
Analyzing Student Performance with Personalized Study
Path and Learning Trouble Ratio

James Shing Chun Yip Raymond Chi-Wing Wong
The Hong Kong University of Science and Technology

{scyipaa, raywong}@cse.ust.hk

ABSTRACT
Massive Online Open Courses (MOOCs) have become very
popular nowadays and are attracting a lot of attention from
both learners and researchers. Learners benefit from their
availability of learning materials such as lecture notes, videos
and self-tests. However, most MOOCs are a one-size-fit-all
model and does not meet the individual needs of learners.
For example, each learner is shown a “pre-defined” order of
study for each different learning concept in a course. It is ob-
served that different learners have different learning paces,
and how good a learner understands one learning concept is
heavily dependent on how good s/he understands the pre-
requisite of this learning concept (which is also a learning
concept). Motivated by this, some researchers would like to
propose some personalized suggestions for each learner so
that they could learn certain concepts in different order. In
this paper, we introduce a method for visualizing an order-
ing of learning concepts concisely and showing how strongly
one learning concept is related to another learning concept.

Keywords
Learning Analytics, Visualization, Educational Data Mining

1. INTRODUCTION
Most courses in MOOCs are used to present their curricu-
lum in a chapter-by-chapter format. For example, it can be a
list of videos with lecture notes for each chapter in an online
platform like Coursera. This design is linear (or predefined)
and insufficient for emphasizing the relationships between
chapters or concepts. In contrast, our knowledge should
be based on prerequisites and even the prerequisites of pre-
requisites. These relationships recursively form a learning
graph where each node corresponds to a learning concept.
Then an edge from one node to another node correspond-
ing to that one learning concept is a prerequisite of another
learning concept. This graph is actually a directed acyclic
graph (DAG) which is able to generate many topological
order paths. Note that there are many ways to study all

concepts throughout a course.

As a clear learning path enables both instructors and stu-
dents to improve learning efficiency. This motivates us to
visualize the learning path in a clear and simple way. In
this paper, we introduce a method of visualizing an ordered
learning graph to represent the order of the learning path.
In our graph, it contains learning concepts of a course that
link together with a number which we call learning trou-
ble ratio showing the strength of dependency as well as a
weight. This ratio indicates the difficulty of such a pair of
concepts for the students to study. It also emphasizes the
concepts both students and instructors should pay attention
to. Not only that, the ratios for each pair can be dynami-
cally updated by using students’ learning performance and
the learning graph.

We choose the course “COMP102X Introduction of Java
Programming”with a duration of 14 weeks offered by HKUST
on Open edX. The course is administered by Professor T.C.
PONG since June 2014, as a basis for developing our sys-
tem and also an extension of a course on Open edX platform.
This course is composed of 12 concepts with 91 questions.
10564 unique students, with at least one record of question
submission, enrolled in the course. A demonstration (https:
//www.youtube.com/watch?v=KdxVHWSMNi4) and source cod-
es (https://github.com/shingyipcheung/study-path-bac
kend) are available. In this paper, our contributions can
be summarized as: We proposed a method of visualizing a
learning graph which can be “weighted” and “ordered”; We
use the data from an existing MOOC to recommend the
learning paths to students with the compact visualization;
We make use of modern web frameworks and open source
libraries to implement the system that is available online;
We provide examples to suggest actions for instructors and
students based on the visualization.

The remainder of this paper is summarized as follows: In
Section 2 and Section 3 we introduce related works and
the problem we are focusing on. In Section 4 we explain
our methods in details from collection to generate Learn-
ing Trouble Ratio and Personalized Path. In Section 5, we
demonstrate how to use modern frameworks and libraries
to implement the visualization. Finally, we suggest some
cases to help the instructor to identify students who are in
“trouble” in Section 6, and conclude in Section 7.

https://www.youtube.com/watch?v=KdxVHWSMNi4
https://www.youtube.com/watch?v=KdxVHWSMNi4
https://github.com/shingyipcheung/study-path-backend
https://github.com/shingyipcheung/study-path-backend

Figure 1: Default ordered learning graph of COMP102X Introduction of Java Programming

2. RELATED WORK
The task of prerequisite relation, to predict whether a con-
cept or skill is a prerequisite of another, has been studied
by different approaches. The data are mostly collected from
Wikipedia. In [[3], [13], [9]], semantic and video features
are designed to compare the relatedness between concepts,
and predict the relations by the supervised classification ap-
proach. Liang [10] et al. proposed an objective function
as a soft margin SVM where each course is represented by
the term frequency-inverse document frequency (tfidf) to re-
cover the strength of prerequisite relations. Adjei et al. [1]
developed a system to stress the problematic links in a pre-
requisite skill structure where they used linear regression to
find the strength as the coefficients in the equation. Our ap-
proach is relatively simpler and more intuitive, we use the
assessment results to measure the “troublesome” of the rela-
tions by the probability ratio. This measurement also points
out some pairs may create problems for students.

For visualizing graphs, previous studies have developed dif-
ferent tools for various applications. North [11] created a
visual debugger called dotty which can provide an interac-
tive operation for users. Another paper proposed a visual-
ization method for Extract Method refactoring which is for
moving a part of the original code to a separate new method
in the form of the program dependency graph [7]. A node
on the graph is defined as a line of code, and an edge indi-
cates a reference or a definition of a variable. Their work
aims to identify any potential nodes that can be refactored
without using big data, whereas in our work the goodness
assessments of each node are data-driven. In this paper, we
focus on visualizing the learning dependency graph contain-
ing concepts as nodes which could be helpful for science and
engineering subjects because of the high correlation among
the concepts.

After MOOCs became popular, more studies emerged on vi-
sualizing educational data. Qu and Chen [15] pointed out
that education stakeholders will benefit from the intuitive
visualization to reduce the learning curve. Shi et al. [16] de-
veloped a system which contains several views to aid learn-
ing analytics by using clickstream data from Open edX. For
example, their demonstration provides the graph of a course

including the demographic info of students. Although their
visualizations aid the instructor to see the overall picture in
different kinds of data, it might be too low-level for students
to understand what is being presented to them. In contrast,
we try to use the learning graph with suggested study path-
ways to point out which concepts should be learned earlier.

Grosse and Reed [6] created a web application Metacademy
for autodidacts to learn science subjects with the help of
a learning (concept) graph. Their work is very similar to
ours but without the education data provided by MOOC.
Further, the application only contains a single learning path
handcrafted by the creators for learners to follow. Compared
with their application, our work has two major advantages
which could not be found in their studies. First, we combine
the learning graph structure and MOOC data to provide
strength among the concepts - learning trouble ratio which
emphasizes the correlations that students should pay atten-
tion to. Second, we provide multiple learning paths which
are in topological orders. Our graph can be transformed in
an ordered way to represent one of the paths.

3. PROBLEM DESCRIPTION
We are given a learning graph containing nodes which cor-
respond to a learning concept and edges corresponding to
the correlation between two learning concepts. Specifically,
we represent a relationship between two (learning) concepts
with a dependency. A concept could be dependent on one or
more concepts. For example, in Figure 1 (showing the rela-
tionship of learning concepts in a Java programming course),
we learn primitive_type first and then operator since op-

erator depends on primitive_type. We use a directed
graph to represent all dependencies among all concepts in
a course. In general, each node in a graph is a learning con-
cept. In layman’s terms, the graph is a representation of the
prerequisites of concepts. The graph is always sparse since
there are not many dependencies from one to other learning
concepts. Therefore, we use an adjacency list to represent
the directed graph. Figure 1 shows the learning graph of
the course COMP102X in Open edX offered by Prof. T. C.
Pong drawn by D3.js [2].

In this paper, we study two problems. The first problem

http://vis.cse.ust.hk/vismooc/#!/

(a) Initialized with random positions

(b) Drawing from left to right

Figure 2: Learning graphs with crossed edges

is to recommend a personalized study path to each student
based on the dependency graph. The second problem is to
visualize the personalized study path of each student in a
concise way.

In this paper, we plan to show the study path as seen in
Figure 1 such that the first learning node in the order is
shown in the leftmost place in the graph, the second learning
node is shown in the second leftmost place, and so on.

However, how to visualize the study path concisely is a chal-
lenge. In Figure 1, we could observe that no edges cross each
other. Due to personalization, different nodes may appear in
different positions in the graph. Without “careful” design, it
is “possible” that one edge may cross another edge. For ex-
ample, if the node operator in Figure 1 is moved to a place
under the (virtual) horizontal line passing through the node
variable, the edge between variable and array will cross
with the edge between the primitive_type and operator.
Drawing directed graphs in a clear way requires different
settings such as node positions given the graph structure.
Figure 2 shows graphs without any adjustments to the node
positions which looks very unclear.

4. METHODOLOGIES
In this section, we propose how to generate the learning
trouble ratios and personalized study paths from the student
performance and the dependency graph. First, we take the
course COMP102X as an example to formulate the score cal-
culation in Section 4.1. Next, we use the scores under such
a pair of concepts to quantify its correlation in Section 4.2.
The remainder of this part explains the algorithm to gen-
erate all topological arrangements given a learning graph in
Section 4.3. A fitness function is designed to measure which
arrangements fit a student. We also describe how to visual-
ize the directed graph that minimizes the number of crossed
edges in Section 4.4.

4.1 Learning Performance
4.1.1 Student Performance Collection

Concept Question id Weight
primitive_type Q1 1.0
primitive_type Q2 1.0
primitive_type Q3 0.8
primitive_type Q4 1.0

variable Q5 1.0
variable Q6 1.0
variable Q4 0.6

Table 1: Example. Mapping of Concepts to Questions with
weights

According to Open edX documentation, the students’ learn-
ing progress data are stored on the table
courseware_studentmodule. This table holds the most re-
cent course state, including the most recent problem sub-
mission and unit visited in each subsection. We can retrieve
information about who answered which question and also
the obtained score.

Specifically, we retrieved the score of each question of each
student by 5 fields (module_type, module_id, student_id,
grade, and max_grade). module_id is the key for each prob-
lem. We only consider module_type with value problem.
The term max_grade might be confusing since it denotes the
number of sub-problems for a problem. The relative score
of a problem is between 0 and 1.

4.1.2 Problem Weighting
Instructors could set the weight to a problem for a learning
concept. Specifically, each problem is mapped to one learn-
ing concept or more. Each learning concept is mapped with
at least two questions. An example in Table 1 shows there
are 4 problems in primitive_type with weights between 0.8
to 1. The problem with id “Q4” is mapped to both primi-

tive_type and variable.

4.1.3 Student Score Calculation
With the problem weight mapping and the progress table
from the previous two sections, we use the following formula

https://edx.readthedocs.io/projects/devdata/en/latest/internal_data_formats/sql_schema.html

to calculate the scores of all students.

scoreconcept =
∑

p∈concept

wp ·
gradep

max gradep
(1)

where wp is the pre-defined weight of the problem p, gradep
and max gradep are the field values in Section 4.1.

Each score of a concept is scaled by min-max normalization.
Therefore, all scores of the concepts of a student in a course
are found.

scorecourse = {normalize(scoreconcept)|concept ∈ course}
(2)

By this calculation, we found 10564 unique students with at
least one score (some of them dropped out) in COMP102X.
The mean scores are summarized in Table 2.

concept mean
array 0.712297
branch 0.423561

instance_variable 0.519257
loop 0.521106
method 0.235022
nd_array 0.312867

object_class 0.542028
operator 0.375814

primitive_type 0.315577
recursion 0.748562
string 0.572801
variable 0.463743

Table 2: mean concept scores in COMP102X

4.2 Strength of Correlation Between Learn-
ing Concepts

To estimate the strength of the correlation of each pair in
the dependency graph, we adopt the risk ratio [17] as an
indicator that we call learning trouble ratio which produces
the ratio of the probability of the performance between two
groups. We define that a student whose score is greater than
or equal to the average in a concept as “Above-Average”,
otherwise they are “Below-Average”. In this paper, the av-
erage score is equivalent to the mean score, the median may
also be applied. There are “Above-Average” and “Below-
Average” groups for each concept. We define a pair of con-
cepts (Cprev, Cnext) in the learning graph where Cprev is
the prerequisite of Cnext. The numerator on Equation 3 is
interpreted as the probability of a student whose result of
concept Cnext is “Below-Average” given that the result of
concept Cprev is “Below-Average” as well.

Learning trouble ratio =
P (Cnext,below|Cprev,below)

P (Cnext,below|Cprev,above)
(3)

Students can be below average in a certain concept, however,

if the numerator is larger than the denominator, we can
infer that it is more likely that a student will have trouble
when studying the concept. The higher the ratio, the more
important it is that the prerequisite should be paid attention
to.

For simplicity, we divide students into 4 groups in Table 3
where each group can easily be found by database query.
The ratio is calculated by set operations. For example,
Sprev,below denotes the set of students who are below av-
erage in the preceding concept Cprev.

pair
Cprev Cnext

Below Sprev,below Snext,below

Above Sprev,above Snext,above

Table 3: Four sets of students

Learning trouble ratio

=

|Sprev,below∩Snext,below|
|Sprev,below∩Snext,below|+|Sprev,below∩Snext,above|

|Snext,below∩Sprev,above|
|Snext,below∩Sprev,above|+|Sprev,above∩Snext,above|

(4)

From Equation 4, we intersect the sets and compute the
risk ratio by the cardinalities. For example, assume we
have all the students’ IDs in Snext,below = {2, 3, 4} and
Sprev,above = {3, 4, 5}. The number of students who are
above average in Cprev but below average in Cnext, i.e.,
|Snext,below ∩ Sprev,above| is 2.

The ratios can also be imported as the weights for each edge
in the graph and can be dynamically updated based on the
students’ performance for an ongoing course (see Figure 1).

4.3 Personalized Path Generation
Our method is to enumerate all possible topological paths
based on the given dependency graph G = (V,E) and re-
turns the top 10 paths evaluated by some fitness functions.
We use the basic backtracking method to generate all pos-
sible arrangements in Algorithm 1. The algorithm begins
with initializing all vertices as not visited. It then adds the
vertex which is not visited and is of indegree 0 to the result
followed by removing all edges pointing from that vertex.
Lastly, it calls itself recursively and backtracks. Another
efficient algorithm [8] can also be applied.

The fitness functions can be designed for different purposes.
One fitness function we used is the ratio relative to the mean
score. A concept should be learnt first because the score of
the student in that concept is far from being an average
student.

fit(p, t) =

|V |∑
i=1

1

i

scoremean(p[i])− scoret(p[i])
scoremean(p[i])

(5)

The above equation evaluates a path p for a student t, where
scoremean(·) denotes the mean score of the concept in the

course globally, and scoret(·) denotes the score of the stu-
dent t in that concept. For example, given two paths.

array→ branch

branch→ array

A student whose score in array and branch are 0.6 and 0.5
respectively. From Table 2, we see that the mean score of
array and branch are about 0.7 and 0.4 respectively. The
first path gives the fitness = 1

1
0.1
0.7

+ 1
2
−0.1
0.6
≈ 0.05952, while

the second path gives 1
1
−0.1
0.6

+ 1
2

0.1
0.7
≈ −0.09523. There-

fore, the first path should be given higher priority than the
recommendation.

Algorithm 1 All Topological Orders

Input: a directed graph G = (V,E)
Output: a list of paths P in different orders

1: procedure Topological All(V,E)
2: S ← ∅ . A set to store nodes are not visited
3: P ← empty . A list to store result paths
4: p← empty . A temporary path
5: for each v ∈ V do
6: indegree[v]← 0
7: insert v into S
8: for each (u, v) ∈ E do
9: indegree[v]← indegree[v] + 1

10: Topological Recursive(V,E, S, P, p)
11: return P
12: procedure Topological Recursive(V,E, S, P, p)
13: if S is empty then
14: insert p into P
15: else
16: for each v ∈ V do
17: if v ∈ S and indegree[v] = 0 then
18: for each u such that (v, u) ∈ E do
19: indegree[u] = indegree[u]− 1

20: push v into p
21: remove v from S
22: Topological Recursive(V,E, S, P, p)
23: insert v into S
24: pop the last element from p
25: for each u such that (v, u) ∈ E do
26: indegree[u] = indegree[u] + 1

4.4 Visualizing Learning Graph
To draw the learning graph, we employ the web visualization
framework D3.js [2]. The force simulation module in D3 is a
common feature of visualizing graphs. The module provides
multiple forces in the simulation. For example, the centering
force for positioning the nodes at the center of the visual
space while the “collision” force adds a force to each node
with a given radius as a repulsive force to prevent nodes from
being close to each other. However, D3 itself does not handle
the crossed edge problem because using the collision force
alone is insufficient. To address the problem, we first fix the
x-coordinates of all nodes from left to right with the input
order. At this time, there are many crossed edges. Next, we
adopt an algorithm [5] for drawing directed graphs. It first
finds the optimal rank assignments λ(v) for each node v by
solving the integer program in Equation 6 where λ(u)−λ(v)
represents the length between node v and u, w(v, u) is the

weight, and δ(v, u) is the minimum length constraint input
by users.

minimize
∑

(v,u)∈E

w(v, u)(λ(u)− λ(v))

subject to λ(u)− λ(v) ≥ δ(v, u), ∀(v, u) ∈ E
(6)

Two nodes with the same rank will have the same x-coordinate
if the drawing is from left to right. Next, it uses a heuristic
approach that iteratively finds the coordinates to minimize
the number of crossed edges of the ranked graph until reach-
ing the maximum number of iterations. This algorithm has
been implemented by Dagre [14]. The final graph shows a
clear layout of the input order without crossing edges (see
Figure 4 in contrast to Figure 2).

5. IMPLEMENTATION
The system is built using two Web frameworks, Django and
Vue.js, for backend and frontend, respectively. Django pro-
vides us with powerful Python libraries such as Numpy and
Pandas for data processing that help to build a web applica-
tion. The web interface also utilizes D3.js for visualization.

Our method has been employed on the system that can gen-
erate personalized topological order paths. First, we apply a
diversified path algorithm to select the most representative
paths [4]. These paths are static to all students. To make
them personalized, we use some fitness functions to enhance
the result. For example, one fitness function is based on
performance. If the student’s result is not good, the related
concepts should be given a higher weighting. Finally, the
pipeline produces the best 10 paths as a result.

Figure 3: Flow of generating 10 personalized paths

The system has a component called “Recommended Study
Paths” showing the 10 “best” paths, which are recommended
based on the performance of learning concepts of a student
and the dependency strength among the learning concepts.
Each of this path is shown in two formats. The first format
has a sequential order as shown at the bottom part of Fig-
ure 4 (which shows 2 paths, namely Pathway 1 and Pathway
2). The second format is a graph format where the leftmost
node in the graph corresponds to the earliest learning con-
cept to be learnt and so on. One path in the second format
could be found at the top part of Figure 4 (which shows the
second format of Pathway 2).

6. EXPERIMENT
In this section, our goal is to highlight the importance of
each component including the learning dependency graph
with learning trouble ratios, and the learning pathway.

6.1 Learning Dependency Graph and Learn-
ing Trouble Ratio

(Cprev, Cnext) |Sprev,below∩
Snext,below|

|Sprev,below∩
Snext,above|

|Snext,below∩
Sprev,above|

|Sprev,above∩
Snext,above|

Learning Trouble Ratio

(primitive_type, operator) 1097 1811 115 2059 7.1
(primitive_type, array) 525 101 554 1342 2.9

(primitive_type, variable) 2523 94 888 1252 2.3
(operator, branch) 1206 72 1915 1914 1.9

(branch, loop) 893 68 639 1286 2.8
(array, nd_array) 555 520 19 1430 39.4
(array, string) 718 62 294 1154 4.5

(variable, array) 766 279 184 1149 5.3
(variable, instance_variable) 1123 514 256 1081 3.6

(object_class, instance_variable) 1024 125 514 1507 3.5
(object_class, method) 1343 384 76 1946 20.7

(instance_variable, method) 952 708 23 1609 40.7
(method, recursion) 229 20 410 1134 3.5

Table 4: Learning trouble ratios

Since both the learning dependency graph and the learning
trouble ratio are presented in the same visualization, they
are put together as a component. One might think that
we can just make a notice for all students who are below
average. However, one major issue in MOOCs is the high
dropout rate of learners [12]. Most students treated as bad
performers, in our terminology, are “below average” which is
not enough to identify the students who really need helps.
Owing to this, we focus on the students who are at least
making an effort to do some of the exercises but end up
achieving a low score. In short, they are the students who
are “above” in Cprev and “below” in Cnext, i.e., Snext,below ∩
Sprev,above in Equation 4.

According to Table 4, we can see two pairs (array, nd_array)
and (instance_variable, method) having a high value of ra-
tio. The trouble ratio not only indicates the strength of
dependency but also makes the target students apparent
among the crowd. Using the dependency graph with the
edge values (learning trouble ratios), we can filter out these
students easily, a detailed example is explained in the Case
Study.

6.2 Learning Path
Without a suggested learning path, students may randomly
pick a concept to study. We expect that this random ap-
proach would result in a bad performance, especially if a con-
cept has prerequisites the student has not fulfilled. There-
fore, we chose 3 (single-length path) pairs of concepts with
the top 3 highest learning trouble ratio for illustration.

instance_variable→ method

object_class→ method

array→ nd_array

We found that students perform badly if they only do the
exercises for just 1 concept. From Table 5, we see that all 3
pairs: the score of Cnext must be less than the that of the
prerequisite Cprev.

Therefore, students should have better learning if they can
follow a suggested path.

6.3 Case Study

concept mean
object_class 0.21

instance_variable 0.31
method 0.03
array 0.18

nd_array 0.15

Table 5: Mean scores of students who only work on 1 concept
(None for the others)

Since array and nd_array are very dependent (because the
learning trouble ratio between array and nd_array is of
value 39.37 which is high). Our system provides the par-
allel coordinates plot where users can select multiple score
ranges to extract the students.

Figure 5 shows parallel coordinates, a lot of “blue” lines
where each connected line corresponds to a student. It also
shows a vertical black line for each learning concept. For
example, array has a vertical line denoting the “score” of a
learning concept obtained by a student. If a blue (horizon-
tal) line has a value of 0.8 in the vertical line of array and a
value of 0.2 in the vertical line of nd_array, this means that
the corresponding student (for this blue line) has a score of
0.8 for array and a score of 0.2 for nd_array.

In this interface, users could also “highlight” some parts of
the vertical lines to select all blue lines out. For example, in
Figure 5, we tried to select the students whose score is above
average in array (shown in the shaded region in the vertical
line of array in the figure) and below average in nd_array

(shown in the shaded region in the vertical line of nd_array
in the figure) to check whether there are many such “un-
expected” students (since we expected that students who
performed well in array should perform well in nd_array).

Finally, we find 19 students (shown in Figure 6). Most stu-
dents in this list completed nearly all learning concepts. This
shows that they are very hard-working (since most students
in MOOCs do not complete nearly all learning concepts).
The instructor can suggest the learning paths like Figure 4
to these students for revision or other follow-ups to see how
to help these students.

Figure 4: The ordered graph is changed accordingly and showing the learning trouble ratios

7. CONCLUSION
We proposed the method to visualize the “weighted” and
“ordered” learning graph that has been applied to the rec-
ommendation system. It is capable of extracting the data
from the Open edX platform from time to time and perform-
ing various data mining and visualization techniques. In
conclusion, we have made a prototype to achieve improved
learning by personalized study plans alongside visualizing an
ordered learning graph. We hope that our development can
be further customized and integrated with most MOOCs.

ACKNOWLEDGEMENTS
The research is supported by ITS/227/17FP.

8. REFERENCES
[1] S. A. Adjei, A. F. Botelho, and N. T. Heffernan.

Predicting student performance on post-requisite skills
using prerequisite skill data: an alternative method for
refining prerequisite skill structures. In Proceedings of
the sixth international conference on learning analytics
& knowledge, pages 469–473. ACM, 2016.

[2] M. Bostock, V. Ogievetsky, and J. Heer. D3:
Data-driven documents. 2011.

[3] C. De Medio, F. Gasparetti, C. Limongelli,
F. Sciarrone, and M. Temperini. Automatic extraction
of prerequisites among learning objects using
wikipedia-based content analysis. In International
Conference on Intelligent Tutoring Systems, pages
375–381. Springer, 2016.

[4] M. Drosou and E. Pitoura. Multiple radii disc
diversity: Result diversification based on dissimilarity
and coverage. ACM Trans. Database Syst.,
40:4:1–4:43, 2012.

[5] E. R. Gansner, E. Koutsofios, S. C. North, and K.-P.
Vo. A technique for drawing directed graphs. IEEE
Trans. Software Eng., 19:214–230, 1993.

[6] R. Grosse and C. Reed. Metacademy. https:
//github.com/metacademy/metacademy-application,
2013.

[7] T. Kanemitsu, Y. Higo, and S. Kusumoto. A
visualization method of program dependency graph
for identifying extract method opportunity. In
WRT@ICSE, 2011.

[8] D. E. Knuth and J. L. Szwarcfiter. Erratum: A
structured program to generate all topological sorting
arrangements. Inf. Process. Lett., 3:64, 1974.

https://github.com/metacademy/metacademy-application
https://github.com/metacademy/metacademy-application

Figure 5: Parallel coordinates of scores

Figure 6: The synchronized table shows 19 students are selected

[9] C. Liang, J. Ye, S. Wang, B. Pursel, and C. L. Giles.
Investigating active learning for concept prerequisite
learning. In Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[10] C. Liang, J. Ye, Z. Wu, B. Pursel, and C. L. Giles.
Recovering concept prerequisite relations from
university course dependencies. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[11] S. C. North and E. Koutsofios. Applications of graph
visualization. 1999.

[12] D. F. Onah, J. Sinclair, and R. Boyatt. Dropout rates
of massive open online courses: behavioural patterns.
EDULEARN14 proceedings, 1:5825–5834, 2014.

[13] L. Pan, C. Li, J. Li, and J. Tang. Prerequisite relation
learning for concepts in moocs. In Proceedings of the
55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 1447–1456, 2017.

[14] C. Pettitt. Dagre.
https://github.com/dagrejs/dagre, 2014.

[15] H. Qu. Visual analytics for mooc data. IEEE
Computer Graphics and Applications, 35:69–75, 2015.

[16] C. Shi, S. Fu, and H. Qu. Vismooc: Visualizing video
clickstream data from massive open online courses.
2014 IEEE Conference on Visual Analytics Science
and Technology (VAST), pages 277–278, 2014.

[17] C. L. Sistrom and C. W. Garvan. Proportions, odds,
and risk. Radiology, 230 1:12–9, 2004.

https://github.com/dagrejs/dagre

	Introduction
	Related Work
	Problem Description
	Methodologies
	Learning Performance
	Student Performance Collection
	Problem Weighting
	Student Score Calculation

	Strength of Correlation Between Learning Concepts
	Personalized Path Generation
	Visualizing Learning Graph

	Implementation
	Experiment
	Learning Dependency Graph and Learning Trouble Ratio
	Learning Path
	Case Study

	Conclusion
	References

