influence
incurred by the current seed set.

3) Error Analysis: To verify the error bounds derived in this
paper, we also conducted the experiments which compare the
number of seeds returned by our algorithms with the optimal
one on small datasets (0.5% of the HEP-T dataset). We per-
formed Brute-Force searching to obtain the optimal solution.
According to the results in Figure 5(a), the additive errors
incurred by our algorithms are generally much smaller than
the theoretical error bounds on the real dataset. In Figure 5(b),
we find that the multiplicative error of our greedy algorithm
grows slowly when 𝐽 increases. Besides, we discover that
𝑘2 is the smallest among 𝑘1, 𝑘2 and 𝑘3 in most cases of
our experiments. That is, the multiplicative bound becomes
(1 + 𝑘2) (i.e., (1 + ln 𝜎′(𝑆1)

𝜎′(𝑆ℎ)−𝜎′(𝑆ℎ−1)
)) in these cases. Based

on this, we can explain the phenomenon in Figure 5(b) that
the theoretical multiplicative error bound does not change too
much when we increase 𝐽 from 0.75 to 1.

4) Full Coverage Experiments: We conducted experiments
for Full-Coverage and the corresponding results can be found
in [20].

Conclusion: Greedy1 and Greedy2 both give the smallest
seed set compared with other algorithms Degree-Heuristic,
Centrality-Heuristic and Random. In addition, the difference
between the size of a seed set returned by Greedy1 or Greedy2
and the minimum (optimal) seed size is significantly smaller
than the theoretical bound. Besides, Greedy2 performs faster
than Greedy1.

VIII. CONCLUSION

In this paper, we propose a new viral marketing problem
called 𝐽-MIN-Seed, which has extensive applications in real
world. We then prove that 𝐽-MIN-Seed is NP-hard under
two popular diffusion models (i.e., the IC model and the LT
model). To solve 𝐽-MIN-Seed effectively, we develop a greedy
algorithm, which can provide approximation guarantees. Be-
sides, for the special setting where 𝐽 is equal to the number of
all users in the social network (i.e., Full-Coverage), we design
other efficient algorithms. Finally, we conducted extensive
experiments on real datasets, which verified the effectiveness
and efficiency of our greedy algorithm. For future work, we
plan to study the properties of our new problem under diffusion
models other than the IC model and the LT model. Finding
other solutions of Full-Coverage for the LT model is another
interesting direction.

Acknowledgements: The research is supported by HKRGC
GRF 621309 and Direct Allocation Grant DAG11EG05G.

REFERENCES

[1] J. Bryant and D. Miron, “Theory and research in mass communication,”
Journal of communication, vol. 54, no. 4, pp. 662–704, 2004.

[2] J. Nail, “The consumer advertising backlash,” Forrester Research, 2004.
[3] I. R. Misner, The World’s best known marketing secret: Building your

business with word-of-mouth marketing. Bard Press, 2nd edition, 1999.
[4] A. Johnson, “nike-tops-list-of-most-viral-brands-on-facebook-twitter,”

2010. [Online]. Available: http://www.kikabink.com/news/
[5] M. Granovetter, “Threshold models of collective behavior,” The Ameri-

can Journal of Sociology, vol. 83, no. 6, pp. 1420–1443, 1978.
[6] T. C. Schelling, Micromotives and macrobehavior. WW Norton and

Company, 2006.
[7] J. Goldenberg, B. Libai, and E. Muller, “Talk of the network: A complex

systems look at the underlying process of word-of-mouth,” Marketing
Letters, vol. 12, no. 3, pp. 211–223, 2001.

[8] ——, “Using complex systems analysis to advance marketing theory
development: Modeling heterogeneity effects on new product growth
through stochastic cellular automata,” Academy of Marketing Science
Review, vol. 9, no. 3, pp. 1–18, 2001.

[9] D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins, “Information
diffusion through blogspace,” in WWW, 2004.

[10] H. Ma, H. Yang, M. R. Lyu, and I. King, “Mining social networks using
heat diffusion processes for marketing candidates selection,” in CIKM,
2008.

[11] P. Domingos and M. Richardson, “Mining the network value of cus-
tomers,” in KDD, 2001.

[12] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in SIGKDD, 2003.

[13] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance, “Cost-effective outbreak detection in networks,” in SIGKDD,
2007.

[14] M. Kimura and K. Saito, “Tractable models for information diffusion
in social networks,” PKDD, 2006.

[15] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in SIGKDD,
2010.

[16] S. Datta, A. Majumder, and N. Shrivastava, “Viral marketing for multiple
products,” in ICDM, 2010.

[17] M. Richardson and P. Domingos, “Mining knowledge-sharing sites for
viral marketing,” in SIGKDD, 2002.

[18] S. Bharathi, D. Kempe, and M. Salek, “Competitive influence maximiza-
tion in social networks,” Internet and Network Economics, pp. 306–311,
2007.

[19] T. Carnes, C. Nagarajan, S. M. Wild, and A. van Zuylen, “Maximizing
influence in a competitive social network: a follower’s perspective,”
in Proceedings of the ninth international conference on Electronic
commerce. ACM, 2007, pp. 351–360.

434

100

101

102

103

104

0.1 0.25 0.5 0.75 1

N
um

be
r

of
 s

ee
ds

J

Greedy1
Greedy2
Random

Degree-heuristic
Centrality-heuristic

100

101

102

103

104

105

0.1 0.25 0.5 0.75 1

N
um

be
r

of
 S

ee
ds

J

Greedy1
Greedy2
Random

Degree-heuristic
Centrality-heuristic

100

101

102

103

104

105

106

0.1 0.25 0.5 0.75 1

N
um

be
r

of
 S

ee
ds

J

Greedy1
Greedy2
Random

Degree-heuristic
Centrality-heuristic

101

102

103

104

105

106

0.1 0.25 0.5 0.75 1

N
um

be
r

of
 S

ee
ds

J

Greedy1
Greedy2
Random

Degree-heuristic
Centrality-heuristic

(a) HEP-T (b) Epinions (c) Amazon (d) DBLP
Fig. 3. Number of Seeds (IC Model)

100

101

102

103

104

0.1 0.25 0.5 0.75 1

R
un

ni
ng

 ti
m

e
(s

)

J

Greedy1
Greedy2
Random

Degree-heuristic
Centrality-heuristic

103

104

105

106

0.1 0.25 0.5 0.75 1

R
un

ni
g

tim
e

(s
)

J

Greedy1
Greedy2
Random

Degree-heuristic
Centrality-heuristic

102

103

104

105

106

107

108

0.1 0.25 0.5 0.75 1

R
un

ni
ng

 ti
m

e
(s

)

J

Greedy1
Greedy2
Random

Degree-heuristic
Centrality-heuristic

103

104

105

106

107

108

109

0.1 0.25 0.5 0.75 1

R
un

ni
ng

 ti
m

e
(s

)

J

Greedy1
Greedy2
Random

Degree-heuristic
Centrality-heuristic

(a) HEP-T (b) Epinions (c) Amazon (d) DBLP
Fig. 4. Running Time (IC Model)

[20] C. Long and R. C.-W. Wong, “Minimizing seed set for viral marketing,”
2011. [Online]. Available: http://www.cse.ust.hk/∼raywong/paper/J-
MIN-Seed-technical.pdf

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. The MIT press, 2009.

[22] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of ap-
proximations for maximizing submodular set functions-I,” Mathematical
Programming, vol. 14, no. 1, pp. 265–294, 1978.

[23] L. A. Wolsey, “An analysis of the greedy algorithm for the submodular
set covering problem,” COMBINATORIA, vol. 2, no. 4, pp. 385–393,
1981.

APPENDIX: PROOF OF LEMMAS/THEOREMS

Proof of Lemma 2. Firstly, we give the theoretical bound on the
influence for 𝑘-MAX-Influence. The problem of determining
the 𝑘-element set 𝑆 ⊂ 𝑉 that maximizes the value of
𝜎(⋅) is NP-hard. Fortunately, according to [22], a simple
greedy algorithm can solve this maximization problem with
the approximation factor of (1−1/𝑒) by initializing an empty
set 𝑆 and iteratively adding the node such that the marginal
gain of inserting this node into the current set 𝑆 is the greatest
one until 𝑘 nodes have been added. We present this interesting
tractability property of maximizing a submodular function in
Lemma 4 as follows.

Lemma 4 ([22]): For a non-negative, monotone submodu-
lar function 𝑓 , we obtain a set 𝑆 of size 𝑘 by initializing set
𝑆 to be an empty set and then iteratively adding the node 𝑢
one at a time such that the marginal gain of inserting 𝑢 into
the current set 𝑆 is the greatest. Assume that 𝑆∗ is the set
with 𝑘 elements that maximizes function 𝑓 , i.e., the optimal
𝑘-element set. Then, 𝑓(𝑆) ≥ (1−1/𝑒) ⋅ 𝑓(𝑆∗), where 𝑒 is the
natural logarithmic base.

Secondly, we derive the additive error bound on the seed
set size for 𝐽-MIN-Seed based on the aforementioned bound.

As discussed in Section III, 𝜎(⋅) is submodular. Clearly,
𝜎(⋅) is also non-negative and monotone. The framework in
Algorithm 1 involves a number of iterations (lines 2-4) where
the size of the seed set 𝑆 is incremented by one for each
iteration. We say that the framework in Algorithm 1 is at stage

𝑗 if the seed set 𝑆 contains 𝑗 seeds at the end of an iteration.
The seed set 𝑆 at stage 𝑗 is denoted by 𝑆𝑗 . Consequently,
according to Lemma 4, at each stage 𝑗, we conclude that

𝜎(𝑆𝑗) ≥ (1− 1/𝑒) ⋅ 𝜎(𝑆∗𝑗) (1)

where 𝑆∗𝑗 is the set that provides the maximum value of 𝜎(⋅)
over all possible seed sets of size 𝑗.

Note that the total number of stages for the greedy process
is equal to ℎ (i.e., the size of the seed set returned by the
algorithm). That is, the greedy process stops at stage ℎ. Thus,
we know that 𝜎(𝑆ℎ) ≥ 𝐽 and the greedy solution for 𝐽-MIN-
Seed is 𝑆ℎ. Consider the last two stages, namely stage ℎ− 1
and stage ℎ. We know that 𝜎(𝑆ℎ−1) < 𝐽 and 𝜎(𝑆ℎ) ≥ 𝐽 .
Since 𝜎(𝑆∗ℎ) ≥ 𝜎(𝑆ℎ), we have 𝜎(𝑆∗ℎ) ≥ 𝐽 .

Now, we want to explore the relationship between ℎ and 𝑡.
Note that the following inequality holds.

𝑡 ≤ ℎ (2)

Consider two stages, stage 𝑖 and stage 𝑖 + 1, such that
𝜎(𝑆𝑖) < (1 − 1/𝑒) ⋅ 𝐽 while 𝜎(𝑆𝑖+1) ≥ (1 − 1/𝑒) ⋅ 𝐽 .
According to Inequality (1), we know 𝜎(𝑆∗𝑖) < 𝐽 . (This is
because if 𝜎(𝑆∗𝑖) ≥ 𝐽 , then we have 𝜎(𝑆𝑖) ≥ (1 − 1/𝑒) ⋅ 𝐽
with Inequality (1), which contradicts 𝜎(𝑆𝑖) < (1− 1/𝑒) ⋅ 𝐽).
As a result, we have the following inequality

𝑡 > 𝑖 (3)

due to the monotonicity property of 𝜎(⋅).
According to Inequality (2) and Inequality (3), we obtain

𝑡 ∈ [𝑖+1, ℎ]. That is, the additive error of our greedy algorithm
(i.e., ℎ− 𝑡) is bounded by the number of stages between stage
𝑖+1 and stage ℎ. Since 𝜎(𝑆𝑖+1) ≥ (1−1/𝑒)⋅𝐽 and 𝜎(𝑆ℎ−1) <
𝐽 , the difference of the influence incurred between stage 𝑖+1
and stage ℎ−1 is bounded by 𝐽−(1−1/𝑒)⋅𝐽 = 1/𝑒⋅𝐽 . Since
each stage increases at least 1 influenced node (seed itself), it
is easy to see that the number of stages between stage 𝑖 + 1
and stage ℎ− 1 is at most 1/𝑒 ⋅ 𝐽 . Consequently, the number

435

of stages between stage 𝑖+1 and stage ℎ is at most 1/𝑒 ⋅𝐽+1.
As a result, ℎ− 𝑡 ≤ 1/𝑒 ⋅ 𝐽 + 1.

Proof of Lemma 3. This proof involves four parts. In the
first part, we construct a new problem 𝑃 ′ based on the
submodular function 𝜎′(⋅) (instead of 𝜎(⋅)). In the second
part, we show the multiplicative error bound of the greedy
algorithm in Algorithm 1 (using 𝜎′(⋅) instead of 𝜎(⋅)) for this
new problem 𝑃 ′. We denote this adapted greedy algorithm by
𝐴′. For simplicity, we denote the original greedy algorithm in
Algorithm 1 using 𝜎(⋅) by 𝐴. In the third part, we show that
this new problem is equivalent to the 𝐽-MIN-Seed problem.
In the fourth part, we show that the multiplicative error bound
deduced in the second part can be used as the multiplicative
error bound of algorithm 𝐴 for 𝐽-MIN-Seed.

Firstly, we construct a new problem 𝑃 ′ as follows. Note that
𝜎′(𝑆) = min{𝜎(𝑆), 𝐽}. Problem 𝑃 ′ is formalized as follows.

argmin{∣𝑆∣ : 𝜎′(𝑆) = 𝜎′(𝑉), 𝑆 ⊆ 𝑉 }. (4)

Secondly, we show the multiplicative error bound of algo-
rithm 𝐴′ for problem 𝑃 ′ by using the following Lemma 5 [23].

Lemma 5 ([23]): Given problem argmin{∑𝑥∈𝑆 𝑔(𝑥) :
𝑓(𝑆) = 𝑓(𝑈), 𝑆 ⊆ 𝑈} where 𝑓 is a nondecreasing and
submodular function defined on subsets of a finite set 𝑈 , and
𝑔 is a function defined on 𝑈 . Consider the greedy algorithm
that selects 𝑥 in 𝑈 −𝑆 such that (𝑓(𝑆∪{𝑥})−𝑓(𝑆))/𝑔(𝑥) is
the greatest and adds it into 𝑆 at each iteration. The process
stops when 𝑓(𝑆) = 𝑓(𝑈). Assume that the greedy algorithm
terminates after ℎ iterations and let 𝑆𝑖 denote the seed set
at iteration 𝑖 (𝑆0 = ∅). The greedy algorithm provides a
(1 + min{𝑘1, 𝑘2, 𝑘3})-approximation of the above problem,
where 𝑘1 = ln 𝑓(𝑈)−𝑓(∅)

𝑓(𝑈)−𝑓(𝑆ℎ−1)
, 𝑘2 = ln 𝑓(𝑆1)−𝑓(∅)

𝑓(𝑆ℎ)−𝑓(𝑆ℎ−1)
, and

𝑘3 = ln(max{ 𝑓({𝑥})−𝑓(∅)
𝑓(𝑆𝑖∪{𝑥})−𝑓(𝑆𝑖)

∣𝑥 ∈ 𝑈, 0 ≤ 𝑖 ≤ ℎ, 𝑓(𝑆𝑖 ∪
{𝑥})− 𝑓(𝑆𝑖) > 0}).

We apply the above lemma for problem 𝑃 ′ as follows. It is
easy to verify that 𝜎′(⋅) is a non-decreasing and submodular
function defined on subsets of a finite set 𝑉 . We set 𝑈 to be
𝑉 and set 𝑓(⋅) to be 𝜎′(⋅). We also define 𝑔(𝑥) to be 1 for
each 𝑥 ∈ 𝑉 (or 𝑈). Note that

∑
𝑥∈𝑆 𝑔(𝑥) = ∣𝑆∣. We re-write

Problem 𝑃 ′ (4) as follows.

argmin{
∑

𝑥∈𝑆
𝑔(𝑥) : 𝜎′(𝑆) = 𝜎′(𝑉), 𝑆 ⊆ 𝑉 }. (5)

The above form of problem 𝑃 ′ is exactly the form of the
problem described in Lemma 5. Suppose that we adopt the
greedy algorithm in Algorithm 1 for problem 𝑃 ′ by using
𝜎′(⋅) instead of 𝜎(⋅), i.e., algorithm 𝐴′. It is easy to verify
that algorithm 𝐴′ follows the steps of the greedy algorithm
described in Lemma 5 (i.e., selecting the node 𝑥 such that
(𝜎′(𝑆 ∪ {𝑥}) − 𝜎′(𝑆))/𝑔(𝑥) is the greatest where 𝑔(𝑥) is
exactly equal to 1). By Lemma 5, the greedy algorithm 𝐴′

for problem 𝑃 ′ gives (1 +min{𝑘1, 𝑘2, 𝑘3})-approximation of
problem 𝑃 ′, where 𝑘1 = ln 𝜎′(𝑉)−𝜎′(∅)

𝜎′(𝑉)−𝜎′(𝑆ℎ−1)
= ln 𝐽

𝐽−𝜎′(𝑆ℎ−1)
,

𝑘2 = ln 𝜎′(𝑆1)−𝜎′(∅)
𝜎′(𝑆ℎ)−𝜎′(𝑆ℎ−1)

= ln 𝜎′(𝑆1)
𝜎′(𝑆ℎ)−𝜎′(𝑆ℎ−1)

, and 𝑘3 =

ln(max{ 𝜎′({𝑥})
𝜎′(𝑆𝑖∪{𝑥})−𝜎′(𝑆𝑖)

∣𝑥 ∈ 𝑉, 0 ≤ 𝑖 ≤ ℎ, 𝜎′(𝑆𝑖 ∪ {𝑥}) −
𝜎′(𝑆𝑖) > 0}).

Thirdly, we show that problem 𝑃 ′ is equivalent to the 𝐽-
MIN-Seed problem which can be formalized as follows (since∑

𝑥∈𝑆 𝑔(𝑥) = ∣𝑆∣).
argmin{

∑

𝑥∈𝑆
𝑔(𝑥) : 𝜎(𝑆) ≥ 𝐽, 𝑆 ⊆ 𝑉 }. (6)

In the following, we show that the set of all possible solutions
for the problem in form of (6) (i.e., the 𝐽-MIN-Seed problem)
is equivalent to the set of all possible solutions for the problem
in form of (5) (i.e., problem 𝑃 ′). Note that the objective
functions in both problems are equal. The remaining issue
is to show that the constraints for one problem are the same
as those for the other problem.

Suppose that 𝑆 is a solution for the problem in form of
(6). We know that 𝜎(𝑆) ≥ 𝐽 and 𝑆 ⊆ 𝑉 . We derive that
𝜎′(𝑆) = 𝐽 . Since 𝜎′(𝑉) = 𝐽 , we have 𝜎′(𝑆) = 𝜎′(𝑉) and
𝑆 ⊆ 𝑉 (which are the constraints for the problem in form of
(5)).

Suppose that 𝑆 is a solution for the problem in form of (5).
We know that 𝜎′(𝑆) = 𝜎′(𝑉) and 𝑆 ⊆ 𝑉 . Since 𝜎′(𝑉) = 𝐽 ,
we have 𝜎′(𝑆) = 𝐽 . Considering 𝜎′(𝑆) = min{𝜎(𝑆), 𝐽}, we
derive that 𝜎(𝑆) ≥ 𝐽 . So, we have 𝜎(𝑆) ≥ 𝐽 and 𝑆 ⊆ 𝑉
(which are the constraints for the problem in form of (6)).

Fourthly, we show that the size of the solution (i.e., ∣𝑆∣)
returned by algorithm 𝐴′ for the new problem 𝑃 ′ is equal to
that returned by algorithm 𝐴 for 𝐽-MIN-Seed. Since 𝜎(𝑆𝑖) <
𝐽 for 1 ≤ 𝑖 ≤ ℎ − 1, we know that 𝜎′(𝑆𝑖) = 𝜎(𝑆𝑖) for
1 ≤ 𝑖 ≤ ℎ− 1. We also know that the element 𝑥 in 𝑉 −𝑆𝑖−1
that maximizes 𝜎(𝑆𝑖−1 ∪ {𝑥}) − 𝜎(𝑆𝑖−1) (which is chosen
at iteration 𝑖 by algorithm 𝐴) would also be the element that
maximizes 𝜎′(𝑆𝑖−1 ∪ {𝑥}) − 𝜎′(𝑆𝑖−1) (which is chosen at
iteration 𝑖 by algorithm 𝐴′) for 𝑖 = 1, 2, ..., ℎ − 1. That is,
algorithm 𝐴′ would proceed in the same way as algorithm 𝐴 at
iteration 𝑖 = 1, 2, ..., ℎ−1. Consider iteration ℎ of algorithm 𝐴.
We denote the element selected by algorithm 𝐴 by 𝑥ℎ. Then,
we know 𝜎(𝑆ℎ−1 ∪ {𝑥ℎ}) ≥ 𝐽 since algorithm 𝐴 stops at
iteration ℎ. Consider iteration ℎ of algorithm 𝐴′. This iteration
is also the last iteration of 𝐴′. This is because there exists an
element 𝑥 in 𝑉 −𝑆ℎ−1 such that 𝜎′(𝑆ℎ−1 ∪{𝑥}) = 𝜎′(𝑉)(=
𝐽) (since 𝑥 can be equal to 𝑥ℎ where 𝜎′(𝑆ℎ−1 ∪{𝑥ℎ}) = 𝐽).
Note that this element 𝑥 maximizes 𝜎′(𝑆ℎ−1∪{𝑥})−𝜎′(𝑆ℎ−1)
and thus is selected by 𝐴′. We conclude that both algorithms 𝐴
and 𝐴′ terminates at iteration ℎ. Since the number of iterations
for an algorithm (𝐴 or 𝐴′) corresponds to the size of the
solution returned by the algorithm, we deduce that the size of
the solution returned by algorithm 𝐴′ is equal to that returned
by algorithm 𝐴.

In view of the above discussion, we know that problem 𝑃 ′

is equivalent to 𝐽-MIN-Seed and algorithm 𝐴′ for problem 𝑃 ′

would proceed in the same way as algorithm 𝐴 for 𝐽-MIN-
Seed. As a result, the multiplicative bound of algorithm 𝐴′

for problem 𝑃 ′ in the second part also applies to algorithm 𝐴
(i.e., the greedy algorithm in Algorithm 1) for 𝐽-MIN-Seed.

436

