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Abstract—N -best list rescoring, an essential step in hybrid
automatic speech recognition (ASR), aims to re-evaluate the N-
best hypothesis list decoded by the acoustic model (AM) and
language model (LM), and selects the top-ranked hypotheses as
the final ASR results. This paper explores the performance of
neural rescoring models in scenarios where large-scale relevance
training signals are not available. We propose a weakly super-
vised neural rescoring method, WSNeuRescore, where a listwise
multimodal neural rescoring model is pre-trained using labels
automatically obtained without human annotators. Specifically,
we employ the output of an unsupervised rescoring model, the
weighted linear combination of the AM score and the LM score,
as a weak supervision signal to pre-train the neural rescoring
model. Our experimental evaluations on a public dataset validate
that the pre-trained rescoring model based on weakly supervised
data leads to an impressive performance. In the extreme scenario
without any high-quality labeled data, it achieves up to an 11.90%
WER reduction and a 15.56% NDCG @10 improvement over the
baseline method in Kaldi, a well-known open-source toolkit in
the ASR community.

Index Terms—Multimodal learning, weak supervision, /V-best
rescoring, automatic speech recognition, learning-to-rank

I. INTRODUCTION

Nowadays, speech-driven applications, such as voice-based
search engines, speech-driven querying systems [1], and voice-
based chatbots and Al-powered virtual assistants (e.g., Siri,
Xiaoice, and Cortana), have become mainstream in the market
due to the popularity of mobile phones and smart devices.
A reliable and accurate automatic speech recognition (ASR)
system is the premise of the success of these speech-driven
applications. Existing ASR technologies can be roughly di-
vided into two categories, that is, the hybrid system and
the end-to-end system. Despite the popularity of end-to-end
ASR models in the research community, the hybrid ones
still dominate the ASR industry due to their flexibility and
modularization [2]. Hence, advancing hybrid ASR systems still
draws great attention from both the research and the industrial
communities [3].

This work views the hybrid ASR pipeline from the infor-
mation retrieval (IR) perspective [4], [5] and aims to boost
the performance of ASR systems with methods inspired by
advanced Learning-to-Rank (LTR) techniques [6]. As shown
in Fig. 1, a typical hybrid ASR system usually consists of
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Fig. 1. The pipeline of a typical hybrid ASR system, including the N-best
rescoring procedure, is essentially analogous to the working mechanism of
modern IR systems.

two main components: an acoustic model (AM) and a basic
language model (LM), the first of which converts the speech
signals into phone sequences, and the latter of which evaluates
the probability of generated word sequences. Finally, an N-
best list rescoring step re-evaluates the N-best hypothesis
list decoded by the AM and the basic LM, and selects the
top-ranked hypotheses as the final decoding results. Since
modern IR systems usually enjoy a similar working mech-
anism, namely, first retrieves a substantial amount of relevant
candidates, then re-ranks them, and finally outputs the top-
N list, we argue that it would be promising to integrate
techniques across the IR and ASR communities.

Among all the steps described in the hybrid ASR pipeline,
N-best list rescoring is the most important since it greatly
affects the final recognition accuracy, because more sophis-
ticated and effective LMs can only be used in this period.
Besides ASR, the IN-best list rescoring is also essential and
fundamental in many other natural language processing (NLP)
tasks such as machine translation and dialogue system [7]. As
such, we mainly focus on exploring more effective rescoring
mechanisms to advance the performance of the hybrid ASR
systems in this paper. However, the proposed techniques would
potentially benefit a broader range of fields besides ASR.

The existing N-best rescoring methods, such as the one
used in open-source ASR platform Kaldi [8], typically work in
an unsupervised style, specifically, a weighted linear addition
of the AM score and the LM score. With the dominating
performance of the deep neural networks (DNNs) in NLP



tasks, researchers have also applied DNN-based rescoring
methods in ASR. For example, recurrent neural network LMs
(RNNLMs) have been used as the LM to rescore the N-best
list and show promising results [9]. Neural Speech-to-Text LM
(NS2TLM) [10] captures the information hidden in the speech
signals as well as the historical word sequence to decode the
next word. These DNN-based rescoring methods show much
better performance compared with the traditional unsupervised
approach. However, they usually tackle the rescoring problem
in a two-step style, that is, first predicting a sophisticated LM
score and AM score, and then formulating the ranking orders
based on the weighted addition of these two scores. What
is more, all the aforementioned rescoring methods assume the
availability of very large-scale labeled training datasets, which
is usually not feasible, especially for minority languages,
dialects, and domain-dependent ASRs.

To alleviate the above-mentioned problems, this paper
works towards a more effective neural rescoring model in the
scenario where large-scale relevance training signals are not
available. We propose a Weak Supervision Neural Rescoring
framework, WSNeuRescore, which employs a two-step
strategy: pre-training using weak supervision and fine-tuning
with limited labeled instances. Under the WSNeuRescore
framework, we further design a Multimodal (i.e., speech and
text) neural rescoring network that adopts a listwise approach
to directly optimize the order of the N-best list. In particular,
the output of an unsupervised rescoring model, the weighted
linear combination of the AM score and LM score, is used
as a weak supervision signal to pre-train this Multimodal
neural rescoring network. Then an optional fine-tuning step
is incorporated by WSNeuRescore to further boost the
performance of the pre-trained rescoring model if limited
labeled data is available. Our experimental evaluations on a
public dataset validate that the Multimodal neural rescoring
network, together with the weakly supervised pre-training
mechanism, leads to impressive performance improvement
over the baseline model in Kaldi as well as other DNN-based
counterparts. We hope this work inspires further work across
the IR and ASR communities.

To summarize, the main contributions of the paper are as
follows:

o To the best of our knowledge, this is the first work that
studies the pre-training mechanism with weak supervision
for the N-best rescoring problem in ASR. We hope this
work will benefit ASR as well as other NLP tasks such
as machine translation.

e We propose a novel weak supervision framework
WSNeuRescore, together with a Multimodal neural
rescoring network, dedicated to hybrid ASR systems.
WSNeuRescore tackles the rescoring problem from
an IR perspective and incorporates the first Multimodal
neural rescoring network in the field of ASR.

o We conduct extensive experiments on a public dataset,
and experimental results show that WSNeuRescore
can significantly outperform not only traditional rescor-
ing methods but also recent DNN-based counterparts,

by up to an 11.90% word error rate (WER) reduc-
tion and a 20.85% normalized discount cumulative gain
(NDCG)@10 improvement, respectively.

II. RELATED WORK

N-best List Rescoring in ASR The N-best list is nor-
mally ranked by the score combined by an AM and an
LM. The n-gram LMs are the most commonly used ones
[11], however, they suffer the problem of the incapability in
modeling language context such as long-range dependencies.
Discriminative LMs (DLMs) [12], [13] improve the n-gram
LM by incorporating more features (e.g., the ASR errors
during the model training period) to construct a discriminative
model to classify the positive instances from the negative ones.
LM adaptation (LMA) methods using cache [14] and topic
modeling [15] have also been developed for N-best rescoring,
which modify the LMs with the first-pass decoding result,
and reduce the mismatch between the training domain and
the prediction domain. Currently, the most popular models
for N-best rescoring are DNN-based LMs such as RNNLMs
[16], [17]. Compared with traditional approaches, they usually
deliver better performance since deep neural models have the
superior capability in capturing both short and long-range de-
pendencies between words in human language. EC-Model [18]
is another DNN-based classifier with the minimum necessary
functionality to rescore the N-best lists. Neural Speech-to-
Text LM (NS2TLM) [10] extends RNNLMs by making use
of the encoded information from the acoustic feature sequence
together with the historical textual information to decode the
next word. L2RS [4] formalizes the N-best list rescoring
problem as a Learning-to-Score problem, and then various
features extracted using advanced NLP models (e.g., BERT
[19] embeddings) are used to build an LTR model.

Weakly Supervised Learning in IR The data scarcity
problem is a perpetual topic in machine learning, especially
for DNN-based models since they usually require a large
amount of labeled data. Weakly supervised learning aims to
build predictive models by learning with weak supervision or
weak signals where large-scale accurate labels are unavail-
able. According to the survey [20], there are three kinds of
weak supervision methods: incomplete supervision, inexact
supervision, and inaccurate supervision. Several attempts at
weakly supervised training of neural ranking models have
been made in the IR domain. A ranking model with weak
supervision was proposed in [21], where the weak signals for
training a more sophisticated LTR model are gathered from a
basic BM25 model. A selective weak supervision strategy was
proposed in [22], which employs a reinforcement learning-
based weak supervision strategy to select the weak signals.
Hamed et al. give theoretical analysis and show insight into
weak supervision for LTR [23]. Dany et al. further design
methods to reduce the amount of training data for weak
supervision [24]. When it comes to the ASR area, studies
such as [25], [26] also explore the possibility of training an
ASR model (not a rescoring model) with a weak supervision
mechanism.
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Fig. 2. Weakly Supervised Pre-training and Fine-Tuning for WSNeuRescore

III. METHODOLOGY

While DNN-based rescoring models have taken off in the
ASR area, these models are usually required to be trained
with massive labeled training data. However, when it comes
to minority languages and dialects, such as Cantonese' and
Wu Chinese?, large-scale annotations are usually costly to
obtain or unavailable. Hence, unsupervised learning or weak
supervision is believed to be a promising solution. Inspired
by recent progress in weakly supervised learning [21], we
make full use of existing unsupervised rescoring methods
to create a weakly annotated set of training data and use
these data with weak signals to pre-train the neural rescoring
model. Then pre-trained neural rescoring is further fine-tuned
with limited in-domain labeled data, as shown in Fig. 2. In
the following discussion, we will go through the details of
WSNeuRescore from three aspects, weak supervision signal
generation, listwise multimodal rescoring model, and domain
adaptation and fine-tuning.

A. Weak Supervision Signal Generation

For an ASR system, we use a to represent the acoustic
input and w* as the corresponding textual output. The system
decodes the acoustic input a with an AM and LM, and then
gets the N-best candidates, denoted as W = {wy, -+ ,wx }.
The N-best rescoring model ranks these candidates according
to their correctness and selects the best candidate from the
N-best list, which is represented as:

w" = argmax S(¢(a, W); 0), (1)

where ¢(-) is the feature representation of pair (a,w) and
S(+; ©) is the neural rescoring model with network parameters
o.

During the pre-training period, the training set D is com-
posed of instances in forms of (a, w,saw), where Saw
is a relevance score between a and w. We use S,w =
(Sa,wis " »Sa,wy) to represent all the relevance scores for
a candidate list W with respect to a. Given a large set of
unlabeled speech data, we use the unsupervised rescoring

Thttps://en.wikipedia.org/wiki/Cantonese
Zhttps://en.wikipedia.org/wiki/Wu_Chinese
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Fig. 3. The Network Architecture of Listwise Multimodal Rescoring Model
used in WSNeuRescore

method to formulate the weak signals as the relevance. The
unsupervised rescoring method can be denoted as

Saw =0 Spm(W) + B sanm(a, w), 2

where sy (w) is the score given by the LM for word
sequence w, s4p7(a, w) is the score given by the AM, and «
and 3 are pre-defined trade-off parameters. We can incoprate
more sophisticated LM, such as a higher-order n-gram LM
or RNNLM, as the LM in the unsupervised rescoring step,
differing from the one used in the decoding period, where the
LM is usually a basic n-gram LM due to the consideration of
efficiency.

B. Multimodal Listwise Rescoring Model

1) Network Architecture: The architecture of the network is
illustrated in Fig. 3. The network takes each training instance,
in the form of (a,wi, -+ ,wn,$1, -+ ,Sn), and aims to
predict relevance R(a, w;©) which can accurately reflect the
relative orders of (wq,---,wy) with respect to a. Given
the acoustic input a and N-best candidate w, we extract
the MFCC [27], [28] representation (a1,--- ,a,) and BERT
embedding (wi, - ,w;), where [ and g are the length of
the word sequence and acoustic sequence respectively. Then
bi-directional LSTMs (BiLSTMs) are used to convert these
sequences into hidden vectors, which is denoted as

2 = BiLSTM(U:Iw hz/:—l)7 (3)
hY = BiLSTM(w;, hY.,), S

where j € [1,1], k € [1,g]. Then a multi-head self-attention
(MHSA) [29] is used to calculate the similarity between h*
and h%. An attention module calculates scaled dot-product
values of a query @, a key K and a value V' by
. QKT
Attention(Q,K,V) = Softmax(——)V, (5)

Vi



where dj, is the dimensionality of key K. In our scenario, the
queries, keys, and values all equals to the acoustic and textual
hidden state vectors, i.e., @ = K = V = [h®;h"], where
[; -] represents the concatenating operation. The MHSA gets
h different representations and their attention values, and then
concatenate these values together and projects through a feed-
forward layer by

head; = Attent ion(QVViQ7 QWE vwY), (6)

M = MultiHead(Q, K, V) = [heads;- - - ; heady|W©,
(N
where WiQ, WZK s Wiv, and WO are parameter matrices to
be learned. The output of the MHSA is further fed into a
max-pooling layer and then linearly combined into the final
relevance score R(a,w;0) as

z = Max_pooling(M), 8)
R(a,w;0) = Softmax(Wz + b), )

where W, b are training parameters, and © are the parameter
set.

2) Listwise Model Training: There are three basic cat-
egories of LTR approaches for ranking in IR: pointwise,
pairwise, and listwise [30]. The listwise approach is generally
proven to be much better than the other two since it takes
the whole ranking list concerning a given query as a training
instance and closely models the nature of the ranking problem
[31]. Hence, in WSNeuRescore, we also employ a listwise
loss function defined as

L= > USaw:Saw)

(a,W)eD

(10)

where S, w is the weak signals of hypothesis list W
with respect to a, and S;,w is the relevance scores
generated by the neural rescoring model, S/a,W =
(R(a,w1;0),...,R(a,wn;0)). The loss function ¢ esti-
mates the probability for different ranking orders, and in our
setting, we use the top-1 probability [32] defined as

p(r)(a,w) = softmax(f(a,w;0)), (11)

where f(-) represents our rescoring method. Cross-entropy
distance is used to measure the difference between these two
probability distributions as
N
U(Saw:Saw) =— > ps)(a,wi)logpgry(a,wi).  (12)
i=1
The whole network is trained in an end-to-end style with
optimization methods such as Adam [33].

C. Domain Adaptation and Fine-Tuning

We apply small-scale annotated data to adapt the model
pre-trained from weak supervision signals. Unlike pre-training
models such as BERT [19] and Electra [34], we do not
have to modify the network structure since the tasks of pre-
training and fine-turning are the same. The fine-tuning is
conducted relatively straightforwardly. However, the challenge

of fine-tuning a weakly supervised pre-trained ASR rescoring
model with a small amount of annotated data is how to avoid
catastrophic forgetting, that is, preventing the parameters from
being skewed by the small number of training samples.

Inspired by tricks from fine-tuning BERT [35], similar to
ours in that it tunes a large model with a small amount of data,
we propose a layer-wise tuning strategy, in which parameters
are tuned in each layer with different learning rates. Denoting
©! as the parameters of the [-layer of our deep rescoring model
at t-step, the updating rule is as follows:

01 =614 —1' - VerJ(9), (13)
where 7! is the learning rate for the [-layer. Setting the learning
rate of the last layer n as 7, which is the base learning rate,
the learning rates decay with rate the ¢ along with the layer
becoming shallower, i.e.,

n'Th=g, (14)
where £ is a hyper-parameter from range (0,1]. Since each
training instance a is labeled with the ground-truth transcript,
after obtaining the N-best candidate list W = {wy,--- ,wx},
we compare each candidate with the ground-truth transcript
and use the word error rate (WER) [36] as the relevance score.
WER is formally defined as

WER — S+D+1 ’

T

where S, D, and [ represent the number of word substitutions,
deletions, and insertions, respectively, and 7' is the total
number of words in the ground-truth transcript. From the
definition, we can conclude that WER reflects the quality of
the ASR decoding result, and the lower the value, the better
the decoding result.

15)

IV. EXPERIMENTS

In this section, we describe the experimental settings and
then go through the results of the evaluations.

A. Experimental Setup

1) Datasets: A commonly-used public dataset in the speech
area — the TED-LIUM dataset 3 [37] — is adopted in our ex-
periment for the rescoring model evaluation, with the detailed
statistics shown in Table I. To ensure reproducibility, we build
a Kaldi “Chain” model for the AM and a tri-gram LM as the
“existing” ASR model for the decoding period with around
1000 hours of in-house speech data, and then fine-tune this
ASR model with one-third of the TED-LIUM labeled training
data. During the WSNeuRescore model pre-training period,
we also use TED-LIUM 3 dataset (without labels) [38] to
generate the weak supervision signals. Following [4], [39] and
[5], we also set the N value to 50 to obtain the N-best list
for each utterances.

3https://www.openslr.org/7/



TABLE I
THE STATISTICS OF THE TED-LIUM DATASET

TABLE 11
NDCG@10 & WER COMPARISON

Train Dev Test
No. of transcripts 774 8 11
No. of words 1.5M 17.8k 27.5k
No. of segments 56.8k 0.6k 1.5k
Length of waves 118 hours  1.72 hours  3.07 hours
Frequency 16kHz 16kHz 16kHz
Language English English English

2) Baselines: We compare our proposed WSNeuRescore
model with the following six baselines in N-best rescoring:

o Basic n-gram LM: This is a straightforward baseline,
which is also the default one used in the Kaldi toolkit.
We use the AM score together with the score given by a
Trigram LM.

o Cache Model: This baseline belongs to the cache-based
LMA category proposed in [40], and we name it Cache
Model in the following comparison.

o Topic Model-based LMA [15]: We adopt an LDA model
trained using LightLDA [41] with topic number K set to
50.

o« RNNLM: This baseline uses RNNLM [40] to re-evaluate
the LM score of the N-best candidates, which is also
integrated by the Kaldi toolkit.

o EC-Model [18]: This baseline is also based on DNN to
encode each N-best candidate into embeddings to do the
classification.

o NS2TLM [10]: This baseline extends the RNNLM by
incorporating speech signals into the hidden state.

We tune the parameters of these rescoring models to ob-
tain their best performance. The RNNLM, EC-Model, and
NS2TLM have all been proposed recently, and they are DNN-
based baselines that achieve the state-of-the-art performance
for the rescoring task.

3) Implementation Details: For WSNeuRescore, the di-
mension of BERT embedding is set to 1024, and the BiLSTM
is a 2-layer one with a hidden size set to 256. The number
of heads for MHSA is 8, with input and output dimensions
set to 1024 and 256, respectively. During the training period,
the learning rate, decay rate, dropout rate, and batch size of
the network are set to 0.001, 0.8, 0.3, and 256 respectively.
The experiments were conducted in a server with a 314 GB
memory, 72 Intel Core Processor (Xeon), Tesla K80 GPU, and
CentOS. Two measurements, NDCG@n [30] with n set to 10
and WER, are employed to evaluate the final performance. We
use the default « = 1.0 and g = 0.1 values in Kaldi in the
pre-training period.

B. Experimental Results

1) NDCG@10 & WER: This set of experiments show the
performance of these rescoring models where the training
dataset is enough. We list the experimental results in terms of
both NDCG@10 and WER in Table II. NDCG@ 10 reflects the
quality of a ranking list, and a correctly ranked candidate list
is vital for ASR in noisy environments or casual-style speech

Dev
NDCG@10 WER

Test

Rescoring Methods
NDCG@10 WER

Trigram LM 0.617 15.762 0.630 15.684
RNNLM 0.641 15.661 0.655 15.556

Cache Model 0.621 15.734 0.630 15.662

Topic Model LMA 0.621 15.802 0.632 15.695
EC-Model 0.618 15.447 0.618 15.483
NS2TLM 0.670 15.177 0.671 15.327
WSNeuRescore 0.759 13.609 0.755 12.858
Oracle Ceiling Perf. 1.0000 10.499 1.0000 8.800

requiring multiple recognition hypotheses [18]. Different from
NDCG@10, WER reflects the quality of an ASR system with
only the top-1 ranked candidate. Following [4], [5], we also
calculate the “Oracle Ceiling Perf.” by only including the
decoding errors made in the decoding period and excluding the
rescoring error. This acts as the theoretical ceiling performance
for all rescoring methods. From the results, we can see that
WSNeuRescore achieves the most significant improvement
over other baselines. Specifically, adopting RNNLM as the
LM for rescoring brings a relative NDCG@10 improvement
of 3.97% over the “AM + Tri-gram” baseline. Among all these
models, WSNeuRescore finally achieves a 19.84% relative
improvement over the “AM + Tri-gram” baseline, and this
validates the superiority of the WSNeuRescore model.

2) Effectiveness of Weak Supervision for Rescoring: This
set of experiments investigate the potential effect of weak
supervision as a pre-training step for N-best rescoring. We list
the performance of our model with 1) only pre-trained with
weak supervision (only weak supervision), 2) fully trained
with all the labeled data (fully supervised), and 3) pre-trained
using weakly labeled data and then fine-tuned using only 1/3
of the labeled data (pre-training + fine-tuning), as well as the
unsupervised Trigram LM baseline (unsupervised baseline).
From Table III, we can see that the pre-training step with
weak supervision is critical for obtaining a high-quality N-best
model. The weakly supervision requires no labeled data and
only trained with the weak labels given by the unsupervised
baseline in Kaldi, and shown an 11.9% relative reduction in
WER in the Test set. This validates the effectiveness of the
pre-training mechanism when there is no labeled data at all
for rescoring. For the scenario where we have an adequate
labeled dataset to fully train a rescoring model, the pre-
training mechanism with weak supervision can still boost the
performance, showing a 2.94% relative WER reduction with
only 1/3 of the labeled data.

In industrial practice, we usually lack domain-dependent
data, and training a neural rescoring model from scratch would
be infeasible. This proposed pre-training with weak supervi-
sion and fine-turning strategies can significantly alleviate the
data scarcity problem and further boost performance.

V. CONCLUSION

The last decade has witnessed a flourish of speech-driven
applications, like Al assistants, due to the popularity of smart



TABLE III

THE EFFECTIVENESS OF WEAK SUPERVISION FOR WSNEURESCORE

Dev Test
Method

NDCG@10 WER NDCG@10 WER
Unsupervised 0.617 15.762 0.630 15.684
Only Weak Supervision 0.731 13.985 0.728 13.869
Relative Improvement 18.47% 10.45% 15.56% 11.9%
Fully Supervised 0.759 13.609 0.755 12.858
Pre-training + Fine-turning 0.768 13.282 0.764 12.480
Relative Improvement 1.19 % 2.4% 1.19% 2.94%

devices. The importance of reliable and practical ASR systems
is evident. This work explores the possibility of advancing the
industrial ASR system from the IR perspective. A weakly-
supervised mechanism with a Multimodal neural rescoring
network is proposed for pre-training neural N-best rescoring
models in ASR. Experimental results have indicated that our
proposed WSNeuRescore is effective for /N-best list rescor-
ing and opens a new door for ASR. We hope this work will
inspire more research on exploring advanced unsupervised or
weakly supervised machine learning and information retrieval
techniques to promote the performance of ASR systems and
other NLP applications.
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