
Session-based Recommendation with Local Invariance

Tianwen Chen
Dept. of Computer Science and Engineering

The Hong Kong University of Science and Technology
Hong Kong

tchenaj@cse.ust.hk

Raymond Chi-Wing Wong
Dept. of Computer Science and Engineering

The Hong Kong University of Science and Technology
Hong Kong

raywong@cse.ust.hk

Abstract—Session-based recommendation is a task to predict
users’ next actions given a sequence of previous actions in
the same session. Existing methods either encode the previous
actions in a strict order or completely ignore the order. How-
ever, sometimes the order of actions in a short sub-sequence,
called the detailed order, may not be important, e.g., when a
user is just comparing the same kind of products from different
brands. Nevertheless, the high-level ordering information is still
useful because the data is sequential in nature. Therefore, a
good session-based recommender should pay different attention
to the sequential information in different levels of granularity.
To this end, we propose a novel model to automatically ignore
the insignificant detailed ordering information in some sub-
sessions, while keeping the high-level sequential information
of the whole sessions. In the model, we first use a full self-
attention layer with Gaussian weighting to extract features of
sub-sessions, and then we apply a recurrent neural network
to capture the high-level sequential information. Extensive
experiments on two real-world datasets show that our method
outperforms or matches the state-of-the-art methods.

I. INTRODUCTION

With the rapid development of the internet, users are
overwhelmed by a tremendous amount of information. It is
inefficient or even impossible to find the most useful and
interesting information with only users’ active searching.
Recommender systems help to solve the information over-
load problem by letting the information come to users, i.e.,
by recommending items or services that are likely to be
useful or interesting to users. In order to give accurate rec-
ommendations, recommender systems need to learn users’
preferences from their historical behavior.

In many online services such as e-commerce and media
streaming, users’ actions are often sequential, e.g., items
viewed have temporal correlation among them. Moreover,
the sequential actions can be grouped into sessions. Each
session consists of actions that occur within a certain time
period. The task of session-based recommendation is to
predict a user’s next action giving the user’s previous actions
in the same session.

Due to the highly practical value in many applications,
session-based recommendation has increasingly attracted
researchers’ attention, and many interesting and effective
approaches have been proposed. Most of the approaches

achieving state-of-the-art performance follow an encoder-
predictor architecture, where the encoder encodes the pre-
vious actions into a session embedding, and the predictor
generates from the session embedding a probability distri-
bution over the set of all possible actions.

It is easy to understand that the ordering information
is useful to predict the next actions in session-based rec-
ommendation because session data is sequential in nature.
However, not all the ordering information matters. Specifi-
cally, we argue that sometimes only the general high-level
ordering information matters, but the ordering information
at the sub-sessional level, called the detailed ordering, does
not matter so much. For example, when a user wants to
purchase a mobile phone along with some accessories on an
e-commerce website, the user may need to compare several
products from different brands for the mobile phone and
its accessories. In this scenario, the order in which the user
views different mobile phones or different brands of each
accessory does not matter so much, since the user is just
comparing the products without any intention to view the
products in a specific order. We call the property that the
ordering of viewing items within a short period of time does
not matter the local invariance, which could be found easily
in the real world. Moreover, the high-level ordering, namely
the ordering that the user views each kind of products, has
an impact on the next item. The reason is that if the user
searches for mobile phones first, s/he may also want to buy a
headphone because it is probable that s/he does not already
have one and s/he needs one if s/he buys a mobile phone.
On the other hand, if the user searches for headphones first,
s/he might just want to buy a headphone. Therefore, a good
session-based recommender should consider the ordering
information in different levels of granularity.

However, existing studies do not address this local in-
variance property well. There are two branches of exist-
ing studies about session-based recommendation. The first
branch includes methods that encode the actions in a strict
order. Specifically, the recent research work [1, 2, 3] applied
recurrent neural networks (RNNs) in the encoder component
and achieved promising results. The main advantage of using
RNNs is that the (detailed) sequential properties of sessions
are naturally modelled by the network structure. Therefore,

RNN based methods significantly outperform previous non-
RNN based methods. However, these methods still enforce
a strict order. Moreover, they focus more on users’ recent
actions and are not good at capturing dependencies in long
sessions.

The second branch includes existing studies which com-
pletely discard the ordering information. Specifically, in-
spired by the success of the attention mechanism in com-
puter vision and natural language processing [4, 5, 6], [7]
designed the session encoder purely based on attention
and obtained state-of-the-art performance. Compared with
RNN-based approaches, STAMP [7] is able to capture
dependencies between any two items in the same session
effectively with the attention mechanism. However, the high-
level sequential properties in sessions are overlooked, which
can be problematic in some situations.

The above two kinds of approaches of designing the
encoder component are two extremes, since they either
assume a rigid order between users’ actions within sessions,
or completely discard the ordering information. It is easy to
understand that the ordering information is useful because
the session data is sequential. However, in some local
regions of sessions (called sub-sessions), the order of items
may not be important because users do not intend to click
items by following a strict order. In other words, sometimes,
at the sub-sessional level, it is the occurrence of items that
is important, rather than the order.

To tackle the above challenge, we propose a novel model
called LINet that takes into account Local Invariance by
paying different amount of attention to the sequential in-
formation at different levels. Specifically, the insignificant
detailed ordering information in some sub-sessions is ig-
nored, while the high-level sequential information of the
whole sessions is preserved. The high-level idea is to use
a full self-attention layer with Gaussian weighting to extract
position-invariant features in sub-sessions, and then employ
a RNN with the attention mechanism to capture the general
sequential information.

The main contributions of this paper are summarized as
follows:
• We identify and study the local invariance property

in session-based recommendation. To the best of our
knowledge, we are the first to consider this in the
context of session-based recommendation.

• We propose a novel deep learning-based model that
takes into account the local invariance property. Unlike
previous models that either assume a rigid order be-
tween items within sessions, or completely discard the
ordering information, our model learns automatically
to generate session representations that are invariant to
subtle position changes in sub-sessions by following
the general order of items.

• Extensive experiments conducted on real-world datasets
show that our model outperforms the state-of-the-art

methods and the proposed mechanism to capture the
sequential information with local invariance plays an
important role.

II. METHODOLOGY

A. Problem Formulation

Let V = {v1, v2, · · · , v|V |} denote the set of all unique
items involved in all sessions. A session s = [vs,1, vs,2, · · · ,
vs,|s|] is a sequence of items ordered by timestamp, where
vs,t ∈ V denotes the item clicked at time step t in session s.
The task of session-based recommendation is to predict the
next item, i.e., vs,t+1, given a sequence of previously clicked
items st = [vs,1, vs,2, · · · , vs,t] for each time step t, 1 ≤ t <
|s|. A typical session-based recommendation model usually
computes a probability distribution p(v|s) over the entire
item set V . The items with top-k probabilities will be in the
candidate set for recommendation.

B. Overview

Like previous state-of-the-art methods [1, 2, 3, 7], our
model follows an encoder-predictor architecture.

Let V = {v1,v2, · · · ,v|V |} denote the embedding vec-
tors with respect to the item set V . Our model learns a d-
dimensional real-valued embedding vi ∈ Rd for each item
vi ∈ V . Given a session sequence st = [vs,1, vs,2, · · · , vs,t],
the input to our model is a list of item embeddings
[x1,x2, · · · ,xt], where xi is the embedding vector of item
vs,i. The local encoder takes as input the list of item em-
beddings and generates a sequence of group representations
that is invariant to position changes in short sub-sessions.
The global encoder is a sequential model that extracts
a session representation ch from the sequence of group
representations. Since [1] and [7] have demonstrated the
importance and effectiveness of considering recent interests,
we concatenate ch and a vector mt that represents the
recently clicked items to form a hybrid representation c.
Finally, the predictor computes a probability distribution of
the next item over V from the item embeddings and the
session representation.

In the follow, we discuss in detail each component of our
model.

C. Local Encoder

The objective of the local encoder is to extract group
features that are invariant to position changes inside each
group.

Ideally, each group is represented by a group embedding,
which is a weighted sum of the embeddings of the items
inside the group. For example, a group g can be represented
by:

x′g =
∑
v∈G

wg,vv (1)

where G is the set of items in group g and wg,v is the
contribution of item v towards group g.

However, this ideal objective cannot be achieved since the
number of groups are not known. Furthermore, the groups
may not have hard borders. Therefore, we extract a group
embedding for each original item. The group embedding
corresponding to the ith item is defined as:

x′i =
∑

1≤j≤t

wijxj (2)

which is simply a weighted sum of all items. The most
important part wij is explained as follows.

Intuitively, groups are formed by similar adjacent items,
which means wij is larger for items more similar and
temporally closer to item i. Thus, we define wij as follows:

wij ∝ α(l)
ij · fi(|i− j|) (3)∑

j

wij = 1 (4)

α
(l)
ij is the importance score of xj defined using the

attention mechanism, which can be viewed as some kind
of similarity.

e
(l)
ij = vT

l tanh(Wl[xi,xj]) (5)

α
(l)
ij =

exp(e
(l)
ij)∑

k exp(e
(l)
ik)

(6)

(Note: Symbol l in notations e(l)ij , α
(l)
ij ,vl,Wl means local.)

fi(·) is the probability density function of a Gaussian
distribution with mean 0 and variance σ2

i . Observe that the
variance controls the group size, and groups are formed by
similar items. The more similar the adjacent items to xi, the
larger the group size, and more weights should be assigned
to adjacent items, and the larger the variance. In other words,
the variance is positively correlated to the average similarity
between xi and its adjacent items. For simplicity, we assume
a linear relationship. Thus, the variance is defined as:

σ2
i = k · 1

2m

∑
l,0<|i−l|≤m

sim(xi,xl) (7)

where k is a parameter, and sim(·, ·) is a similarity measure,
for which a common choice is cosine similarity. We estimate
the average similarity in a context of size m. m should be
large enough for an accurate estimation. However, a large
m introduces the risk of including the items not likely to be
in the group. We suggest setting m to 1 ∼ 3 according to
our experiments.

Consider Equation (3). With α
(l)
ij alone (i.e., if wij =

α
(l)
ij), wij are actually the same as the weights of a full self-

attention layer. Therefore, α(l)
ij makes x′i a contextualized

embedding of xi. By adding fi(|i− j|), we make x′i focus
on a local region. Thus, x′i can also be viewed as a local
context embedding, and the local region it focuses on is
dynamically decided by the group size.

From the perspective of signal processing, the local en-
coder can also be viewed as a smoothing filter. Similar idea
can be found in [8], where shift invariance in convolutional
networks is improved by using a smoothing filter. We
achieve local position invariance by dynamically adjusting
the weights of the filter according to the context.

D. Global Encoder
The global encoder encodes the group features [x′1,x

′
2,

· · · ,x′t] into a session embedding that represents the user’s
interests in the current session. As the order of groups
indicates changes of the user’s current focus, the relative
order contains useful information for the prediction of the
next item. Therefore, we employ a RNN to generate the
session representation.

Let the output states of RNN be [h1,h2, · · · ,ht], where
hi can be viewed as the representation of the previous i
groups. To better capture the user’s interests, we apply an
item-level attention mechanism to dynamically select and
linearly combine the representations of previous groups.
Specifically, we extract a session representation ch as a
weighted sum of the output states of RNN:

ch =
∑
i

α
(g)
i hi (8)

where α(g)
i are computed using the attention mechanism:

e
(g)
i = vT

g tanh(Wg[hi,ht]) (9)

α
(g)
i =

exp(e
(g)
i)∑

k exp(e
(g)
k)

(10)

(Note: Symbol g in notations e
(g)
i , α

(g)
i ,vg,Wg means

global.)
With the combination of the local and global encoders,

the session representation ch contains the general sequential
information of the entire session and is invariant to the
unimportant local position changes in some sub-sessions.

E. Predictor
The predictor evaluates the probability distribution of

the next item. Since [7] have demonstrated that explicitly
considering user’s recent interests is effective for predicting
the next item, we combine the session representation ch
with the user’s recent interests mt (for simplicity, we set
mt = xt) into a hybrid representation c for the current
session. Then, the score of a candidate item vi ∈ V is
defined as:

zi = vT
i g(c) (11)

where vi is the embedding of vi and g is a neural network
that transforms c into a vector with the same dimensionality
as vi.

The scores are then normalized using the softmax function
to obtain a probability distribution over all items in V :

ŷ = softmax(z) (12)

F. Training

For each session sequence st, the loss function is defined
as the cross-entropy of the prediction and the ground truth:

L(y, ŷ) =
∑
i

yi log ŷi (13)

where y is a one-hot vector representing the ground-truth
distribution for the next item.

Then, all parameters as well as the item embeddings
are learned in an end-to-end back-propagation training
paradigm.

III. EXPERIMENTS AND ANALYSIS

A. Datasets

We carried out our experiments on two real-world bench-
mark datasets for session-based recommendation. The first
one is the YooChoose1 dataset from RecSys Challenge 2015,
which consists of users’ click-streams on an e-commerce
website within 6 months. The other dataset called Diginet-
ica2 comes from CIKM Cup 2016, where only its transac-
tional data is used. Models need to predict the next item that
a user would like to click/buy given the user’s click/purchase
history in the on-going session. As verified in [9], since
the YooChoose training set is quite large and training on
the recent fractions yields better results than training on the
entire fractions, we only used the most recent fractions 1/64
and 1/4 of the training sessions. Therefore, we generated
two datasets from the YooChoose dataset. We applied the
same preprocessing steps on the datasets as in [1, 2, 7].

B. Compared Models and Evaluation Metrics

Conventional methods: We select the following conven-
tional methods which are commonly used as baselines in
session-based recommendation [3].
• Item-KNN recommends items similar to the previous

items in the current session, where the similarity is
defined as the cosine similarity between the session
vectors.

• BPR-MF [10] optimizes a pairwise ranking objective
function via stochastic gradient descent.

• FPMC [11] is a state-of-the-art hybrid model for next-
basket recommendation.

Neural network based methods: The following models
are recent state-of-the-art methods for session-based recom-
mendation.
• GRU4Rec [12] employs ranking-based loss during the

session-parallel mini-batch training process.
• NARM [1] employs RNNs with attention to capture

users’ main purposes and sequential behaviors.
• STAMP [7] purely uses the attention mechanism to

capture users general interests and the recent focus.

1http://2015.recsyschallenge.com/challenge.html
2http://cikm2016.cs.iupui.edu/cikm-cup

• RepeatNet [2] considers the repeat-consumption phe-
nomenon using a repeat-explore mechanism.

• SR-GNN [3] converts sessions into graphs and uses a
graph neural network to learn session representations.

Following the previous work [1, 2, 3, 7], we use two
commonly used metrics Hit@20 and MRR@20 to evaluate
the performance of models.
• Hit@20: the fraction of test samples in which the

desired next item is ranked among the top 20 positions.
• MRR@20: MRR (Mean Reciprocal Rank) is the aver-

age of reciprocal ranks of the actual next items. The
reciprocal rank is set to 0 if the rank is larger than 20.

C. Comparison with Existing Methods

The performance of all methods is reported in Table I.

Table I
EXPERIMENTAL RESULTS (%) ON THREE DATASETS

Methods YooChoose 1/64 YooChoose 1/4 Diginetica

Hit@20 MRR@20 Hit@20 MRR@20 Hit@20 MRR@20

Item-KNN 51.60 21.81 52.31 21.70 35.75 11.57
BPR-MF 31.31 12.08 3.40 1.57 5.24 1.98
FPMC 45.62 15.01 51.86 17.50 26.53 6.95

GRU4Rec 60.64 22.89 59.53 22.60 40.24 14.37
NARM 68.32 28.76 69.73 29.23 49.70 16.17
STAMP 68.74 29.67 70.44 30.00 48.66 15.55

RepeatNet 69.13 30.24 70.71 31.03 47.79 17.66
SR-GNN 70.57 30.94 71.36 31.89 49.90 16.31

LINet 71.23 31.12 71.89 32.03 51.74 17.53

As mentioned in [2], the scores on the Diginetica dataset differ
from the results reported in the original papers [1, 3, 7, 12] because
they did not sort the session items according to the “timeframe”
field, which means the sequential information is ignored. We ran
the code released by [1, 3, 7, 12] on the sorted sessions to obtain
the correct scores.

Conventional methods perform poorly compared to neural
network models, which proves that conventional methods
are no longer suitable for session-based recommendation.
One reason for their poor performance is that they consider
no or limited sequential information. GRU4Rec, a simple
one-layer RNN that can leverage the sequential information
of entire sessions, already outperforms all the conventional
methods. Therefore, making use of complete sequential
information of sessions is essential for session-based rec-
ommendation. Nevertheless, we do not necessarily follow
a strict order. STAMP completely ignores the ordering
information in sessions except for the last item, and SR-
GNN may discard some sequential information such as the
starts and ends of sessions when encoding sessions into
graphs, but the two methods still produce competitive results.

However, the performance of these methods are still
inferior to that of the proposed method LINet. The three
RNN-based methods GRU4Rec, NAMR and RepeatNet as-
sume a strict order in items of each session, meaning that
they can be easily misled by the insignificant ordering in

local regions. STAMP and SR-GNN blindly discard some
important sequential information. On the contrary, LINet can
automatically seek a good balance between following the
strict order and completely ignoring the order. As shown in
Table I, LINet outperforms all the state-of-the-art methods in
the YooChoose 1/64 and YooChoose 1/4 datasets, and gains
a significant improvement in terms of the metric Hit@20 in
all datasets, thus proving the effectiveness and validity of
the proposed model.

D. Ablation Experiments

To test the effectiveness of the central modules in the
proposed model, i.e., the local and global encoders, we
propose and evaluate the following four models:
• LINet-No-LE: LINet with the local encoder removed.
• LINet-No-GE: LINet with the global encoder removed.

The average of the extracted group features are treated
as the context embedding ch.

• LINet-No-AW: LINet without the attention weights,
i.e., wij = fi(|i− j|).

• LINet-No-GW: LINet without the Gaussian weights,
i.e., wij = α

(l)
ij .

The results are shown in Table II. We can see that the
two in-complete models with either encoder removed have
significant performance drops on both datasets compared
with the complete model, proving that both the local and
global encoders play an important role in the proposed
model. With the local encoder removed, LINet-No-LE cap-
tures the sequential information by following a strict order
without considering the local invariance property, so it may
be misled by some useless local ordering and produce wrong
predictions. With the global encoder removed, LINet-No-GE
merely captures the contextual information in local regions,
not being able to consider long-term dependencies between
items and utilize the valuable sequential information. There-
fore, it is necessary for a session-based recommender to both
capture the sequential properties in sessions and consider the
local invariance property.

The other two in-complete models with either the attention
weights or the Gaussian weights removed also perform
worse than the complete model, though the gaps are smaller.
Without the attention weights, LINet-No-AW does not con-
sider similarity when computing the scores of adjacent
items, so the group embeddings can be easily affected by
dissimilar outliers. Without the Gaussian weights, LINet-
No-GW simply computes the contextualized embeddings
of items, not focusing on local regions. Therefore, it is
important for the local encoder to have both kinds of weights
when the group embeddings are computed.

E. Capability of Considering Local Invariance

We designed an additional experiment to test the models’
capability of considering the local invariance property. The

Table II
THE PERFORMANCE OF THE COMPLETE AND IN-COMPLETE VERSIONS

OF THE PROPOSED MODEL

Method YooChoose 1/64 Diginetica

Hit@20 MRR@20 Hit@20 MRR@20

LINet-No-LE 68.36 28.86 49.54 16.32
LINet-No-GE 68.58 29.27 48.69 15.89
LINet-No-AW 70.13 30.65 50.91 16.84
LINet-No-GW 70.09 30.67 50.63 16.57

LINet 71.23 31.12 51.74 17.53

idea is to evaluate their performance on similar pairs of
session sequences.

First, we define the similarity between two items using
only the training sessions as follows:

sim(vi, vj) =
1∑

d n
(ij)
d

∑
d

n
(ij)
d

log2(d+ 1)
(14)

where n
(ij)
d is the number of training sessions where the

distance between vi and vj is d, and log2(d+1) is a term that
penalizes long distance, which we borrow from discounted
cumulative gain [13]. The intuition behind is that sim(vi, vj)
measures the probability that vi and vj are in the same
group. The closer the two items, the higher the probability.
A special case is when vi and vj are next to each other
in every session they co-occur. If we assume their relative
order no longer matters in this case, then vi and vj are in
the same group with probability 1.

We only choose the neural network based methods for
comparison because as shown in Table I, methods based on
neural network are consistently better than the conventional
methods in terms of both evaluation metrics on all datasets.
Furthermore, we exclude GRU4Rec and STAMP because
NARM can be viewed as an improved version of GRU4Rec
and STAMP does not consider any order inside sessions.
Therefore, the methods we test are NARM, RepeatNet, SR-
GNN, and LINet.

Given a session sequence si, let si,k denote the kth item
in si, and si,1:k denote the first k items in si. We extract
all pairs of session sequences (si, sj) from the test sets that
satisfy the following conditions.

1) si and sj have the same length, denoted as l.
2) si and sj have the same last item, i.e., si,l = sj,l = v,

so a model needs to predict the next item as v given
an input sequence si,1:l−1 or sj,1:l−1.

3) There exists a perfect matching M in the bipartite
graph G formed by si,1:l−1 and sj,1:l−1. Specifically,
the items in si,1:l−1 and sj,1:l−1 are the two groups
of nodes of G, and there is an edge with weight
= sim(u, v) defined by Equation (14) for each pair
of (u, v), where u ∈ si,1:l−1 and v ∈ sj,1:l−1.
Furthermore, we require that sim(u, v) is larger than
a threshold θ, and the difference in indices of u and

v is smaller than another threshold β. The reasons are
explained below.

Given a pair (si, sj) satisfying all the conditions, we can
reorder the first l − 1 items of one sequence, say si, such
that the matched items have the same indices. E.g., if si,1 is
matched to sj,2, si,1 is put at position 2. Let the reordered
sequence be s′i,1:l−1. If θ is large, the corresponding items
of s′i,1:l−1 and sj,1:l−1 at the same index are very similar, so
s′i,1:l−1 and sj,1:l−1 are very similar. Since sj,1:l−1 has a next
item sj,l, it is likely that given the input sequence s′i,1:l−1,
the next item is sj,l = si,l (by Condition 2). Therefore, it
is probable that s′i,1:l−1 has the same next item as si,1:l−1.
If β is small, then the only differences between s′i,1:l−1 and
si,1:l−1 are some small position changes at the sub-sessional
level. and we can conclude that the changes have no effect
on the next item. Thus, we can say si has a large local
invariance. Similarly, we can say it for sj .

Therefore, the extracted pairs of session sequences form
a dataset with large local invariance. Besides, the average
weight in the matching M can be used as a good quantitative
measure of the local invariance of si or sj . The larger the
average weight of M , the larger the local invariance.

We then evaluate each model by the percentage of pairs
such that the model ranks the next items among top-k
for both sequences in the pairs. For example, given a pair
(si, sj), we count the pair only if for both sequences, the
ground-truth next item is among the top-k of the prediction.
Thus, in order to have a good performance, a model needs
to produce consistent and accurate predictions for both
sequences. As in previous experiments, k is to 20 in this
experiment. The results are shown in Figure 1.

0.5 0.6 0.7 0.8 0.9
65
70
75
80
85
90
95

Pe
rc

en
ta

ge

YooChoose 1/64

NARM
RepeatNet
SR-GNN
LINet

0.5 0.6 0.7 0.8 0.9
40
45
50
55
60
65
70

Diginetica

Figure 1. The percentage of similar pairs that each model predicts
accurately vs the threshold θ

We can see that the comparative models have similar per-
formance and the proposed model consistently outperforms
other models in both datasets. This further proves that our
model has a higher capability to handle the local invariance
property in sessions. Observe that the performance of all
models drops when θ is large. The sequence length may be
a possible reason. For a pair of long sequences, it is less
likely that Condition 3 is satisfied because more items are
involved. Therefore, the sequences in the pairs extracted at
a large θ have short lengths, which means they contain less
sequential information and thus are harder to predict.

IV. CONCLUSION

We propose a model with an encoder-predictor architec-
ture to address the local invariance property in session-based
recommendation. The local encoder incorporates Gaussian
weighting into self-attention, capturing contextual informa-
tion in local regions, and the global encoder extracts high-
level sequential information in the whole sessions. With the
combination of both, our model can pay different attention to
the sequential information in different levels of granularity,
and generate session representations that are invariant to
subtle position changes in subsequences. Comprehensive
experiments conducted on two public benchmark datasets
demonstrate the superiority of the proposed model over the
state-of-the-art models.
Acknowledgements: We are grateful to the anonymous
reviewers for their constructive comments on this paper. The
research is supported by ITS/227/17FP.

REFERENCES

[1] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural attentive
session-based recommendation,” in Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management, 2017, pp.
1419–1428.

[2] P. Ren, Z. Chen, J. Li, Z. Ren, J. Ma, and M. de Rijke, “RepeatNet: A
repeat aware neural recommendation machine for session-based rec-
ommendation,” National Conference on Artificial Intelligence, 2019.

[3] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based
recommendation with graph neural network,” National Conference on
Artificial Intelligence, 2019.

[4] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov,
R. Zemel, and Y. Bengio, “Show, attend and tell: Neural image
caption generation with visual attention,” International Conference
on Machine Learning, pp. 2048–2057, 2015.

[5] T. Luong, H. Pham, and C. D. Manning, “Effective approaches
to attention-based neural machine translation,” in Proceedings of
the 2015 Conference on Empirical Methods in Natural Language
Processing, 2015, pp. 1412–1421.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
Neural Information Processing Systems, pp. 5998–6008, 2017.

[7] Q. Liu, Y. Zeng, R. Mokhosi, and H. Zhang, “STAMP: Short-term
attention/memory priority model for session-based recommendation,”
in Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2018, pp. 1831–1839.

[8] R. Zhang, “Making convolutional networks shift-invariant again,”
in ICML 2019 : Thirty-sixth International Conference on Machine
Learning, 2019, pp. 7324–7334.

[9] Y. K. Tan, X. Xu, and Y. Liu, “Improved recurrent neural networks for
session-based recommendations,” in Proceedings of the 1st Workshop
on Deep Learning for Recommender Systems, 2016, pp. 17–22.

[10] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme,
“BPR: Bayesian personalized ranking from implicit feedback,” Un-
certainty in Artificial Intelligence, pp. 452–461, 2009.

[11] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing
personalized markov chains for next-basket recommendation,” in
Proceedings of the 19th International Conference on World Wide Web,
2010, pp. 811–820.

[12] B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based
recommendations with recurrent neural networks,” International Con-
ference on Learning Representations, 2016.

[13] K. Jrvelin and J. Keklinen, “Cumulated gain-based evaluation of IR
techniques,” ACM Transactions on Information Systems, vol. 20, no. 4,
pp. 422–446, 2002.

