
KOLQ in a Road Network

Zitong Chen∗, Yubao Liu†, Ada Wai-Chee Fu∗, Raymond Chi-Wing Wong‡, Genan Dai†
∗ Department of Computer Science and Engineering, Chinese University of Hong Kong, Hong Kong, China

† School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
‡ Department of Computer Science and Engineering,

The Hong Kong University of Science and Technology, Hong Kong, China

Email: ztchen@cse.cuhk.edu.hk, liuyubao@mail.sysu.edu.cn, adafu@cse.cuhk.edu.hk,

raywong@cse.ust.hk, daign@mail2.sysu.edu.cn

Abstract—Optimal location querying (OLQ) in road networks
is important for various applications. Existing work assumes no
labels for servers and that a client only visits the nearest server.
These assumptions are not realistic and it renders the existing
work not useful in many cases. In this paper, we introduce
the KOLQ problem which considers the k nearest servers of
clients and labeled servers. We also proposed algorithms for
the problem. Extensive experiments on the real road networks
illustrate the efficiency of our proposed solutions.

Index Terms—KNN, Optimal Location Query, Road Network

I. INTRODUCTION

Optimal location query is a basic operation in applications

such as location planning, location-based service, location-

based analysis on road networks1, and profile-based marketing

[1]–[11]. Consider a road network on which a set of clients

and a set of servers are located, the goal of optimal location

query (OLQ) in road networks is to obtain a location to build

a new server, so that a certain objective function calculated

based on the clients and servers is optimal, after the server

is established at this location. The MaxSum objective [5] [7]

[10] [11] is a function for an optimal location at which a new

server can attract the greatest number of clients.

In existing work on OLQ, no class labels are given to

servers. In reality, class labels such as the fast food brands

KFC and McDonald’s are typically associated with the servers.

Servers with the same class label have a collaborative relation-

ship, but servers with different class labels have a competitive

relationship. When a new server with a class label is built,

we want to maximize the benefit of all collaborative servers

(which includes the new server) with the same class label, and

the benefit is measured by the expected number of attracted

clients.

The second limitation of existing OLQ algorithms is that

clients are assumed to visit the servers nearest to them. In

reality, clients may choose servers that are not too far. In this

work, we allow a client to have a tolerance range defined

by a number k for selecting servers. A client may visit any

of its k nearest servers with a certain probability, and such

probabilities for a client sum up to 1. The probability of

visiting the i-th nearest server can vary from clients to clients.

1http://www.esri.com/software/arcgis/extensions/networkanalyst

The assumption of previous work that a client visits only its

closest server is a special case where the probability of visiting

the nearest server is 1, and that for the next k − 1 nearest

neighbors is 0. It is noticed that the visiting probabilities of

k nearest servers is also studied in the MaxBRkNN problem

[12].

With the consideration of class labels and the visiting prob-

abilities, we introduce a new objective called KMaxSum which

denotes the expected weighted sum of the clients attracted by

all servers with the same class label. The problem of KNN-

based optimal location querying (KOLQ) in road networks

with the KMaxSum objective is called KMaxSum querying.

To the best of our knowledge, this is the first study consider-

ing both server labels and KNN servers in road networks. The

contributions of this paper can be summarized as follows. (1)

We propose the problem of KOLQ with the KMaxSum objec-

tive, which is more natural compared with the existing OLQ.

(2) An algorithm called MAS is designed for the KMaxSum

querying, in which pruning techniques are introduced based

on the idea of the k nearest location component (KNLC). (3)

We conducted extensive experiments on the real world road

networks of San Francisco (SF) and Colorado (COL) to show

the efficiency of our proposed algorithms.

The rest of this paper is organized as follows. Section

II reviews the related work and point out the difficulties of

adopting existing OLQ methods to KOLQ. Section III gives

the problem definition. Section IV introduce our proposed

query algorithms. Section V reports on the empirical study

and Section VI concludes the paper.

II. RELATED WORK

Various topics on road network are studied in recent years.

Some works focus on the efficiency of the shortest paths

calculation, [13] proposes a well-separated pair decomposition

method, based on which a path oracle is built to help retrieve

an intermediated link in the shortest path. [14] proposes an

efficient index, called distance signature, for distance compu-

tation and query processing over long distances. Some works

focus on querying on the network, for example, the processing

of KNN, continuous KNN queries, and reverse KNN on

spatial network [15]–[17]. Among all kinds of querying, the

optimal meeting point (OMP) query [18], is also a location

81

2019 20th IEEE International Conference on Mobile Data Management (MDM)

2375-0324/19/$31.00 ©2019 IEEE
DOI 10.1109/MDM.2019.00-71

determination problem, but with different target to ours. Its

goal is to find a location that minimizes the sum of network

distance from a given set of points. One important discover of

OMP is the location should be one of the split points. For a

point p in the given point set, a point x on edge (u, v) is called

a split point if the shortest path from p to x going through u
has the same length as the one going through v. However, this

discover can not be applied in our problem.

The optimal location query, originating from the facility

location problem, also known as location analysis [1]–[4], has

been extensively studied. Recently, researchers in the database

community are paying attention to this problem because of its

broad applications, especially for road networks. We highlight

some of the related work below.

The goal of MaxBRNN problem [1] is to obtain an opti-

mal area to establish a new server to attract the maximum

clients. The first polynomial-time complexity algorithm for

the problem was introduced in [19] and some extensions

of this algorithm were studied in [20]. An approximation

approach was introduced for the MaxBRNN problem in [21].

An improved algorithm for MaxBRNN was given in [22].

Zhou et al. [12] first pointed out that clients may have

different probabilities visiting their k nearest servers, and

MaxBRkNN, a generalization of MaxBRNN, in the Lp-

norm space was studied. A region partition based algorithm,

MaxFirst, was proposed to solve MaxBRkNN effectively.

However, this work is very different from ours. We explain

as follows. Firstly, the objective functions are different since

we consider class labels of servers. In KOLQ, clients attracted

by the servers similar to the new server (i.e. all servers

with the query label) are considered. With the query label,

the relationship between the clients and the servers becomes

more complicated. For example, supposed k = 2, a client

has equal probability to visit his nearest server and second

nearest server, i.e. P̃1 = P̃2 = 0.5, and there is only one

client with KFC as his nearest server and McDonald’s as

second. The solution for MaxBRkNN is to make the new

server the nearest server. Consider two queries of KOLQ.

Query 1: The query label is KFC. In this case, whether the

new KFC becomes the nearest server or the second, KFC

will attract the client totally. Query 2: The query label is

McDonald’s. Wherever the new McDonald’s is, McDonald’s

cannot totally attract the client, hence the best solution is

anywhere. We can see that the solutions of KOLQ are totally

different from MaxBRkNN. Secondly, our KOLQ problem is

based on the road network environment instead of the Lp-

norm space. MaxFirst benefits from the easy judgement of

the intersection between a rectangle partition and an NLC

(Nearest Location Component), which is a circle in Lp-norm

space. However, similar judgement will be complex in road

network since an NLC becomes a set of line segments. Another

problem for adapting MaxFirst to road networks is that the

lower bound of a rectangle partition is not achievable since an

NLC in road network cannot cover a rectangle partition.

The OLQ problem with road network setting was firstly

studied by Xiao et al. [5], and an efficient algorithm was

presented. An extension of the OLQ problem with dynamic

clients and servers was studied in [7]. Recently, a more

efficient algorithm for the OLQ problem was proposed in [10],

[11]. [23] first studied the exact solution for the OLQ problem

with multiple new servers. [24] studied a static version and a

dynamic version of OLQ with the MaxSum objective. There is

a study about isochrone queries in a multimodal network [25],

which is similar to the OLQ query. Xu et al. [26] studied the

problem of proximity queries among sets of moving objects in

road networks. The OLQ without the customer locations was

studied in [27].

The existing OLQ does not consider server labels. Even if

OLQ considers server labels, it is still different from KOLQ.

First we explain how OLQ may handle labels. Given a query

server label l, our target is to build a new server with the query

label l to maximize the number of clients attracted by all the

servers with label l. Then we can simply remove those clients

which have already been attracted by the existing servers with

the query label. After that, we build a new server that can

attract the most remaining clients, which becomes the problem

of OLQ without label. However, in KOLQ, clients are attracted

to servers with probabilities, which may change after the new

server is built, therefore, we cannot easily transform KOLQ

with server labels to OLQ without server labels.

The algorithm in [28] was proposed to find an optimal

location instead of an optimal region for the L1-norm space.

The algorithm in [29] was to obtain a location to build up a

new server so that the average distance from each client to

its nearest server is minimized. The problem studied in [8] [9]

was to choose a location from a given set of potential locations

to build up a new server, in order to minimize the average

distance between the client and its nearest server. Compared

to the aggregate nearest neighbor queries [30]–[32], we try to

find an optimal location for a new object instead of a set of

given objects. Though the objectives for the BRNN problem

[33] and the reverse top-k problem [34] are similar to ours

in some way, their algorithms cannot handle road network.

The probabilistic reverse nearest neighbor queries studied in

[35] [36] is also related to BRNN but they consider uncertain

databases.

Our discussion in the above shows that KOLQ cannot be

solved by existing algorithms for OLQ or BRkNN. We need to

design new algorithms for this problem. The candidate points

for the optimal location can be limited by only considering

a small set of clients for the MinMax objective [10] and can

be limited to the vertices for the MinSum objective [5] [37].

Such nice properties for the candidate points do not apply

to our problem, it is challenging to find the optimal location

efficiently for KOLQ.

III. PROBLEM DEFINITION

Given a road network G = (V,E), V is a set of vertices

and E is a set of edges. For each edge e = 〈vl, vr〉 of G, vl is

the left vertex of e and vr is the right vertex of e. We define

the distance between two locations on the road network as the

network distance metric, which is represented by d(·, ·). We

82

(a) G(V,E)

(b) KNLC

Fig. 1: A running example

use a positive weight w(c) to indicate the importance of the

client c, (e.g. w(c) is the population while c is a residential

estate). For simplicity, we assume that each client weight is

equal to 1 and the probability for visiting the i-th nearest server

of each client is the same in all the examples.

Example. As shown in Figure 1(a), there is an example

of a road network G with 5 vertices, namely v1, v2, ..., v5,

6 servers, namely s1, s2, ..., s6, and 3 clients, namely c1, c2
and c3. The distance between the two end-points of the line

segment is shown by the number nearby. v1/c1 shows that c1
locates at v1, and so do v2/c2 and v3/s3. Each client (server)

is assigned to one edge in G.

Given a set L of class labels, each server is associated

with a class label l ∈ L. For example, in Figure 1, L =
{white, black}, where a white (black) server is represented

by a white (black) dot. Servers with the same (different)

label are called similar (dissimilar servers) servers, and have

a collaborative (competitive) relationship. For example, in

Figure 1, s1 and s3 are similar, but s1 and s2 are dissimilar. In

particular, the query label is the class label of the new server

to be built in MAS.

Given any point p on G, we denote the i-th nearest

server of p in S by NNi(p, S), and the distance between

p and NNi(p, S) is denoted as p.disti, i.e., p.disti =
d(p,NNi(p, S)). For example, in Figure 1(a), NN1(c1, S) =
s1 and c1.dist1 = d(c1, s1) = 2.

Assume that each client c ∈ C may be attracted by its i-th
(1 ≤ i ≤ k) nearest server with probability P̃i (0 ≤ P̃i ≤ 1)

such that
∑k

i=1 P̃i = 1.

Definition 1: Given a server set S and a label l of server, the

TABLE I: Some notations used

Notation Description
NNi(p, S) i-th nearest server in S for point p
KNN(c) the set of k nearest servers of c

P̃i the probability that a client is attracted by the
i-th nearest server of the client

f(NNi(p, S)) equals 1 if NNi(p, S) is a server similar to
new server, 0 otherwise

x.disti the distance between x and its i-th nearest
server

P (c, S)
∑k

i=1 P̃i · f(NNi(c, S))
P (c, i) equals P (c, S ∪ {p}) if the new server at p

becomes the i-th nearest server for c
B(c, i) w(c) · P (c, i)
Bo(c) w(c) · P (c, S)
C(e) set of clients whose KNLCs cover the edge e
VC(e) set of virtual clients whose KNLC’s cover the

edge e
vce virtual client associated with edge e
Ce set of clients on edge e

B(vce, i)
∑

c∈Ce
B(c, i)

class probability of a client c, P (c, S, l), is the total probability

of c attracted by servers in S with label l.

Let f(NNi(c, S), l) return 1 if NNi(c, S) has label l and

0 otherwise, then P (c, S, l) =
∑k

i=1 P̃i · f(NNi(c, S), l). By

default, l is the query label (the label of the new server), and

we write P (c, S) and f(NNi(c, S)) without specification for

l. For example, in Figure 1, let’s say the query label is white,

then f(NN2(c1, S)) = f(s2) = 0, since s2 is black. For

simplicity, we sometimes use a location p on the road network

to represent the server located at p. Accordingly, if we build

a new server at location p, P (c, S ∪ {p}) denotes the class

probability of c after building the new server. P (c, S ∪ {p})
is simplified as P (c, i) when the new server at p was the i-th
nearest server of c. We use both notations P (c, S ∪ {p}) and

P (c, i) interchangeably in the following.

Problem: Given a road network G = (V,E), a set C (S) of

clients (servers with labels L) on G, a positive integer k, the

visiting probabilities P̃i (1 ≤ i ≤ k), and a query label l in

L, the KOLQ problem with the KMaxSum objective function

is to find an optimal location po for a new server with the

given query label such that the objective KMaxSum(po) =∑
c∈C w(c) · P (c, S ∪ {po}) is maximized.

Intuitively, the purpose of the KMaxSum query is to find

an optimal location such that the expected weighted sum of

clients attracted by the servers (including the new server) with

the query label is the greatest.

Example. Consider Figure 1. Given k = 3, P̃1 = 0.5, P̃2 =
0.3 and P̃3 = 0.2. Suppose that the query label is white. In

this figure, c1 is attracted by s1 with P̃1, s2 with P̃2, and s3
with P̃3. Similarly, c2 (c3) is attracted by s4 (s6) with P̃1, s5
(s4) with P̃2, s6 (s3) with P̃3. Consider a new white server at

a point p which is between p3 and p4 in Figure 1(b). Then,

KNN(c1) includes s1, the new white server at p and s2.

P (c1, S ∪ {p}) = P̃1 + P̃2 = 0.8. Similarly, P (c2, S ∪ {p})
and P (c3, S ∪ {p}) are obtained. Then, KMaxSum(p) =
w(c1)·P (c1, S∪{p})+w(c2)·P (c2, S∪{p})+w(c3)·P (c3, S∪

83

{p}) = 0.8 + 0.8 + 0.5 = 2.1. By calculating the objective

values of other locations, we can see that KMaxSum(p) is

the greatest. So, the point p is an optimal location for a new

white server.

Consider a special case of the KMaxSum query in which

there are only two class labels l1 and l2 and the parameters

are set to be k = 1 and P̃1 = 100%. There are no class labels

in OLQ [5] [7] [10] [11]. But, the new server can be treated

as having l1 and all existing servers can be treated as having

another label l2. Then, the OLQ with the objective MaxSum

is equivalent to the special case of the KMaxSum query. Thus,

the KOLQ with the KMaxSum objective is a generalization
of OLQ with the objective MaxSum.

IV. KMAXSUM QUERYING

For KMaxSum querying, we give some basic definitions

in Section IV-A, a baseline algorithm is described in Section

IV-B, and the main algorithm MAS is proposed in Section

IV-C.

A. Basic Definitions

Firstly, we introduce a key concept called k nearest location
component (KNLC).

Definition 2 (KNLC): Given any client c on road network G,

the k nearest location component of c, KNLC(c), is made up

of k levels, where the i-th level, denoted by KNLC(c, i), is

the set of points on the edges in G with a distance of at most

c.disti from c. Formally, KNLC(c, i) = {p|d(p, c) ≤ c.disti
and p is a point on the edges of G}.

We call c.disti the radius of KNLC(c, i). For example,

in Figure 1(b), the radius of KNLC(c1, 1) is equal to

c1.dist1 = d(c1, s1) = 2. KNLC(c1, 1) corresponds to the

interval [c1, s1] on the edge 〈v1, v3〉 and the interval [c1, p2]
on the edge 〈v1, v2〉.

We say that KNLC(c, i1) is lower than KNLC(c, i2)
if i1 < i2; if i1 > i2, KNLC(c, i1) is higher than

KNLC(c, i2). From the definition of KNLC, we can see

that KNLC(c, i1) ⊆ KNLC(c, i2), if i1 < i2. Also,

KNLC(c, k) includes each level of KNLC(c).
[10] [11] introduce the concept of nearest location com-

ponents (NLC) to enhance the efficiency of OLQ. For each

client c, NLC(c) is a set of points in G with a distance to

c no more than c.dist1. Intuitively, NLC(c) just corresponds

to the first level of KNLC(c), i.e., KNLC(c, 1). Thus, the

concept of KNLC is a generalization of the concept of NLC.

Next, we introduce the concepts of boundary point and slot,

which are used in our algorithms.

Definition 3 (boundary points and slots): For each client

c ∈ C, we say that a point p on G is a boundary point
of KNLC(c) if d(p, c) = c.disti (1 ≤ i ≤ k). Given

boundary points p1, p2, ..., pi on an edge e = 〈vl, vr〉 with

increasing distances from vl. Then, we define each of the

intervals (vl, p1), (p1, p2), ..., (pi−1, pi), (pi, vr) as a slot. If

there is no boundary point on e, then the edge of e (i.e., the

interval (vl, vr)) itself is a slot.

Note that a slot (excluding the end-points of the slot) contains

no boundary point.

For example, in Figure 1(b), p2, p4, s1 and s2 are the

boundary points of KNLC(c1). If k = 3, then the edge

〈v1, v3〉 can be divided into three slots by the boundary points

s1, s2 and s3, namely (v1, s1), (s1, s2) and (s2, s3). Here s3
coincides with v3. Note that the interval is not a slot because

it contains a boundary point p2.

B. The Baseline Algorithm

The first algorithm we introduce is a baseline algorithm

which is based on some properties that are described by two

lemmas in the following.

Lemma 1: For any two points p1 and p2 in a slot, KMax−
Sum(p1) =KMaxSum(p2).

Due to the space constraint, all proofs of Lemmas are in

the appendix. Lemma 1 shows that any two points in a slot

have the same objective value. We define the objective value
of a slot to be that of any point in this slot.

The purpose of KMaxSum query is to find a location p on

G such that KMaxSum(p) is the greatest. The computation

of KMaxSum(p) requires the value of P (c, S∪{p}) for each

client c, which can be computed based on Lemma 2.

Lemma 2: If p is not inside KNLC(c) then P (c, S∪{p}) =
P (c, S). Otherwise, if p is inside KNLC(c) and the new

server at p is the i-th nearest server of c, then

P (c, S ∪ {p}) =
∑

1≤j<i

P̃j × f(NNj(c, S)) + P̃i+

∑
i<j≤k

P̃j × f(NNj−1(c, S))

With Lemma 1 and Lemma 2, we derive a baseline algorith-

m which includes three key steps. (1) The first step is to find all

slots on edges. (2) The second step is to compute the objective

value for each slot. We need to pick a location p inside the slot

and calculate kMaxSum(p), by running a naive Dijkstra’s

algorithm, we may get the clients attracted by the new server

locates at p. We can get kMaxSum(p) in O(|V |log|V |+k|C|)
time. (3) The third step is to select the slot or the vertex (not

boundary point) with the greatest objective value and return

it as the optimal location. The time complexity of these three

key steps is O(k|C||E|(|V |log|V |+ k|C|)).
For any point p on G, p is either in a slot or not. If p

is not in any slot, p is a boundary point or a vertex. Since

a boundary point is not considered for the new server, the

baseline algorithm has computed the objective values for each

possible point for the new server. Thus, the correctness of this

algorithm is easy to verify.

C. The MAS Algorithm

The baseline algorithm needs to compute the objective

values for each possible point. This is costly. In this section,

we introduce an improved algorithm called MAS for the

KMaxSum query. Let Xo denote the possible weighted sum

of the attracted clients before the new server is built. Then,

KMaxSum(p)−Xo is the incremental weighted sum after the

84

new server is built at p. If p is outside KNLC(c), then there

is no increase from the client c. This means if we compute

KMaxSum(p) − Xo instead of KMaxSum(p), then we

need not consider any client c whose KNLC does not contain

the location p, that is p is outside KNLC(c). Moreover,

we use the upper bounds for each edge of road network to

reduce the number of edges to be further scanned. Then, the

method of edge scanning is used to find the optimal location

from the remaining edges. As shown in the experiments, the

MAS algorithm can enhance dramatically the KMaxSum query

performance.

1) Upper Bound and Fine-grained Pruning:
Definition 4: The benefit of client c with the new server,

which becomes the i-th nearest server of c, is defined to be

B(c, i) = w(c) · P (c, i) (1 ≤ i ≤ k).

Definition 5: The benefit of c before building the new server

is defined to be Bo(c) = w(c) · P (c, S).

Let C(e) denote the set of clients whose KNLC-

s overlap with the edge e. For each client c ∈
C(e), t(c) is one level of KNLC(c) that overlaps with

the edge e and maximizes B(c, t(c)), namely t(c) =
argmaxi{B(c, i)|KNLC(c, i) overlaps with e}.

Definition 6: For each edge e ∈ E, we define Upp(e) =∑
c∈C(e)(B(c, t(c))−Bo(c)).

Lemma 3: Upp(e) is an upper bound on the maximum

increase for the total benefit of all clients if the new server

is built on e.

The computation of Upp(e) for each edge e is shown in

Algorithm 1. The key idea of this algorithm is to accumulate

the contribution of each client to the upper bound for each

edge overlapping with its KNLC. The main algorithm process

corresponds to Lines 3 - 22. For each client c, we use

Dijkstras algorithm to traverse the vertices in G in ascending

order of their distances to c. For an edge e′ that overlaps

with KNLC(c), we need to figure out with which layers of

KNLC(c) it overlaps. Note that by Dijkstra’s algorithm, there

are at most two chances to access e′(i.e. via its two vertices).

Lines 10 - 12 show the first visit to e′. We know the lowest

layer of KNLC(c) that overlaps with e′ is the ith layer, so we

update Upp(e′) in Line 11 where t is the layer higher than i
and has the highest benefit. Lines 14 - 16 show the second visit

to e′. We know that s is the lowest layer of KNLC(c) that

overlaps with e′ in Line 9, and i is the highest layer, then we

get the layer t′ with the highest benefit between the sth layer

and the ith layer in Line 15, and update Upp(e′) in Line 16.

Dijkstra’s algorithm in Line 5 is the main cost for Algorithm 1.

Since Dijkstra’s algorithm takes O(|V | log |V |) time [38], we

suppose E = O(V), so Algorithm 1 needs O(|C||V | log |V |)
time in the worst case of traversing the whole road network.

Based on the upper bound for each edge, we propose a fine-
grained pruning strategy as follows. Edges are examined in

non-ascending order of their upper bounds. Then, the method

of edge scanning, which will be introduced later, is used to find

the optimal objective value for each examined edge. After that,

we can prune the unexamined edges whose upper bounds are

Algorithm 1: Computing the upper bound for each edge

Input: G, C, k, ˜Pi(1 ≤ i ≤ k) and c.distt(1 ≤ t ≤ k)
Output: Upp(e) for each edge e ∈ E

1 initialize Upp(e) ← 0 for each edge e ;
2 for each client c ∈ C do
3 let e be the edge that contains client c, update Upp(e) properly ;
4 i ← 1, d ← c.disti, t ← argmax1≤j≤kB(c, j) ;
5 apply Dijkstra’s algorithm to traverse V in ascending order of their

distances to c ;
6 for each vertex v in ascending order of its distance to c do
7 if d(v, c) < d then
8 for each edge e′ adjacent to v in the form of 〈v, v′〉 do
9 Let the last updated record of e′ be (c′, s) ;

10 if c′ �= c then
11 Upp(e′) ← Upp(e′) + B(c, t) − Bo(c) ;
12 update the last update record of e′ to be (c, i) ;
13 end
14 else
15 t′ ← argmaxs≤j≤iB(c, j) ;
16 Upp(e′) ← Upp(e′) + B(c, t′) − B(c, t) ;
17 end
18 end
19 else
20 while i ≤ k and c.disti < d(v, c) do i ← i + 1 ;
21 if i > k then break ;
22 d ← c.disti ; t ← argmaxi≤j≤kB(c, j) if t > i;
23 end
24 end
25 end
26 return Upp(e) for each edge e ;

less than the largest increase of benefits for the clients found

so far.
2) Virtual Client and Coarse-grained Pruning: Next we

introduce a coarse-grained pruning strategy which is based

on the concept of virtual clients. With this strategy, we obtain

a relaxed new upper bound NewUpp(e) by less computation.

Consider the edge e = 〈vl, vr〉 containing some clients. The

virtual client associated with the edge e, denoted by vce, is

defined as follows. (1) vce.disti = max{maxc∈Ce
{c.disti −

d(vl, c)}, 0, max{c.disti − d(vr, c)}}, where Ce is the set

of clients on e. (2) if p is any point on the edge e, then

d(vce, p) = 0, otherwise, d(vce, p) = min{d(vl, p), d(vr, p)}.
Intuitively, the whole of edge e is viewed as the virtual client

vce.

The definitions related to a real client are adopted for a vir-

tual client. By Definition 2, we define KNLC(vce) based on

the above vce.disti. Then, KNLC(vce, i1) ⊆KNLC (vce, i2)
(1 ≤ i1 < i2 ≤ k), ∪k

i=1KNLC(vce, i) = KNLC(vce, k).
Note that if the k nearest servers of the client c are on e,

c.disti − d(vl, c) and c.disti − d(vr, c) may be less than 0.

Then we may have vce.disti = 0. Since d(vce, p) = 0 for

any point p on e, in the case that vce.disti ≤ 0, the edge e
is defined to be included in KNLC(vce, 1). In particular, if

there is only one client c on e, KNLC(vce) is regarded the

same as KNLC(c), i.e., KNLC(vce, i) = KNLC(c, i).
Lemma 4: For any client c on the edge e, KNLC(c, i) ⊆

KNLC(vce, i) for 1 ≤ i ≤ k.

Lemma 4 tells us that the i-th level of KNLC(vce) includes

the i-th level of KNLC(c) for each client c on the edge e.

Thus, KNLC(c) ⊆ KNLC(vce).
Different from Definition 4, the benefit of virtual clien-

t vce with the new server is defined as B(vce, i) =∑
c∈Ce

maxi≤j≤k B(c, j), where Ce is the set of clients on

85

Fig. 2: An example of edge scanning

the edge e, and we can see the monotonicity of B(vce, i)(i.e.

B(vce, i1) ≥ B(vce, i2) if i1 < i2). Similar to Definition

5, the benefit of virtual client vce without the new server is

defined to be Bo(vce) =
∑

c∈Ce
Bo(c). Besides, we denote

by VC(e) the set of virtual clients whose KNLCs overlap

with the edge e. Similar to t(c), for any vc ∈ VC(e),
t(vc) = argmaxi{B(vc, i)| KNLC(vc, i) overlaps with e}.
Due to the monotonicity of B(vc, i), we can see t(vc) =
min{i|KNLC(vc, i) overlaps with e}.

Definition 7: For each edge e∈E, we define NewUpp(e)
=

∑
vc∈VC(e) (B(vc, t(vc)) −Bo(vc)).

The computation for NewUpp(e) for each edge e is sim-

ilar to the computation for Upp(e) (i.e., Algorithm 1). In

general, the computation of NewUpp(e) for each edge e
takes O(ε|V | log |V |) time, where ε is the number of edges

containing at least one client. Notice that ε is typically smaller

than |E| or |C|.
Lemma 5: Upp(e) ≤ NewUpp(e).
Lemma 5 says that NewUpp(e) is a relaxed upper bound

compared with Upp(e). Similar to the fine-grained pruning

discussed before, we can construct the coarse-grained pruning
based on the new upper bound for each edge.

3) Edge Scanning: Suppose that the new server is on an

edge e of G. After computing all boundary points and point

intervals on e, we obtain the benefits associated with each

point interval. Based on Lemma 1, by scanning each interval

on e, we find the location with the optimal objective value.

Let us illustrate with an example. Consider the edge e =
〈v1, v2〉 in Figure 1(b). Suppose that k = 2, w(c1) = 0.6
and w(c2) = 0.4. As shown in Figure 2, there are four

boundary points p2, p4, p5 and p3 generated by KNLC(c1)
and KNLC(c2) on the edge e. Then, there are four slots

[v1, p2], (p2, p4], [p5, v2] and [p3, p5) among which the former

two are associated with B(c1, 1) = 0.6 and B(c1, 2) = 0.6,

respectively, and the latter two are associated with B(c2, 1) =
0.4 and B(c2, 2) = 0.4, respectively.

Let X be used to compute the optimal objective value and

initialized to zero. In Figure 2, the start (end) point of each slot

is marked with the symbol of “+” (“−”). The number next to

each symbol is the benefit associated with the corresponding

slot. When we move from v1 to v2, if we hit the start point

of an interval, this means that we will enter the range of this

Algorithm 2: The MAS algorithm

Input: G, C, k, ˜Pi(1 ≤ i ≤ k), c.distt(1 ≤ t ≤ k) and the query label
Output: The optimal location and the objective value

1 X ← 0, P ← ∅, Xo ← 0 ;
2 for each client c ∈ C do
3 Xo ← Xo + Bo(c) ;
4 end
5 compute the upper bound Upp(e) (NewUpp(e)) for each edge e ∈ E ;
6 sort all edges in non-ascending order of their upper bounds ;
7 SCANEDGES(X,Xo,P) ;
8 return P and X ;

procedure SCANEDGES(X,Xo,P)
for each edge e to be processed in sorted ordering do

if Upp(e)(NewUpp(e)) < X − Xo then
break ;

else
scan e to find the location with the optimal objective value X′ ;
if X′ > X then

X ← X′ ;
P ← {p|p is the location with X } ;

end
end

end
end procedure

interval, thus we increase X with the benefit of the interval.

Otherwise, if we hit the end point of an interval, that means we

will leave this interval and so we decrease X with the benefit

of the interval. Firstly, we hit v1 and enter KNLC(c1, 1), so

X = 0.6. Next, we hit p2, where we leave KNLC(c1, 1)
and enter KNLC(c1, 2). So, X = 0.6. Next, we hit p3
and enter KNLC(c2, 2) before leaving KNLC(c1, 2), which

means that X = 0.6 + 0.4 = 1. Next, we hit p4 and leave

KNLC(c1, 2), so X = 1 − 0.6 = 0.4. Next, we hit p5.

Similarly, we leave KNLC(c2, 2) and enter KNLC(c2, 1),
so X = 0.4. Finally, we reach v2 and this scanning process is

finished.

Next, we examine the vertices of e which are not boundary

points. During the edge scanning, we need to check if a vertex

is included in a point interval. If so, the objective value for the

vertex should be incremented with the benefit of the interval.

For example, since v1 is included in [v1, p2), its objective value

is equal to 0.6. Finally, the optimal objective value is equal to

1 and the optimal location for this example is any point in the

slot (p3, p4).

Putting things together, Algorithm 2 is the MAS algorithm.

Firstly, the upper bound for each edge is computed. Then,

edges are sorted in non-ascending order of their upper bounds

and pruned by the bounds. Finally, the optimal location and

the objective value are found by scanning the remaining edges.

Complexity. In Algorithm 2, Lines 2-3 need O(|C|) time

and space. If Upp(e) (NewUpp(e)) is used, Line 5 need-

s O(|C||V | log |V |) (O(ε|V | log |V |)) time. Line 5 takes

O(|V | + |E|) space. Line 6 needs O(|E| log |E|) time and

O(|E|) space. Let the number of edges that are scanned be

β. Typically, β 	 |E|. In the experiments, β is at most

16 and usually smaller than 6. Then, the edge scanning

procedure takes O(β(|V | log |V | + k|C| log k|C|)) time and

O(|V |+ k|C|) space. Thus, the total time is O(|C||V | log |V |
+|E| log |E| + β(|V | log |V | + k|C| log k|C|)) and the total

space is O(|V |+ |E|+ k|C|).

86

V. EMPIRICAL STUDIES

In this section, we evaluated the performance of our pro-

posed algorithms. The description of experiment environment

and datasets are as follows.

• Hardware and platform: we run experiments on a ma-

chine with a 3.4Ghz*8 Intel Core i7-4770 CPU and 16

GB RAM, running Ubuntu 12.04 LTS Linux OS. All

algorithms were implemented in C++ and compiled with

GNU C++ compiler.

• Real Datasets: we use two widely used real road

networks, i.e. road network SF (San Francisco) and

COL (Colorado). SF contains 174,955 vertices and

223,000 edges. The way of generating clients and

servers in SF is similar to [5] [7] [10] [11]. Specifically,

we acquire a large number of real building locations

in San Francisco from the OpenStreetMap project.

The random sample sets of those real locations are

used as clients and servers in SF. COL contains

435,666 vertices and 1,057,066 edges downloaded from

http://www.dis.uniroma1.it/challenge9/download.shtml.

As in previous works [5] and [10] on OLQ, we include

synthesized clients and servers whose numbers and

locations on each edge are generated randomly. The

clients and the servers in road networks are stored in

two separated lists.

• Settings: each client is associated with a weight which

is generated randomly from a Zipf distribution with a

skewness parameter α > 1 (by default α = ∞, which

means that the weight of each client is equal to 1.),

which is similar to the existing work [5]. The number

|L| of class labels is varied from 3 to 5 and the default

value is 3. We assign randomly one class label to each

server. The default value for the number |S| of servers

for SF (COL) is 4,000 (8,000) and the default value

for the number |C| of clients for SF (COL) is 400,000

(800,000). By default, k = 3 and P̃i is setting inversely

proportional to c.disti. For example, for a client c with

c.dist1 = 0.2, c.dist2 = 0.25, c.dist3 = 1, P̃1, P̃2, P̃3

will be 0.5, 0.4, 0.1 respectively.

Firstly, we compare the baseline algorithm in Section IV-B

with the MAS algorithm in Section IV-C using Upp by

default. Specifically, both algorithms were executed on the

same dataset of SF with 4,000 servers and 400,000 clients.

The baseline algorithm takes about 15.55 hours while the MAS
algorithm only needs about 30 seconds. The baseline algorithm

is very inefficient since it computes the objective values for

each possible point. In the following, we study the effects of

different parameters on the MAS algorithm.

Effect of the number |S| of servers and k: The sizes of |S|
and k are varied and the other parameters are set by default.

The results on SF and COL are in Figure 3 and Figure 4,

respectively. Note that the major time consuming parts of MAS

are the KNN computation and the computation of the upper

bounds for each edge. The running time of the KNN compu-

tation increases as |S| increases, while the running time of the

(a) time (b) storage

Fig. 3: Effect of |S| and k on SF for MAS

(a) time (b) storage

Fig. 4: Effect of |S| and k on COL for MAS

TABLE II: Effect of k and |L| on SF for MAS

SF
time (seconds) memory (MB)

|L| = 3 |L| = 4 |L| = 5 |L| = 3 |L| = 4 |L| = 5

k = 2 18.36 18.94 18.95 19.72 19.72 19.72

k = 3 29.18 30.12 29.51 25.83 25.83 25.83

k = 4 40.25 40.32 40.42 31.93 31.93 31.93

k = 5 51.22 51.37 51.34 38.03 38.03 38.03

upper bound computation decreases as |S| increases. However,

for a large |S|, the upper bound computation dominates, thus,

the running time decreases slowly overall, as we can see in

both Figure 3(a) and Figure 4(a). Besides, when k is larger,

the radius of KNLC becomes larger and thus the time of MAS
increases. On the other hand, the memory consumption of MAS
mainly depends on the sizes of |V |, |C| and k. The effect of

|S| is small. As shown in Figure 3(b) and Figure 4(b), when

|S| is large, the increase of memory consumption is very small

with |S|.
Effect of the number |C| of clients and k: The results on SF
and COL are in Figure 5 and Figure 6, respectively. When

|C| is larger, the number of KNLCs of clients becomes larger

and thus the time of MAS increases with |C|. Besides, when k
becomes larger, the radius of KNLCs of clients is larger and

thus the time of MAS increases. The memory consumption of

MAS increases with the increased sizes of |C| and k.

Effect of k and the number |L| of class labels: The results

on SF and COL are in Table II and Table III, respectively.

The time and memory consumption of MAS increase with

the increase of k. The effect of |L| is small. The memory

consumption remains unchanged.

87

(a) time (b) storage

Fig. 5: Effect of |C| and k on SF for MAS

(a) time (b) storage

Fig. 6: Effect of |C| and k on COL for MAS

TABLE III: Effect of k and |L| on COL for MAS

COL
time (seconds) memory (MB)

|L| = 3 |L| = 4 |L| = 5 |L| = 3 |L| = 4 |L| = 5

k = 2 52.90 54.07 54.98 45.41 45.41 45.41

k = 3 83.71 84.80 84.97 57.62 57.62 57.62

k = 4 115.09 116.17 115.67 69.83 69.83 69.83

k = 5 146.59 146.59 146.74 82.03 82.03 82.03

Effect of P̃i: We use the default setting of all the parameters

except for the probabilities P̃i, whose values are generated

randomly. The sum of such probabilities for each client is one.

We try 100 tests for the two road networks respectively. As

shown in Table IV, both the time and the memory consumption

of MAS are not sensitive to the visiting probabilities.

Effect of α: Specifically, we use the default setting of all the

parameters except w(c), whose values are randomly generated

from a Zipf distribution with a skewness parameter α. We

randomly choose the value of α in {2, 3, 4, 5, 6}, and try 100

tests for the two road networks respectively. Table V shows

that the time and the memory consumption of MAS are not

sensitive to α.

Effect of NewUpp: The results on the comparison of Upp
and NewUpp in MAS algorithm are in Figure 7 and Figure

8. The results show that the MAS algorithm with NewUpp is

faster. This is because the computation cost of NewUpp is

less than that of Upp, especially when |C| is large. NewUpp
has comparable pruning power compared to Upp even though

it is not as tight as Upp, which is another reason why we have

good time performance. When |S| is small, the computation

cost for KNLCs will be larger. Since Upp is tighter than

NewUpp, the computation cost of Upp will be larger. As

TABLE IV: Effect of P̃i

dataset result min max avg std

SF
time 28.93 36.58 29.94 1.20

memory 25.83 25.83 25.83 0.00

COL
time 82.53 84.67 83.09 0.30

memory 57.62 57.62 57.62 0.00

TABLE V: Effect of α

dataset result min max avg std

SF
time 29.04 29.80 29.27 0.11

memory 25.83 25.83 25.83 0.00

COL
time 82.55 83.94 83.17 0.22

memory 57.62 57.62 57.62 0.00

(a) time (b) storage

Fig. 7: Effect of |C| on SF for Upp and NewUpp

(a) time (b) storage

Fig. 8: Effect of |C| on COL for Upp and NewUpp

shown in these figures, both Upp and NewUpp have similar

memory consumption. The lines for memory consumption are

overlapping in these figures.

VI. CONCLUSION

In this paper, we study the KOLQ problem with the K-

MaxSum objective function, namely the KMaxSum querying

problem. We also propose algorithms for the problem. Our

algorithms incorporate some new pruning techniques based

on the concept of KNLC. We verify the performance of

the algorithms on two datasets based on real world road

networks of San Francisco and Colarado. Our results show that

our algorithms can handle queries with reasonable time and

memory. The KOLQ problem with other objective functions

will be studied in our future work.

88

ACKNOWLEDGEMENTS

This paper is supported by the National Nature Science

Foundation of China (NSFC 61572537, U1501252). Yubao

Liu is the corresponding author.

REFERENCES

[1] S. Cabello, J. M. Diaz-Banez, S. Langerman, C. Seara, and I. Ventura,
“Reverse facility location problems,” in CCCG, 2005.

[2] J. Cardinal and S. Langerman, “Min-max-min geometric facility location
problems,” in EWCG, 2006.

[3] J. Krarup and P. M. Pruzan, “The simple plant location problem: Survey
and synthesis,” European Journal of Operational Research, vol. 12,
no. 1, pp. 36–57, 1983.

[4] B. C. Tansel, R. L. Francis, and T. J. Lowe, “Location on networks: A
survey,” Management Science, vol. 29, no. 4, pp. 498–511, 1983.

[5] X. Xiao, B. Yao, and F. Li, “Optimal location queries in road network
databases,” in ICDE, 2011.

[6] M. de Berg, M. van Krefeld, M. Overmars, and O. Schwarzkopf,
Computational Geometry: Algorithms and Applications. Springer-
Verlag, 2000.

[7] B. Yao, X. Xiao, F. Li, and Y. Wu, “Dynamic monitoring of optimal
locations in road network databases,” VLDB J., vol. 23, no. 5, pp. 697–
720, 2014.

[8] J. Qi, R. Zhang, L. Kulik, D. Lin, and Y. Xue, “The min-dist location
selection query,” in ICDE, 2012.

[9] J. Qi, R. Zhang, Y. Wang, A. Y. Xue, G. Yu, and L. Kulik, “The min-
dist location selection and facility replacement queries,” World Wide
Web, vol. 17, no. 6, pp. 1261–1293, 2014.

[10] Z. Chen, Y. Liu, R. C.-W. Wong, J. Xiong, G. Mai, and C. Long,
“Efficient algorithms for optimal location queries in road networks,”
in SIGMOD, 2014.

[11] ——, “Optimal location queries in road networks,” ACM Transactions
on Database Systems, vol. 40, no. 3, p. 17, 2015.

[12] Z. Zhou, W. Wu, X. Li, M. L. Lee, and W. Hsu, “Maxfirst for maxbrknn,”
in ICDE, 2011.

[13] J. Sankaranarayanan, H. Samet, and H. Alborzi, “Path oracles for spatial
networks,” Proceedings of the VLDB Endowment, vol. 2, no. 1, pp.
1210–1221, 2009.

[14] H. Hu, D. L. Lee, and V. Lee, “Distance indexing on road networks,”
in Proceedings of the 32nd international conference on Very large data
bases. VLDB Endowment, 2006, pp. 894–905.

[15] H. Samet, J. Sankaranarayanan, and H. Alborzi, “Scalable network
distance browsing in spatial databases,” in Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. ACM,
2008, pp. 43–54.

[16] K. Mouratidis, M. L. Yiu, D. Papadias, and N. Mamoulis, “Continuous
nearest neighbor monitoring in road networks,” in Proceedings of the
32nd international conference on Very large data bases. VLDB
Endowment, 2006, pp. 43–54.

[17] M. A. Cheema, W. Zhang, X. Lin, Y. Zhang, and X. Li, “Continuous
reverse k nearest neighbors queries in euclidean space and in spatial
networks,” The VLDB JournalThe International Journal on Very Large
Data Bases, vol. 21, no. 1, pp. 69–95, 2012.

[18] D. Yan, Z. Zhao, and W. Ng, “Efficient algorithms for finding optimal
meeting point on road networks,” Proceedings of the VLDB Endowment,
vol. 4, no. 11, pp. 1–11, 2011.

[19] R. C.-W. Wong, M. T. Ozsu, A. W.-C. Fu, P. S. Yu, and L. Liu, “Efficient
method for maximizing bichromatic reverse nearest neighbor,” PVLDB,
vol. 2, no. 1, pp. 1126–1137, 2009.

[20] R. C.-W. Wong, M. T. Ozsu, A. W.-C. Fu, P. S. Yu, L. Liu, and Y. Liu,
“Maximizing bichromatic reverse nearest neighbor for lp-norm in two-
and three-dimensional spaces,” VLDB J., 2011.

[21] D. Yan, R. C.-W. Wong, and W. Ng, “Efficient methods for finding
influential locations with adaptive grids,” in CIKM, 2011.

[22] Y. Liu, R. C.-W. Wong, K. Wang, Z. Li, C. Chen, and Z. Chen, “A new
approach for maximizing bichromatic reverse nearest neighbor search,”
Knowl. Inf. Syst., vol. 36, no. 1, pp. 23–58, 2013.

[23] R. Liu, A. W.-C. Fu, Z. Chen, S. Huang, and Y. Liu, “Finding multiple
new optimal locations in a road network,” in SIGSPATIAL, 2016.

[24] P. Ghaemi, K. Shahabi, J. P. Wilson, and F. B. Kashani, “A compara-
tive study of two approaches for supporting optimal network location
queries,” GeoInformatica, vol. 18, no. 2, pp. 229–251, 2014.

[25] J. Gamper, M. H. Böhlen, and M. Innerebner, “Scalable computation of
isochrones with network expiration,” in SSDBM, 2012.

[26] Z. Xu and H.-A. Jacobsen, “Processing proximity relations in road
networks,” in SIGMOD, 2010.

[27] E. Yilmaz, S. Elbasi, and H. Ferhatosmanoglu, “Predicting optimal
facility location without customer locations,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, 2017, pp. 2121–2130.

[28] Y. Du, D. Zhang, and T. Xia, “The optimal-location query,” in SSTD,
2005.

[29] D. Zhang, Y. Du, T. Xia, and Y. Tao, “Progressive computation of the
min-dist optimal-location query,” in VLDB, 2006.

[30] M. L. Yiu, N. Mamoulis, and D. Papadias, “Aggregate nearest neighbor
queries in road networks,” IEEE Trans. Knowl. Data Eng, vol. 17, no. 6,
pp. 820–833, 2005.

[31] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui, “Aggregate nearest
neighbor queries in spatial databases,” ACM Trans. Database Syst.,
vol. 30, no. 2, pp. 529–576, 2005.

[32] H. G. Elmongui, M. F. Mokbel, and W. G. Aref, “Continuous aggregate
nearest neighbor queries,” GeoInformatica, vol. 17, no. 1, pp. 63–95,
2013.

[33] F.Korn and S.Muthukrishnan, “Influence sets based on reverse nearest
neighbor queries,” in SIGMOD, 2000.

[34] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Norvag, “Monochromatic
and bichromatic reverse top-k queries,” IEEE Trans. Knowl. Data Eng,
vol. 23, no. 8, pp. 1215–1229, 2011.

[35] T. Bernecker, T. Emrich, H.-P. Kriegel, M. Renz, S. Zankl, and A. Zufle,
“Efficient probabilistic reverse nearest neighbor query processing on
uncertain data,” PVLDB, vol. 4, no. 10, pp. 669–680, 2011.

[36] M. A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei, “Probabilistic
reverse nearest neighbor queries on uncertain data,” IEEE Trans. Knowl.
Data Eng., vol. 22, no. 4, pp. 550–564, 2010.

[37] L. Xu, G. Mai, Z. Chen, Y. Liu, and G. Dai, “Minsum based optimal lo-
cation query in road networks,” in International Conference on Database
Systems for Advanced Applications. Springer, 2017, pp. 441–457.

[38] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
NUMERISCHE MATHEMATIK, vol. 1, no. 1, pp. 269–271, 1959.

APPENDIX

We introduce the proofs of lemma 1-5 as follows.

Proof of Lemma 1. Let p1 and p2 be in the same slot ξ. For

any client c, there are three cases.

Case 1: KNLC(c) cannot cover ξ. Namely, the new server

established at p1 or p2 cannot affected the client c. Thus,

f(NNi(c, S∪{p1})) = f(NNi(c, S)) = f(NNi(c, S∪{p2}))
for each 1 ≤ i ≤ k.

Case 2: KNLC(c) partly covers ξ. For this case, there ex-

ists a point p in S which is a boundary point. This contradicts

the fact ξ is a slot.

Case 3: KNLC(c) entirely covers ξ. For this case, we

assume that the k nearest servers of c are s1, s2, ..., sk
before building the new server. Assume that the new server

built at the locations p1(p2) becomes the t-th (t′-th) nearest

server of client c. We assume that t is not equal to t′ and

t < t′ without loss of generality. Since the new server at

p1 is the t-nearest server of c, the original t-nearest server

of c, st (1 ≤ t < k) should be the (t + 1)-nearest server

of c after the new server is built. Then we have d(c, p1) <
d(c, st) ≤ d(c, p2). Thus, we can find a point p in the segment

[p1,p2] such that d(c, p) = d(c, st) = c.distt. This means

p is a boundary point of KNLC(c), which contracts to the

fact that B is a slot. Thus, we have t = t′. For i < t, we

have NNi(c, S ∪ {p1}) = NNi(c, S ∪ {p2}) = si and then

f(NNi(c, S ∪ {p1})) = f(NNi(c, S ∪ {p2})). For i > t, we

have NNi(c, S ∪ {p1}) = NNi(c, S ∪ {p2}) = si−1 and then

89

f(NNi(c, S ∪ {p1})) = f(NNi(c, S ∪ {p2})). For i = t, we

have NNi(c, S ∪ {p1}) = p1 and NNi(c, S ∪ {p2}) = p2.

Then f(NNi(c, S ∪ {p1})) = f(NNi(c, S ∪ {p2})) = 1.

Thus, f(NNi(c, S ∪ {p1})) = f(NNi(c, S ∪ {p2})) for each

1 ≤ i ≤ k.

KMaxSum(p1) − KMaxSum(p2) =
∑

c∈C w(c) ·∑k
i=1 P̃i · (f(NNi(c, S ∪ {p1})− f(NNi(c, S ∪ {p2})) = 0.

This lemma holds.

Proof of Lemma 2. Let S′ = S ∪ {p}. If p is not

inside KNLC(c) then the client c is not affected by the

new server at p. It is easy to know P (c, S′) = P (c, S).
Otherwise p is inside KNLC(c) and the new server is the

i-th nearest server of c (1 ≤ i ≤ k). For any j < i,
NNj(c, S

′) = NNj(c, S). For any j > i, NNj(c, S
′) =

NNj−1(c, S). P (c, S′) =
∑

1≤j<i P̃j×f(NNj(c, S
′))+P̃i×

f(NNi(c, S
′))+

∑
i<j≤k P̃j×f(NNj(c, S

′)) =
∑

1≤j<i P̃j×
f(NNj(c, S)) + P̃i +

∑
i<j≤k P̃j × f(NNj−1(c, S)).

The lemma holds.

Proof of Lemma 3. Given any client c ∈ C(e), we assume

that there are j levels of KNLC(c) covering the edge e,

namely KNLC (c, i1), KNLC(c, i2), ... , KNLC(c, ij),
where P (c, i1) ≥ P (c, i2) · · · ≥ P (c, ij). Then t(c) = i1.

By Definition 4 , B(c, i1) ≥ B(c, i2) ... ≥ B(c, ij). If the

new server is on e, B(c, t(c)) is the greatest benefit for the

client c with the new server. Since Bo(c) is the benefit for c
without the new server, the largest increase of the benefit for

c is at most equal to B(c, t(c))−Bo(c).

Thus, the lemma holds.

Proof of Lemma 4. For any point p ∈ KNLC(c, i), there

are two cases. Case 1: p is on the edge e. Case 2: p is

not on the edge e. For Case 1, since p is on e, and e is

included in KNLC(vce, 1). Thus, p is in KNLC(vce, 1).
This lemma holds. For Case 2, since p is not on the edge

e = 〈vl, vr〉, d(c, p) = d(vl, c) + d(vl, p) or d(c, p) =

d(vr, c) + d(vr, p). W.l.o.g., suppose that d(c, p) = d(vl, c) +

d(vl, p). Since d(c, p) ≤ c.disti, d(vl, c) + d(vl, p) ≤ c.disti,
d(vl, p) ≤ c.disti −d(vl, c) ≤ vce.disti. Then, d(vce, p) =
min{d(vl, p), d(vr, p)}≤ vce.disti.

Thus, p ∈ KNLC (vce, i). This lemma holds.

Proof of Lemma 5. Let C(e, e′) denote the set of clients on

the edge e′ whose KNLCs overlap with the edge e. Let Ce′

denote the set of clients on the edge e′. Let E′ denote the set

of edge e′ where C(e, e′) �= ∅.
(1) For any client c ∈ C(e, e′), c is on e′ and KNLC(c)

overlaps with the edge e. Since c is on e′, KNLC(c) ⊆
KNLC(vce′) by Lemma 4. Then, KNLC(vce′) overlaps

with the edge e and vce′ ∈ VC(e). Then, for any edge e′ ∈ E′,
vce′ ∈ VC(e).

(2)It is easy to see that for any 1 ≤ i ≤ k, B(c, i)−Bo(c) ≥
0.

(3) For any client c ∈ Ce′ , KNLC(c, t(c)) over-

laps with e. Since KNLC(c, t(c)) ⊂ KNLC(vce′ , t(c)),
KNLC(vce′ , t(c)) overlaps with e, thus, t(vce′)≤ t(c). Then,

t(vce′)≤ min{t(c)| c ∈ Ce′}.
Upp(e) =

∑
c∈C(e)

B(c, t(c))−Bo(c)

=
∑
e′∈E′

∑
c∈C(e,e′)

B(c, t(c))−Bo(c)

≤
∑

vce′∈VC(e)

∑
c∈C(e,e′)

B(c, t(c))−Bo(c)

≤
∑

vce′∈VC(e)

∑
c∈Ce′

B(c, t(c))−Bo(c)

(by C(e, e′) ⊂ Ce′ and the above (2))

≤
∑

vce′∈VC(e)

∑
c∈Ce′

max
t(c)≤i≤k

B(c, i)−Bo(c)

≤
∑

vce′∈VC(e)

∑
c∈Ce′

max
t(vce′)≤i≤k

B(c, i)−Bo(c)

=
∑

vce′∈VC(e)
B(vce′ , t(vce′))−Bo(vce′)

= NewUpp(e)

Thus, the lemma holds.

90

