
Efficient Shortest Path Queries on 3D Weighted
Terrain Surfaces for Moving Objects

Yinzhao Yan
The Hong Kong University of Science and Technology

yyanas@cse.ust.hk

Raymond Chi-Wing Wong
The Hong Kong University of Science and Technology

raywong@cse.ust.hk

Abstract—Studying the shortest path query for moving objects
on a terrain surface has aroused widespread concern in industry
and academia. In this paper, we study the weighted region
problem, which aims at finding the shortest path between two
points passing different regions on a 3D weighted terrain surface
and different regions are assigned different weights. We propose
an efficient (1 + ε)-approximate on-the-fly algorithm to solve it.
Our experimental results show that our algorithm is up to 1630
times and 40 times better than the best-known algorithm in terms
of running time and memory usage in realistic settings1.

I. INTRODUCTION

The shortest path query for moving objects becomes in-

creasingly widespread nowadays [6], [23], especially on terrain

datasets. In industry, Metaverse and Google Earth use terrain

datasets (e.g., mountains and valleys) with different features

(e.g., water and forest) to help moving users efficiently reach

destination. In academia, the shortest path query on terrain

datasets is a prevalent research topic in the field of mobile

data management [9], [11], [12], [24], [25], [26], [28], [29]. A

terrain surface contains a set of faces each of which is denoted

by a triangle. Each face consists of three edges connecting at

three vertices. The weighted (resp. unweighted) shortest path
on a terrain surface means the shortest path between a source

s and a destination t passing on the face of the terrain where

each face is assigned with a weight (resp. each face weight is

set to a fixed value, e.g., 1). Figures 1 (a) and (b) show a real

map and a terrain surface (of Valais, Switzerland [2] with an

area of 20km2) with weighted and unweighted shortest paths

in the blue and purple dashed lines from s to t.

A. Motivation

Computing the weighted shortest path on terrain surfaces

between two points is involved in numerous applications with

different interpretations of the faces’ weights on the terrain.

1) Earthquake and avalanche: After an earthquake or

avalanche, rescue teams (as moving objects) need to efficiently

find the shortest rescue paths for life-saving (i.e., they need

to first find the path, and then follow the path as moving

objects), and they can save 1 life every 5 minutes [17]. The

death toll of the 7.6 magnitude earthquake on Jan 1, 2024

in Japan exceeded 200 [1]. The 4.1 magnitude earthquake on

Oct 24, 2016 in Valais, Switzerland [2] caused an avalanche. In

Figures 1 (a) and (b), the terrain surface consists of destroyed

1Code: https://github.com/yanyinzhao/WeightedTerrainCode

and non-destroyed regions (faces with green and white color).

Since the rescue time for passing through the destroyed region

is longer than the non-destroyed region, we set the weight

of each terrain face to be the damage level [22] (a static

value) of each region, i.e., destroyed / non-destroyed regions’

terrain faces will have a larger / smaller weight. The blue

path and purple dashed path between s (a rescue center) and

t (a destroyed village) has a weighted distance of 5.1km and

109km, the rescue time of using these two paths are 3 min and

1.4 hours, so the rescue team will choose the blue path that

does not pass the destroyed region. We cannot pre-compute the

path before the earthquake. But, after an earthquake, satellites

can collect the terrain surface in 10s and USD $48.72 [20]

for a 1km2 region, our algorithm can calculate a weighted

shortest rescue path in 7.3s, and the rescue team can arrive at

the destroyed village in only 3 min ≈ 3 min + 10s + 7.3s.

2) Path Advisor: Path Advisor [29] is a Geographic In-

formation System (GIS) based mobile app to assist students

(as moving objects) for finding the shortest path between two

rooms in a university campus. Figure 1 (c) shows a weighted

terrain surface (represents the building’s floor) in Path Advisor.

For safety, the path should maintain a minimum distance (e.g.,

0.2m) from obstacles. So, with a weight-distance function [29],

faces on the floor closer to the aisle boundaries / centers are

assigned larger / smaller weights. The weighted shortest path

in blue line is more realistic than the unweighted shortest

path in purple dashed line, since the former path maintains

a safe distance from obstacles. There are over 5,000 rooms in

the university, so pre-computing the pairwise shortest paths

is undesirable, even if we use an approximate oracle for

indexing [25], [26]. Thus, it is necessary that the mobile app

can efficiently calculate the path for real-time responses.

Motivated by these, we aim to efficiently solve the weighted
region problem, i.e., finding the shortest path for moving

objects between two points passing different regions on a 3D

weighted terrain surface and different regions are assigned

different weights depending on the application nature.

B. Snell’s law

Consider a weighted terrain surface T with n vertices. Let

V , E and F be the set of vertices, edges and faces of T . In

Physics, when a light ray passes the boundary of two different

media (e.g., air and glass), it bends at the boundary since light

seeks the path with the minimum time. The angles of incidence

11

2024 25th IEEE International Conference on Mobile Data Management (MDM)

2375-0324/24/$31.00 ©2024 IEEE
DOI 10.1109/MDM61037.2024.00023

���

�������� 	�
���	� �
��

���������� 	�
���	� �
���

�
�

�

��� ���
�������� 	�
���	� �
��

���������� 	�
���	� �
��

� �

Fig. 1. Blue weighted and purple dashed unweighted shortest paths

�

�
��
��

���	
��� �����
�� � �

�������� ��	�
��� � ���

�

���

��

��

�
��
��

� � �

��

�� �	� ��
�

��� �	�

Fig. 2. Snell’s law illustration

and refraction for the light satisfy Snell’s law [19], which is

an important geometric information of T and can be applied

to calculating the weighted shortest path (see Figures 2 (a)

and (b)). In Figure 2 (a), if all faces have the same weights

(=1), the purple dashed line is the (unweighted) shortest path.

When faces f1 and f2 have weights 3 and 2, the blue line

with a weighted distance of 4 that satisfies Snell’s law is the

weighted shortest path, but the weighted distance of the purple

dashed line is 5.2 > 4. Figure 2 (b) shows a similar example.

C. Challenges

No algorithm can solve the weighted region problem exactly
when the number of faces in T exceeds two [8], but two

categories of algorithms can solve it on-the-fly approximately.

1) Steiner point approach: Algorithms [4], [11], [12],

[15] place discrete (i.e., Steiner) points on edges in E,

and use Dijkstra’s algorithm [10] on a weighted graph con-

structed using these Steiner points and V to calculate the

result path. The best-known algorithm [11], [15] calculates

a (1 + ε)-approximate weighted shortest path in O(n3 log n)
time (where ε > 0 is the error parameter), which is still very

slow, since it does not utilize any geometric information on T .

Algorithm [11] uses algorithm [15] as an on-the-fly algorithm

to build an oracle, we regard them as one algorithm for the

sake of illustration. Our experimental results show that the

best-known algorithm [11], [15] runs in 119,000s ≈ 1.5 days

on a terrain surface with 50k faces.

2) Edge sequence approach: Algorithm [24] uses algo-

rithm [11], [15] with slight variations (without error guarantee)

to calculate a path, and then uses Snell’s law on the edge

sequence passed by this path based on T to calculate an even

shorter path. But, it does not have an error guarantee of the

returned path’s distance with a given time limit.

D. Our Efficient Algorithm

We propose an efficient on-the-fly two-step algorithm for

solving the 3D weighted region problem using algorithm

Rough-Refine (Roug-Ref), such that for a given source s and

destination t on T , it returns a (1 + ε)-approximate weighted

shortest path between s and t. Algorithm Roug-Ref is a step-

by-step algorithm involving algorithm Roug and algorithm Ref.
(1) In algorithm Roug, given T , s, t and ε, we efficiently find

a (1 + ηε)-approximate rough path between s and t using

Steiner points, where η > 1 is a constant and is calculated

based on T and ε (note that η ∈ (1, 2] on average in our

experiments), as shown in Figures 3 (a) to (d). (2) In algorithm

Ref, given the rough path, we efficiently refine it to be a

(1 + ε)-approximate weighted shortest path using Snell’s law,

as shown in Figures 3 (e) to (i). Algorithm Roug-Ref achieves

outstanding performance in terms of running time and memory

usage due to the rough-refine concept, i.e., (1) a novel pruning

step in algorithm Roug during the rough path calculation

with error guarantee (achieved by transferring the pruned-out

information from algorithm Roug to algorithm Ref, and after

conducting necessary checks in algorithm Ref, there is no

need to perform calculations on the pruned-out information

anymore), (2) an efficient reduction of the search area in

algorithm Roug before Snell’s law refinement (achieved by

the calculation of the rough path), and (3) the usage of Snell’s
law in algorithm Ref for efficient refinement.

We have four additional novel techniques for further

speedup, including (1) an efficient Steiner point placement

scheme in algorithm Roug for reducing the number of Steiner

points during the rough path calculation (achieved by consid-

ering geometric information of each face in F on T , such

as face weight, internal angle and edge length), (2) a pro-
gressive approach in algorithm Ref for minimizing the search

area before Snell’s law refinement (achieved by progressively

exploring the local search area instead of directly using the

global search area), (3) an effective weight pruning technique

in algorithm Ref for faster processing during Snell’s law

refinement (achieved by considering additional information on

T), and (4) a novel error guaranteed pruning technique in

algorithm Ref for handling rare cases when we are unable

to use Snell’s law to refine a rough path to a (1 + ε)-
approximate weighted shortest path, and then an additional

step is required for error guarantee, but the algorithm total

running time will not increase a lot (achieved by re-using the

calculated information in algorithm Roug).

E. Contributions and Organization

We summarize our major contributions.

(1) We are the first to propose the efficient algorithm

Roug-Ref, since the rough-refine concept and four additional

techniques are absent in algorithms [4], [11], [12], [15], [24].

(2) We provide a thorough theoretical analysis on the

running time, memory usage and error bound of our algorithm.

(3) Our experimental results show that our algorithm runs

up to 1630 times faster than the best-known algorithm [11],

[15] on benchmark real datasets with the same error ratio,

e.g., for a terrain surface with 50k faces with ε = 0.1, our

algorithm runs in 73s ≈ 1.2 min and uses 43MB of memory,

12

�������� � ���������� � ��

�����

�
�
�

��

�
	�
	� 	�

	�

�������� � ��

�������� � ��
 �
���

����

���
��� � ��

�������	
 ���

���

�

���
��� � ��

�

�
�� ���
��	��
�

�������� � �� �������� � ��

�

�	� ��� ��� ��� ��� ��� ���

��

��

�����������

	

�

�

	
�

��

���

�

�

	

�

�������	
 ����

������

���

�

�

Fig. 3. Framework overview, where SPRoug and SPRef are the set of Steiner points on each edge of E used in algorithm Roug and Ref, ΠRoug(s, t) is the
rough path calculated using algorithm Roug, ΠRef-1(s, t) is the modified rough path calculated using the full edge sequence conversion step of algorithm Ref,
ΠRef-2(s, t) is the refined path calculated using the Snell’s law path refinement step of algorithm Ref, and ΠRef-3(s, t) is the refined path calculated using the
error guaranteed path refinement step of algorithm Ref

but the best-known (1 + ε)-approximate algorithm [11], [15]

runs in 119,000s ≈ 1.5 days and uses 2.9GB of memory. Our

algorithm is the optimal algorithm in earthquake rescue.

The remainder of the paper is organized as follows. Sec-

tion II provides the preliminary. Section III covers the related

work. Section IV presents our algorithm. Section V presents

the experimental results and Section VI concludes the paper.

II. PRELIMINARY

A. Notations and Definitions

1) Terrain surfaces and paths: Consider a weighted terrain

surface T with n vertices. Let V , E and F be the set of

vertices, edges and faces of T . Each vertex v ∈ V has three

coordinate values, xv , yv and zv . Let L be the length of the

longest edge of T , and N be the smallest integer value that

is larger than or equal to the coordinate value of any vertex

in V . If two faces share a common edge, they are said to be

adjacent. Each face fi ∈ F is assigned a weight wi > 0, and

the weight of an edge is the smaller weight of the two faces

containing the edge. The maximum and minimum weights of

the face in F are denoted by W and w. The minimum height

(of the 2D triangle with a base) of a face in F is denoted by

h. Given a face fi, and two points p and q on fi, let pq be a

line segment between p and q on fi, d(p, q) be the Euclidean

distance between p and q on fi, and D(p, q) = wi · d(p, q) be

the weighted (surface) distance from p to q on fi. Given s and

t in V , let Π∗(s, t) = (s, r1, . . . , rl, t) be the optimal weighted
shortest path on T (with l ≥ 0) such that

∑l
i=0 D(ri, ri+1)

is the minimum, where r0 = s and rl+1 = t. Here, for each

i ∈ {1, . . . , l}, ri is a point on an edge in E, is named as

an optimal intersection point in Π∗(s, t). The blue path in

Figure 2 (b) shows an example of Π∗(s, t) = (s, r1, r2, t) on

T . We define | · | to be the weighted distance of a path, e.g.,

|Π∗(s, t)| is the weighted distance of Π∗(s, t). Let Π(s, t) be

the path result of our algorithm. If point s (or t) is not in

V , we can regard it as a new vertex and then add three new

triangles each involving this point and three vertices of the

face containing this point. A notation table can be found in

our technical report [30].

2) Snell’s Law: Let S = ((v1, v
′
1), . . . , (vl, v

′
l)) =

(e1, . . . , el) be a sequence of edges that Π∗(s, t) connects

from s to t in order based on T , where S is said to be

passed by Π∗(s, t). Let l be the number of edges in S. Let

F (S) = (f1, f2, . . . , fl, fl+1) be an adjacent face sequence

corresponds to S, such that for every fi with i ∈ {2, . . . l},

fi is the face that contains ei and ei+1 in S, while f1 is

the face that adjacent to f2 at e1 and fl+1 is the face that

adjacent to fl at el. We define αi and βi to be the incidence

and refraction angles of Π∗(s, t) on ei for i ∈ {1, . . . l},

respectively. In Figure 2 (b), Π∗(s, t) satisfies Snell’s law,

wi · sinαi = wi+1 · sinβi, with i ∈ {1, . . . , l}.

B. Problem

Given T , s and t, the problem is to calculate a weighted

shortest path on T such that |Π(s, t)| ≤ (1 + ε)|Π∗(s, t)|.
III. RELATED WORK

A. On-the-fly algorithms on the weighted terrain surface

1) Steiner point approach: Algorithms [4], [11], [12], [15]

use Dijkstra’s algorithm on the weighted graph constructed us-

ing Steiner points and V to calculate an approximate weighted

shortest path. Algorithm Fixed Steiner Point (FixSP) [11], [15]

and algorithm Fixed Steiner Point No Weight Adaption (FixSP-
NoWei-Adp) [12] calculates the result path with an error

(1 + ε), and algorithm Logarithmic Steiner Point (LogSP) [4]

calculates the result path with an error much larger than (1+ε).
(i) Algorithm FixSP places a uniform number of Steiner points

(i.e., O(n2)) per edge. It runs in O(n3 log n) time and is

regarded as the best-known (1+ ε)-approximate algorithm for

solving the weighted region problem. (ii) Algorithm [12] also

places a uniform number of Steiner points per edge, but it

was originally designed in the unweighted case. We adapt it

to be algorithm FixSP-NoWei-Adp [12] in the weighted case,

which runs in O(n3 log n) time and equivalent to FixSP, by

assigning a weight to each face, and use the same surface

distance definition in Section II-A1. (iii) In algorithm LogSP,

given an error parameter ε′ > 0 that determines how far the

Steiner points are placed (different from our ε that controls

the distance error bound), it places O(log c
ε′) Steiner points

per edge non-uniformly, i.e., places more Steiner points near a

vertex, and has a distance error (1+ (2+ 2W
(1−2ε′)·w)ε′), where

c ∈ [0.2, 1] is a constant depending on T . We adapt it to

be algorithm LogSP-Adp that runs in O(n log c
ε log(n log c

ε))
time, such that given ε, we can place Steiner points using ε

13

and have a distance error (1 + ε), by finding the relationship

between ε and ε′, so these two algorithms can place the same

number of Steiner points per edge, and their distance errors

are the same, i.e., 1 + (2 + 2W
(1−2ε′)·w)ε′ = 1 + ε, and get

ε′ = 1+ε+W
w −

√
(1+ε+W

w)2−4ε

4 .

Drawbacks of algorithm FixSP and FixSP-NoWei-Adp:

They are very slow due to two reasons. (i) Absence of Snell’s
law: They do not utilize any geometric information between
two adjacent faces in F that share one edge on T , i.e., Snell’s

law. So, they place many Steiner points on edges in E. But,

we utilize Snell’s law to avoid this. (ii) Uniform number of
Steiner points per edge: They do not utilize any geometric

information of each face in F on T , such as face weight,

internal angle and edge length, and always place a uniform

number of Steiner points (i.e., O(n2)) per edge (the distance

between two adjacent Steiner points on the same edge is the

same) to bound the error. But, we utilize this information and

place only O(log c′) Steiner points per edge (the distance

between two adjacent Steiner points on the same edge is

different), where c′ ∈ [2, 5] is a constant depending on T
and ε. Figures 4 (a) and (b) show the placement of Steiner

points in these two algorithms and our algorithm Roug-Ref
with the same error. Our experimental results show that for

a terrain surface with 50k faces and ε = 0.1, Roug-Ref just

places 10 Steiner points per edge to find a rough path in 71s

≈ 1.2 min, and finds a refined path in 2s, but both FixSP and

FixSP-NoWei-Adp place more than 600 Steiner points per edge

to find the result path in 119,000s ≈ 1.5 days.

Drawback of algorithm LogSP and LogSP-Adp: (i) LogSP
has the larger distance error drawback, since its distance

error is always larger than that of other algorithms, making

it difficult to compare with other algorithms. (ii) Both of them

also have the absence of Snell’s law drawback. In the same

experimental setting of the previous paragraph, Roug-Ref runs

in 73s ≈ 1.2 min, but LogSP-Adp runs in 220s ≈ 3.7 min.

��
��

�����

��

������

���
���

����

Fig. 4. Steiner points in (a) FixSP and
FixSP-NoWei-Adp, and (b) Roug-Ref

TABLE I
ALGORITHM COMPARISONS

Algorithm Time/Size Error
EdgSeq [24] Large Large

EdgSeq-Adp [24] Large Small

FixSP [11], [15] Large Small

FixSP-NoWei-Adp [12] Large Small

LogSP [4] Medium Large

LogSP-Adp [4] Medium Small

Roug-Ref (ours) Small Small

2) Edge sequence approach: Algorithm Edge Sequence
(EdgSeq) [24] uses FixSP with only slight variations (i.e.,

places a uniform and constant number of Steiner points, e.g.,

3 and not O(n2), per edge) to calculate a path without error

guarantee, and then uses Snell’s law on the edge sequence

passed by this path based on T to calculate a shorter path.

We adapt it to be algorithm EdgSeq-Adp, that uses FixSP to

calculate a (1 + ε)-approximate shortest path, and then uses

Snell’s law on the edge sequence of this path to compute a

shorter path that runs in O(n3 log n+ n4 log(n
2NWL
wε)) time.

Drawbacks of algorithm EdgSeq and EdgSeq-Adp: (i)

EdgSeq does not have an error guarantee of the returned path’s

distance with a given time limit. (ii) EdgSeq-Adp is still very

slow due to two reasons. (1) Absence of pruning technique for
the edge sequence finding: It uses Snell’s law after FixSP, so its

running time is an additive result of the running time of FixSP
and usage of Snell’s law. But, we use a pruning technique

to further prune out more than half of the Steiner points. (2)

Absence of pruning technique when using Snell’s law: It solely

uses binary search in Snell’s law on the edge sequence. But,

we use effective weight information of T for pruning. In the

same experimental setting of the previous three paragraphs,

EdgSeq-Adp runs in 131,000s ≈ 1.7 days, but Roug-Ref runs

in 73s ≈ 1.2 min. If we substitute FixSP to LogSP-Adp in

EdgSeq-Adp, the new algorithm has the same drawback as of

EdgSeq-Adp, and its running time is always larger than that

of LogSP-Adp, so there is no need to consider this adaption.

Comparisons: We compare different algorithms in Table I.

Roug-Ref has the smallest query time and memory usage.

B. Other related studies

There are some other studies related to our problem but

are not exactly our problem. (1) On-the-fly algorithms on the
unweighted terrain surface [27]: Algorithm [27] is the best-

known exact on-the-fly algorithm for the unweighted shortest

path calculation, but no known algorithm can adapt it to the

weighted case. (2) Oracles on the terrain surface [9], [11],

[21], [25], [26], [28]: Study [11] uses algorithm FixSP [15] to

build an oracle on a weighted terrain surface, and studies [25],

[26] use algorithm [12] to build an oracle on an unweighted

terrain surface. Studies [9], [21], [28] build oracles on an

unweighted terrain surface for the k-nearest neighbor query.

But, we focus on the on-the-fly algorithm. (3) On-the-fly
algorithms on the road network and point cloud [6], [23],

[31]: Algorithms [6], [23] answer the shortest path query on

the road network and algorithm [31] answer the shortest path

query on the point cloud, which are different from us.

IV. METHODOLOGY

A. Overview

1) Concepts: We give four concepts:

(i) The weighted graph: It is used in Dijkstra’s algorithm.

Let GA be a weighted graph used in algorithm Roug or Ref,
GA.V and GA.E be the sets of nodes and weighted edges of

GA, where A is a placeholder that can be Roug or Ref. To

build GA, we define a set of Steiner points on each edge of

E as SPA. Let GA.V = SPA

⋃
V . For each node p and q in

GA.V , if p and q lie on the same face in F , we connect them

with a weighted edge pq ∈ GA.E, with the weighted (surface)

distance wpq ·d(p, q), where wpq means the weight associated

with the face or the edge that p and q lie on. In Figure 3 (b),

the blue nodes are SPRef and SPRoug, the blue and gray nodes

are GRef.V and GRoug.V , the orange lines are the weighted

edge with weighted distance 5 in GRoug.E and GRef.E.

(ii) The removing value: It is a constant (denoted by k and

usually set to 2) used for calculating SPRoug. In Figure 3 (b),

14

we have a set of Steiner points SPRef. When moving from v1
to v2, if we encounter a Steiner point, we iteratively keep one

and remove the next k = 1 point(s). We repeat it for all edges

in E to obtain a set of remaining Steiner points SPRoug.

(iii) The node information: It is calculated in algorithm

Roug, and is used to reduce the running time in algorithm

Ref. In Dijkstra’s algorithm, given a source node s, a set of

nodes GA.V where A can be Roug or Ref, for each u ∈
GA.V , we define distA(u) to be the weighted shortest distance

from s to u, define prevA(u) to be the previous node of u
along the weighted shortest path from s to u. Give s, after

running algorithm Roug, node information stores distRoug(u)
and prevRoug(u) (based on s) for each u ∈ GRoug.V . In Figure 3

(c), suppose that the weight of this face is 1. After running

algorithm Roug, the weighted shortest distance from s to a is

9, the Euclidean distance of the orange edge is 5, the weighted

shortest path from s to b is s � a � b, so we have distRoug(b) =
9+ 1× 5 = 14 and prevRoug(b) = a as node information of b.

(iv) The full or non-full edge sequence: Given an edge

sequence S, if the length of each edge in S is larger than 0

(resp. there exists at least one edge in S whose length is 0),

then S is a full (resp. non-full) edge sequence or S is full (resp.

non-full). In Figure 5 (a), given the path in the purple dashed

line and orange line between s and t, the edge sequence S1

and S2 passed by the two paths are full and non-full, since the

length of each edge in S1 is larger than 0, while the edge length

at φ2, φ3 and φ4 in S2 are 0. Figure 5 (b) has a similar case.

As we will discuss later, a non-full edge sequence reduces

increases algorithm Ref ’s running time.

��

��

�

�
��

��
��

��
�

�
��� ���

�� ��

Fig. 5. Full edge sequence conversion

2) Overview of algorithm Roug: Given T , s, t, ε and k,

we find a (1 + ηε)-approximate rough path between s and t,
and calculate the node information for s in two steps:

(i) η calculation: In Figure 3 (a), given T , ε and k, we

first use ε and an efficient Steiner point placement scheme

to get SPRef, use k to remove some Steiner points and get

SPRoug in Figure 3 (b), and then use SPRoug to calculate ηε
(using constrained programming and the reverse technique of

calculating SPRef with ε).
(ii) Rough path calculation: In Figure 3 (c), given T , s, t

and SPRoug, we use Dijkstra’s algorithm on GRoug constructed

by SPRoug and V (we must include V in SPRoug for error

guarantee) to calculate a (1 + ηε)-approximate rough path

between s and t in Figure 3 (d) (denoted by ΠRoug(s, t), i.e.,

the orange dashed line), and store distRoug(u) and prevRoug(u)
(based on s) for each u ∈ GRoug.V as node information.

3) Overview of algorithm Ref: Given T , s, t, ε, ΠRoug(s, t)
and the node information, we refine ΠRoug(s, t) and calculate

a (1 + ε)-approximate weighted shortest path in four steps:

(i) Full edge sequence conversion: In Figure 3 (d), given

ΠRoug(s, t) whose corresponding edge sequence S′ is non-

full (the edge length at v is 0), we progressively convert

it to a modified rough path in Figure 3 (e) (denoted by

ΠRef-1(s, t), i.e., the orange dashed line) whose corresponding

edge sequence S = (e1, e2, e3, e4) (edges in red) is full.

(ii) Snell’s law path refinement: In Figure 3 (f), given T ,

s, t and S, we use Snell’s law and S to efficiently get a refined

path (denoted by ΠRef-2(s, t), i.e., the green line) on S.

(iii) Path checking: In Figure 3 (g), given ΠRoug(s, t),

ΠRef-2(s, t), ε and η, if |ΠRef-2(s, t)| ≤ (1+ε)
(1+ηε) |ΠRoug(s, t)|,

since we guarantee |ΠRoug(s, t)| ≤ (1 + ηε)|Π∗(s, t)| due to

the error bound of Dijkstra’s algorithm (see Theorem 3.1 of

study [14]), we have |ΠRef-2(s, t)| ≤ (1+ ε)|Π∗(s, t)|, and we

return ΠRef-2(s, t). Otherwise, we need the next step.

(iv) Error guaranteed path refinement: In Figures 3 (h),

given T , s, t, SPRef and the node information (based on s), we

use Dijkstra’s algorithm on GRef constructed by SPRef and V
to efficiently calculate a (1+ε)-approximate weighted shortest

path between s and t in Figure 3 (i) (denoted by ΠRef-3(s, t),
i.e., the purple line). We can guarantee |ΠRef-3(s, t)| ≤ (1 +
ε)|Π∗(s, t)| due to the error bound of Dijkstra’s algorithm.

B. Key Ideas of Rough-Refine Concept

Algorithm Roug-Ref is efficient due to the rough-refine

concept, which involves the following three techniques.

1) Novel Steiner point pruning step (in the η calculation
step): In Figure 3 (b), we prune out some Steiner points in

SPRef using k, and use the remaining Steiner points SPRoug for

the rough path calculation, i.e., SPRoug ⊆ SPRef and GRoug.V ⊆
GRef.V . The pruned Steiner points are transferred to the error

guaranteed path refinement step, and our experimental results

show that it is very likely after the Snell’s law path refinement,

the path checking finds that there is no need to perform

Dijkstra’s algorithm on these pruned Steiner points.

2) Efficient reduction of the search area (in the rough path
calculation step): In Figure 3 (d), the edge sequence S′ passed

by ΠRoug(s, t) is used in the Snell’s law path refinement step.

If we do not know S′, we need to try Snell’s law on different

combinations of edges in E (so the search area is large) and

select the shortest result path, which is time-consuming.

3) Usage of Snell’s law (in the Snell’s law path refinement
step): In Figure 3 (e), we utilize Snell’s law on S′ to

efficiently calculate ΠRef-2(s, t), such that the distance between

the intersection point of ΠRef-2(s, t) on each edge of S′ and

that of Π∗(s, t) is smaller than an error value δ = hεw
6lW , and

there is no need to place many Steiner points on edges in E.

C. Key Ideas of Additional Techniques

We also have the following four additional novel techniques

to make algorithm Roug-Ref more efficient.

1) Efficient Steiner point placement scheme with a (1+ε)
error bound (in the η calculation step): In Figures 3 (b) and 4

(b), we have an efficient Steiner point placement scheme (i) by

considering the additional geometric information of T , such

15

as face weight, internal angle, and edge length, etc., so that

we can place different numbers of Steiner points on different

edges of E (for minimizing the total number of Steiner points),

and (ii) by using mathematical transformations to express the

error in terms of (1 + ε) (so that with the η calculation step,

the rough path has an error (1 + ηε)).
2) Novel full edge sequence conversion technique using

progressive approach (in the full edge sequence conversion
step): In Figure 3 (d), S′ passed by ΠRoug(s, t) is non-full at

vertex v. If we use Snell’s law on S′ to calculate a refined

path, after the path exits v, we do not know where it goes

next, so we need to add all the edges connected to v n S′

(edges in blue) for error guarantees, and try Snell’s law on

different combinations of edge sequences to select the shortest

result path. Indeed, only a subset of these edges is required.

To solve it, we need the full edge sequence conversion step.

Illustration: In Figure 5 (a), given a rough path

(s, φ1, φ2, φ3, φ4, φ5, t) (i.e., the orange line) whose corre-

sponding edge sequence is non-full, we divide it into a smaller

segment (φ1, φ2, φ3, φ4, φ5) that all the edges passed by this

segment have length equal to 0, i.e., at φ2, φ3 and φ4. We add

more Steiner points to progressively find a new path segment,

i.e., the purple dashed line between φ1 and φ5, until the edge

sequence (in red) passes by this path segment is full. If the

distance of the new path segment is smaller than that of the

original one, we replace the new one with the original one,

and obtain a modified rough path (i.e., the purple dashed line

between s and t). Figure 5 (b) shows a similar example.

3) Novel effective weight pruning technique (in the Snell’s
law path refinement step): In Figure 3 (f), we use Snell’s law

to find optimal intersection points on each edge of S, and then

connect them to form ΠRef-2(s, t). The basic idea is to use

binary search, but we can efficiently prune out some checking

by utilizing effective weight information on T .

Illustration: In Figure 6 (a), we select the midpoint m1 on

e1, and trace a blue light ray that follows Snell’s law from s
to m1. We use binary search to adjust the position of m1 to

the left or right by checking whether t is on the left or right

of this ray, and repeat until the ray passes the entire S, i.e.,

the purple ray from s to m1
1. In Figure 6 (b), we regard all

the faces in F (S) except f1 as one effective face �upp1q1,

and use the ray in the purple line for calculating its effective

weight. Then, we can calculate the position of mef on e1 in

one quartic equation using the weight of f1 and the effective

weight of �upp1q1. In Figure 6 (c), we trace the ray starting

from s and passing mef (i.e., the dark blue line). We iterate

the midpoint selection step until (i) the ray hits t or (ii) the

distance between the new m1 and the previous m1 is smaller

than δ. In Figure 6 (d), we continue on other edges in S.

4) Novel error guaranteed path refinement using pruning
technique (in the error guaranteed path refinement step):
In Figure 3 (g), for the path checking step, when k ≤ 2,

only in a rare case (i.e., the edge sequence passed by the

rough path differs from that of the optimal weighted shortest

path) which never occurs in our experiments, we need the error

guaranteed path refinement step in Figures 3 (h) and (i). When

k is larger, more Steiner points are removed, and η is larger,

so the chance that |ΠRef-2(s, t)| > (1+ε)
(1+ηε) |ΠRoug(s, t)| becomes

larger, we need this step to ensure error guarantee and hope

that the running time of algorithm Roug-Ref will not increase

a lot, by using the node information.

Illustration: (i) In the rough path calculation step, see

Figure 3 (c), we have distRoug(b) = 9 + 1 × 5 = 14 and

prevRoug(b) = a as node information of b. (ii) In the error guar-

anteed path refinement step, see Figure 3 (h), since GRoug.V ⊆
GRef.V , we know distRef(b) = 14 and prevRef(b) = a. We

maintain a priority queue [7] Q = {{u1, distRef(u1)}, . . . }
in Dijkstra’s algorithm on GRef that stores a set of nodes

ui ∈ GRef.V waiting for processing. Suppose we need to

process a and c, so Q stores {{a, 9}, {c, 8}}. We dequeue

c with a shorter distance value (8 < 9), and one adjacent node

of c is b. Since distRef(b) = 14 < distRef(c)+wbc ·d(b, c) = 8+
1×7 = 15, we do not need to insert b and distRef(b) = 15 into

the queue for time-saving. Since GRef.V contains GRoug.V and

the removed Steiner points, the running time by performing

Dijkstra’s algorithm on GRef without the node information is

the same as the time of the rough path calculation step plus

the time of error guaranteed path refinement step.

D. Implementation Details of Algorithm Roug

We give implementation details of algorithm Roug (see

Figures 3 (a) to (d)). We mainly discuss our efficient Steiner

points placement scheme with a (1+ ε) error bound, (i.e., the

technique in algorithm LogSP-Adp).

Detail: Given a vertex v in V , we let hv be the min-

imum height starting from v on the faces containing v,

let Cv be a sphere centered at v with radius rv =
1+ε+W

w −
√

(1+ε+W
w)2−4ε

4 · hv , and let θv be the angle between

any two edges of T that are incident to v. In Figure 4 (b), there

is a sphere Cv1 centered at v1, with the radius rv1
and the

angle θv1
of v1. For each vertex v of face fi, we place Steiner

points p1, p2, . . . , pτp−1 on two edges of fi incident to v, such

that |vpj | = rvλ
j−1, where τp = logλ

|ep|
2·rv for every integer

2 ≤ j ≤ τp−1, and λ = (1+
1+ε+W

w −
√

(1+ε+W
w)2−4ε

4 ·sin θv).
Algorithm LogSP has rv = ε′ · hv and λ = (1 + ε′ · sin θv).
Since we adapt LogSP to be LogSP-Adp by setting ε′ =
1+ε+W

w −
√

(1+ε+W
w)2−4ε

4 , we obtain rv and λ w.r.t. ε.

E. Implementation Details of Algorithm Ref

We give implementation details of algorithm Ref.
1) Full edge sequence conversion: See Figures 3 (e) and 5.

Detail and example: A point is said to be on the edge (resp.

vertex) if it lies in the internal of an edge in E (resp. it lies on

the vertex in V). In both Figures 5 (a) and (b), φ1 is on the

edge, and φ2 is on the vertex. Algorithm 1 shows this step,

and the following is an example.

(i) Successive point: Lines 4-14, see Figure 5 (a) with the

orange path as input. vs = φ1 is the start vertex and vn = φ5

is the end vertex. The blue points are the new Steiner points.

The orange line and purple dashed line between φ1 and φ5

are ΠRoug(vs, ve) and Π′
Ref-1(vs, ve).

16

��� ��� ���

�

��� � ��
��

��
��

	�
�

��

��
��

�

��

� �

��
���

���
�

� � �

��
�

��
���

�

���

��
���

���
���

��
�

���
�

��
�

��
�

���
� ���

�

Fig. 6. Snell’s law path refinement step in Ref (a) with initial ray for calculating effective weight
on the effective face �upp1q1, (b) for calculating mef, (c) with final ray passing through mef, and
(d) processing on the remaining edges

TABLE II
DATASETS

Name |F |
Original dataset

BearHead (BH) [25], [26] 280k

EaglePeak (EP) [25], [26] 300k

SeaBed (SB) [5] 2k

ValaisSwitzerland (VS) [2] 2k

PathAdvisor (PA) [29] 1k

Small-version dataset
BH small-version (BH-small) 3k

EP small-version (EP-small) 3k

Multi-resolution dataset
Multi-resolution of BH 1M, 2M, 3M, 4M, 5M

Multi-resolution of BH-small 10k, 20k, 30k, 40k, 50k

Multi-resolution of EP 1M, 2M, 3M, 4M, 5M

Multi-resolution of EP-small 10k, 20k, 30k, 40k, 50k

Algorithm 1 EdgSeqConv (ΠRoug(s, t), ζ)

Input: the rough path ΠRoug(s, t) and ζ (a constant and normally set as 10)
Output: the edge sequence S of the modified rough path ΠRef-1(s, t)
1: vs ← NULL, ve ← NULL, E′ ← ∅,ΠRef-1(s, t) ← ΠRoug(s, t)
2: for each point v that ΠRoug(s, t) intersects with an edge in E (except s

and t), such that v is on the vertex do
3: vc ← v, vn ← vc.next, vp ← vc.prev
4: if vn is on the vertex and vp is on the edge then
5: vs ← vc, E′ ← E′∪ edges with vc as one endpoint
6: else if both vn and vp are on the edge then
7: E′ ← E′∪ edges with vc as one endpoint
8: else if vn is on the edge and vn is on the vertex then
9: ve ← vn, E′ ← E′∪ edges with vc as one endpoint

10: add new Steiner points at the midpoints between the vertices and
original Steiner points on E′

11: Π′
Roug(vs, ve) ← path calculated using Dijkstra’s algorithm on the

weighted graph constructed by these new Steiner points and V
12: Π′

Ref-1(vs, ve) ← EdgSeqConv (Π′
Roug(vs, ve), ζ)

13: if |Π′
Ref-1(vs, ve)| < |ΠRoug(vs, ve)| then

14: ΠRef-1(s, t) ← ΠRef-1(s, vs) ∪Π′
Ref-1(vs, ve) ∪ΠRef-1(ve, t)

15: else if both vp and vn are on the edge then
16: for i ← 1 to ζ do
17: add new Steiner points at the midpoints between vc and the

nearest Steiner points of vc on the edges that adjacent to vc
18: ΠB(vp, vn) ← path passes the set of newly added Steiner

points on the X side of the path (vp, vc, vn), where B =
{left, right}

19: if |ΠB(vp, vn)| < |ΠRoug(vp, vn)| then
20: ΠRef-1(s, t) ← ΠRef-1(s, vp)∪ΠB(vp, vn)∪ΠRef-1(vn, t)
21: break
22: return the edge sequence S of ΠRef-1(s, t) based on T

(ii) Single point: Lines 15-21, see Figure 5 (b) with the or-

ange path as input. The blue points are new Steiner points. The

orange, purple line-dashed and pink dot-dashed lines between

φ1 and φ3 are ΠRoug(vp, vn), Πleft(vp, vn) and Πright(vp, vn).

2) Snell’s law path refinement: See Figures 3 (f) and 6.

Detail and example: Let ΠRef-2(s, t) = (s, ρ1, . . . , ρl, t),
where ρi for i ∈ {1, . . . , l} is a point on an edge in E. Given

S, s and a point c1 on e1 ∈ S, we can obtain a surface
ray Πc = (s, c1, . . . , cg, R

c
g) starting from s, hitting c1 and

following Snell’s law on S, where 1 ≤ g ≤ l, each ci for

i ∈ {1, . . . , g} is an intersection point in Πc, and Rc
g is the

last out-ray at eg ∈ S. In Figure 6 (a), Πm = (s,m1, R
m
1)

in blue line does not pass the whole S = (e1, e2), but

Πm1 = (s,m1
1,m

1
2, R

m1

2) in purple line passes the whole S.

Algorithm 2 shows this step, and the following is an example.

(i) Binary search initial path finding: Lines 6-15, see

Algorithm 2 SneLawRef (s, t, δ, S)

Input: source s, destination t, user parameter δ and edge sequence S
Output: the refined path ΠRef-2(s, t)
1: ΠRef-2(s, t) ← {s}, root ← s
2: for each ei ∈ S with i ← 1 to |S| do
3: ai ← ei left endpoint, bi ← ei right endpoint, [ai, bi] ← an interval
4: for each ei ∈ S with i ← 1 to |S| do
5: while |aibi| ≥ δ do
6: mi ← midpoint of [ai, bi] and calculate a surface ray with Πm =

(root,mi, . . . ,mg , Rm
g) with g ≤ l

7: if Πm does not pass the whole S, i.e., g < l then
8: if eg+1 is on the left (resp. right) side of Rm

g then
9: [aj , bj] ← [aj ,mj] (resp. [mj , bj]) for each j ← i to g

10: else if Πm passes the whole S, i.e., g = l then
11: if t is on Rm

g then
12: ΠRef-2(s, t) ← ΠRef-2(s, t) ∪ {mi, . . . ,mg , t}
13: return ΠRef-2(s, t)
14: else if t is on the left (resp. right) side of Rm

g then
15: [aj , bj] ← [aj ,mj] (resp. [mj , bj]) for each j ← i to g
16: if have not used effective weight pruning on ei then
17: u ← the intersection point between Rm

l and one of the two
edges that are adjacent to t in the last face fl+1 in F (S)

18: up ← projected point of u on the first face f1 in F (S)
19: fef ← effective face contains all faces in F (S) \ {f1}
20: wef ← effective weight for fef, calculated using smi, miup,

f1, fef, w1 (the weight for f1) and Snell’s law
21: tp ← the projected point of t on f1
22: mef ← effective intersection point on e1, calculated using

w1, wef, s, tp and Snell’s law in a quartic equation
23: mi ← mef, compute Πm = (root,mi, . . . ,mg , Rm

g)
24: update [aj , bj] for each j ← i to g same as in lines 11-15
25: ρi ← [ai, bi] midpoint, ΠRef-2(s, t) ← ΠRef-2(s, t)∪{ρi}, root ← ρi
26: ΠRef-2(s, t) ← ΠRef-2(s, t) ∪ {t}
27: return ΠRef-2(s, t)

Figure 6 (a). In lines 6-9, we first have the blue ray

Πm = (s,m1, R
m
1) that does not pass the whole S, we set

[a1, b1] = [p1,m1]. In lines 10-15, we then have the purple

ray Πm1 = (s,m1
1,m

1
2, R

m1

2) passes the whole S, we set

[a1, b1] = [m1
1,m1] and [a2, b2] = [m1

2, q2].

(ii) Effective weight pruning: Lines 16-24. The purple ray

passes the whole S for the first time, we can use effective

weight pruning. In line 17 and Figure 6 (a), we get u. In

lines 18-22 and Figure 6 (b), we (1) get up and fef = �upp1q1,

(2) calculate wef using purple line sm1
1, the orange dashed line

m1
1up, f1, fef, w1 and Snell’s law, (3) get tp, (4) set mef to be

unknown and use Snell’s law in vector form [3], build a quartic

equation with unknown at the power of four using w1, wef, the

dark blue line smef and the green dashed line meftp, and use

17

root formula [16] to solve mef. In lines 23-24 and Figure 6

(c), we compute the dark blue ray Πm2 = (s,mef,m
2
2, R

m2

2),
and set [a1, b1] = [m1

1,mef] and [a2, b2] = [m1
2,m

2
2].

(iii) Binary search refined path finding: Lines 2, 6-15, 25-

26, see Figure 6 (d). In lines 6-15, we iterate until |a1b1| =
|m1

1mef| < δ. In line 25, we have ρ1, the pink dashed link

ΠRef-2(s, t) = (s, ρ1), and root = ρ1. In line 2, we iterate to

obtain the green ray Πm3 = (ρ1,m
3
2, R

m3

2) and the yellow

ray Πm4 = (ρ1,m
4
2, R

m4

2). Until we process all the edges in

S = (e1, e2), we get result path ΠRef-2(s, t) = (s, ρ1, ρ2, t).
3) Error guaranteed path refinement: See Figure 3 (h).

Detail and example: Algorithm 3 shows this step, and the

following is an example.

Algorithm 3 ErrGuarRef (s, t, SPRef, NodeInfo)

Input: source s, destination t, Steiner points SPRef, node information
distRoug(u) and prevRoug(u) (based on s) for each u ∈ GRoug.V

Output: the refined path ΠRef-3(s, t)
1: build a weighted graph GRef using SPRef, enqueue {s, 0} into Q
2: for each u ∈ GRef.V do
3: if u ∈ GRef.V \GRoug.V (resp. u ∈ GRoug.V) then
4: distRef(u) ← ∞ (resp. distRoug(u))
5: prevRef(u) ← NULL (resp. prevRoug(u))
6: while Q is not empty and the to-be-dequeued node is not t do
7: dequeue node v from Q with smallest distance value distRef(v)
8: for each adjacent vertex v′ of v, such that vv′ ∈ GRef.E do
9: if distRef(v

′) > distRef(v) + wvv′ · d(v, v′) then
10: distRef(v

′) ← distRef(v) + wvv′ · d(v, v′), prevRef(v
′) ← v

11: enqueue {v′, distRef(v
′)} into Q

12: u ← prevRef(t), ΠRef-3(s, t) ← {t}
13: while u
= s do
14: ΠRef-3(s, t) ← ΠRef-3(s, t) ∪ {u}, u ← prevRef(u)
15: ΠRef-3(s, t) ← ΠRef-3(s, t) ∪ {s}, reverse ΠRef-3(s, t)
16: return ΠRef-3(s, t)

(i) Distance and previous node initialization: Lines 2-5. For

d, distRef(d) = ∞ and prevRef(d) = NULL; for b, distRef(b) =
distRoug(b) = 9+1×5 = 14 and prevRef(b) = prevRoug(b) = a.

(ii) Priority queue looping: Lines 6-11. Suppose Q stores

{{a, 9}, {c, 8}}, we dequeue c. One adjacent node of c is b,
since distRef(b) = 14 < distRef(c)+wbc · d(b, c) = 8+1× 7 =
15, there is no need to enqueue {b, distRef(b) = 15} into Q.

(iii) Path retrieving: Lines 16-19. We obtain ΠRef-3(s, t).

F. Theoretical Analysis

Theorem 1 shows the analysis of algorithm Roug-Ref.

Theorem 1. The running time and memory usage for algo-
rithm Roug-Ref is O(n log n+ l) and O(n+ l). It guarantees
that |Π(s, t)| ≤ (1 + ε)|Π∗(s, t)|.
Proof Sketch. (1) The running time contains (i) O(n log n)
for the rough path calculation due to Dijkstra’s algorithm on

GRoug with n nodes, (ii) O(n log n) for the full edge sequence

conversion due to Dijkstra’s algorithm, (iii) O(l) for the Snell’s

law path refinement due to l edges in S and O(1) time

in finding the optimal intersection point on each edge, and

(iv) O(n log n) for the error guaranteed path refinement due

to Dijkstra’s algorithm on GRef with n nodes and the node

information. (2) The memory usage contains (i) O(n) for the

rough path calculation, (ii) O(n) for the full edge sequence

conversion, (iii) O(l) for the Snell’s law path refinement, and

(iv) O(n) for the error guaranteed path refinement. (3) The

error bound is due to the rough path calculation, and the

path checking and the error guaranteed path refinement. The

detailed proof appears in our technical report [30].

V. EMPIRICAL STUDIES

A. Experimental Setup

We conducted the experiments on a Linux machine with

2.67 GHz CPU and 48GB memory. All algorithms were

implemented in C++. The experimental setup followed the

setup used in previous studies [12], [13], [18], [25], [26].

Datasets: We conducted our experiment on 27 real terrain

datasets in Table II, where EP has more mountains compared

with the other 4 original datasets. For small-version and multi-

resolution datasets, we generated them using BH and EP
following the procedure in [18], [25], [26] (which creates a

terrain surface with different resolutions). We use the slope of

a face in terrain datasets as the weight of that face [11].

Algorithms: We compared Roug-Ref with (1 + ε)-
approximate algorithms, i.e., (1) EdgSeq-Adp [24], (2) the

best-known algorithm FixSP [11], [15], (3) FixSP-NoWei-
Adp [12], (4) LogSP-Adp [4], and (5) variations of Roug-Ref.
We also compared with (1) EdgSeq [24] without error bound,

(2 & 3) LogSP [4] and Roug with distance errors larger than

(1 + ε) in our technical report [30].

Query Generation: We randomly chose pairs of vertices

in V as source and destination, and we report the average,

minimum, and maximum results of 100 queries.

Factors and Measurements: We studied three factors,

namely (1) k, (2) ε, and (3) dataset size (i.e., the number

of faces in a terrain surface). We used five measurements to

evaluate the algorithm performance, namely (1) query time,

(2) memory usage, (3) chances of using error guaranteed path
refinement step, (4) average number of Steiner points per edge
(used in path calculation), and (5) distance error (we use

EdgSeq-Adp with ε = 0.05 to simulate the exact result since

no algorithm can solve the weighted region problem exactly).

B. Experimental Results

We compared (1) all algorithms on datasets with less than

250k faces, and (2) algorithms not involving FixSP com-

ponents on datasets with more than 250k faces due to the

expensive running time. The vertical bar means the minimum

and maximum results.

1) Ablation study of Roug-Ref: In our algorithm Roug-
Ref, we have 4 variations: (i) we do not use our efficient

Steiner points placement scheme, i.e., we use algorithm FixSP
for Steiner point placement, (ii) we remove the full edge

sequence conversion step, (iii) we remove the effective weight

pruning out sub-step in the Snell’s law path refinement step,

and (iv) we do not use the node information for pruning in the

error guaranteed path refinement step, for ablation study (they

correspond to four techniques in Section IV-C). We use (i)

Roug-Ref-NoEffSP, (ii) Roug-Ref-NoEdgSeqConv, (iii) Roug-
Ref-NoEffWeig, and (iv) Roug-Ref-NoPrunDijk, to denote these

18

Roug-Ref-Naive1 (1st / 2nd alg)Roug-Ref-Naive1 (1st / 2nd alg) Roug-Ref-Naive1 (1st / 2nd alg)Roug-Ref-Naive1 (1st / 2nd alg)
Roug-Ref-NoEffSP (1st / 2nd alg)Roug-Ref-NoEffSP (1st / 2nd alg) Roug-Ref-NoEffSP (1st / 2nd alg)Roug-Ref-NoEffSP (1st / 2nd alg)Roug-Ref-NoEffSP (1st / 2nd alg)

Roug-Ref-Naive2 (1st / 2nd alg)Roug-Ref-Naive2 (1st / 2nd alg) Roug-Ref-Naive2 (1st / 2nd alg)Roug-Ref-Naive2 (1st / 2nd alg)Roug-Ref-Naive2 (1st / 2nd alg)
Roug-Ref-NoEdgSeqConv (1st / 2nd alg)Roug-Ref-NoEdgSeqConv (1st / 2nd alg) Roug-Ref-NoEdgSeqConv (1st / 2nd alg)Roug-Ref-NoEdgSeqConv (1st / 2nd alg)Roug-Ref-NoEdgSeqConv (1st / 2nd alg)

Roug-Ref-NoEffWeig (1st / 2nd alg)Roug-Ref-NoEffWeig (1st / 2nd alg) Roug-Ref-NoEffWeig (1st / 2nd alg)Roug-Ref-NoEffWeig (1st / 2nd alg)Roug-Ref-NoEffWeig (1st / 2nd alg)

Roug-Ref-NoPrunDijk (1st / 2nd alg)Roug-Ref-NoPrunDijk (1st / 2nd alg) Roug-Ref-NoPrunDijk (1st / 2nd alg)Roug-Ref-NoPrunDijk (1st / 2nd alg)Roug-Ref-NoPrunDijk (1st / 2nd alg)
Roug-Ref (1st / 2nd alg)Roug-Ref (1st / 2nd alg) Roug-Ref (1st / 2nd alg)Roug-Ref (1st / 2nd alg)Roug-Ref (1st / 2nd alg)

Roug-Ref-Naive1
Roug-Ref-NoEffSP

Roug-Ref-Naive2

Roug-Ref-NoEdgSeqConv
Roug-Ref-NoEffWeig
Roug-Ref-NoPrunDijk

Roug-Ref

100

101

102

103

1 2 3 4 5

(a)

T
ot

al
 Q

ue
ry

 T
im

e
(s

)

k

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5

(b)

T
ot

al
 M

em
or

y
(M

B
)

k

0

20

40

60

80

100

1 2 3 4 5

(c)

C
ha

nc
es

 o
f u

si
ng

F
in

al
 S

te
p

(%
)

k

Fig. 7. Ablation study (effect of k on BH-small dataset)

0

1000

2000

3000

4000

5000

1 2 3 4 5

T
ot

al
 Q

ue
ry

 T
im

e
(s

)

k

Fig. 8. Ablation study (effect of k on BH
dataset)

EdgSeq-Adp
FixSPFixSPFixSP

FixSP-NoWei-AdpFixSP-NoWei-AdpFixSP-NoWei-Adp
LogSP-AdpLogSP-AdpLogSP-Adp

Roug-Ref (1st / 2nd alg)Roug-Ref (1st / 2nd alg) Roug-Ref (1st / 2nd alg)Roug-Ref (1st / 2nd alg)Roug-Ref (1st / 2nd alg)
EdgSeq-Adp

FixSP
FixSP-NoWei-Adp

LogSP-Adp
Roug-Ref

10-1

100

101

102

103

0.05 0.1 0.25 0.5 0.75 1

(a)

T
ot

al
 Q

ue
ry

 T
im

e
(s

)

ε

0
10
20
30
40
50
60
70

0.05 0.1 0.25 0.5 0.75 1

(b)

T
ot

al
 M

em
or

y
(M

B
)

ε

0

50

100

150

200

0.050.10.250.50.75 1

(c)

A
ve

ra
ge

 N
o.

 o
f S

te
in

er
P

oi
nt

s
pe

r
ed

ge

ε

0
0.0002
0.0004
0.0006
0.0008
0.001

0.0012
0.0014

0 0.20.40.60.8 1

(d)

E
rr

or

ε

Fig. 9. Baseline comparisons (effect of ε on EP-small dataset)

EdgSeq-Adp FixSPFixSPFixSP FixSP-NoWei-AdpFixSP-NoWei-AdpFixSP-NoWei-Adp LogSP-AdpLogSP-AdpLogSP-Adp Roug-Ref (1st / 2nd alg)Roug-Ref (1st / 2nd alg) Roug-Ref (1st / 2nd alg)Roug-Ref (1st / 2nd alg)Roug-Ref (1st / 2nd alg)

101

102

103

104

105

10 20 30 40 50

(a)

T
ot

al
 Q

ue
ry

 T
im

e
(s

)

Dataset size (k)

0
200
400
600
800

1000
1200
1400
1600
1800

10 20 30 40 50

(b)

A
ve

ra
ge

 N
o.

 o
f S

te
in

er
P

oi
nt

s
pe

r
ed

ge

Dataset size (k)

Fig. 10. Baseline comparisons (effect of dataset size on multi-resolution
of EP-small datasets)

 0

 5000

 10000

 15000

 20000

1 2 3 4 5

(a)

T
ot

al
 Q

ue
ry

 T
im

e
(s

)

Dataset size (M)

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3 4 5

(b)

T
ot

al
 M

em
or

y
(M

B
)

Dataset size (M)

Fig. 11. Scalability test

variations. If we do not use the rough-refine concept, Roug-Ref
becomes LogSP-Adp. We adapt FixSP, FixSP-NoWei-Adp and

EdgSeq-Adp by using our rough-refine concept, and denote

it as Roug-Ref-Navie1. We adapt LogSP-Adp similarly to be

Roug-Ref-Navie2. Since k will only affect our algorithm Roug-
Ref and its variations, we study the effect of k here.

Effect of k: In Figure 7 and Figure 8, we tested 5 values

of k from {1, 2, 3, 4, 5} on BH-small and BH dataset by

setting ε to be 0.1 and 0.25 for ablation study, respectively.

(i) When k ≤ 2 and k increases, more Steiner points are

removed and Roug runs faster, so the query time and memory

usage of these algorithms decreases. But when k > 2, it has

a higher chance (more than 99%) that Ref needs to perform

the error guaranteed path refinement step, so the query time

and memory usage have a sudden increase. Thus, the optimal

k is 2 (also verified on other datasets shown in our technical

report [30]). (ii) When k = 2, the query time of Roug-Ref-
Naive1 and Roug-Ref-NoEffSP are 230s and 210s on BH-
small dataset, but their difference is small due to the log-scale

in Figure 7 (a). Due to the same reason, the difference in

query time of the other four algorithms on BH-small dataset

is also small, so we compare them with linear-scale in Figure 8

(which shows the usefulness of each component).

2) Baseline comparisons: We then study the effect of ε
and dataset size on other baselines when k = 2.

Effect of ε: In Figure 9, we tested 6 values of ε from

{0.05, 0.1, 0.25, 0.5, 0.75, 1} on EP-small dataset. (i) When

ε increases, fewer Steiner points are required so the query

time and memory usage decrease. (ii) The query time and

memory usage of Ref is much smaller than that of Roug. (iii)

Roug-Ref performs better than all other algorithms in terms

of query time and memory usage, and it is clear to observe

the superior performance of Roug-Ref, due to the rough-refine

concept and four novel techniques. The distance error of all

algorithms is very small, the value is 0.0004 when ε = 1
for Roug-Ref. (iv) When ε = 0.05, Roug-Ref has 160 fewer

Steiner points per edge than FixSP and FixSP-NoWei-Adp, the

query time and calculated path’s distance of Roug-Ref is 14.6s

and 105.3m, but are both 23,800s ≈ 7.2 hours and 105.2m for

FixSP and FixSP-NoWei-Adp, since Roug-Ref uses the rough-

refine concept. EdgSeq-Adp performs worse than FixSP since

EdgSeq-Adp first uses FixSP and then uses Snell’s law for

the weighted shortest path calculation. LogSP-Adp does not

perform well since it does not utilize Snell’s law.

19

Effect of dataset size: In Figure 10, we tested 5 values

of dataset size from {10k, 20k, 30k, 40k, 50k} on multi-

resolution of EP-small datasets by setting ε to be 0.1. When

the dataset size is 50k, Roug-Ref ’s query time is 103 times,

103 times, 103 times and 6 times smaller than that of EdgSeq-
Adp, FixSP, FixSP-NoWei-Adp and LogSP-Adp, respectively.

3) Scalability test: In Figure 11, we tested 5 values of

dataset size from {1M, 2M, 3M, 4M, 5M} on multi-resolution

of EP datasets by setting ε to be 0.25. When the dataset size

is 5M, Roug-Ref ’s query time is still reasonable. However, the

query times for EdgSeq-Adp, FixSP and FixSP-NoWei-Adp are

larger than 7 days, so they are excluded from the figure.

4) Other algorithms comparisons: Given ε, Roug-Ref can

calculate a path with distance d. But, EdgSeq does not have

error bound, LogSP and Roug have distance errors larger than

(1 + ε). We finetune their input to make their calculated path

also with distance d. When ε = 0.1, Roug-Ref, EdgSeq, LogSP
and Roug run in 3s, 140s, 113s and 110s on BH-small dataset.

5) Case study: We conducted a case study on the earth-

quake rescue in Section I-A. The rescue team can walk and

drive cars with an average speed of 3km/h and 90km/h to pass

through the destroyed and non-destroyed region. In Figure 1

(b), the weighted and unweighted shortest path has a distance

of 4.6km and 4.3km. So, the rescue time of using the weighted

and unweighted shortest paths are 3 min ≈ 4.6km
90km/h×60min/h

and 1.4 hours ≈ 4.3km
3km/h . The query time for the best-known

algorithm FixSP and Roug-Ref are 11,900s ≈ 3.3 hours and

7.3s. So, the weighted shortest path calculated by Roug-Ref is

the best rescue path.

6) Summary: Roug-Ref is up to 1630 times and 40 times

better than the best-known algorithm FixSP in terms of running

time and memory usage. When the dataset size is 50k with ε =
0.1, Roug-Ref ’s running time is 73s ≈ 1.2 min, and memory

usage is 43MB, but FixSP’s running time is 119,000s ≈ 1.5

days, and memory usage is 2.9GB.

VI. CONCLUSION

We propose a two-step (1+ε)-approximate algorithm Roug-
Ref for solving the 3D weighted region problem, which runs

up to 1630 times faster than the best-known algorithm. Future

work can be introducing a new pruning step (by considering

other geometric information of the weighted terrain surface)

to further reduce the algorithm’s running time.

ACKNOWLEDGEMENTS

We are grateful to the anonymous reviewers for their

constructive comments. The research of Yinzhao Yan and

Raymond Chi-Wing Wong is supported by GZSTI16EG24.

REFERENCES

[1] “Japan earthquake,” 2024. [Online]. Available: https:
//www.accuweather.com/en/weather-news/japan-earthquake-death-
toll-reaches-206-as-government-includes-indirect-deaths/1611292

[2] “Moderate mag. 4.1 earthquake - 6.3 km north-
east of sierre, valais, switzerland,” 2024. [Online].
Available: https://www.volcanodiscovery.com/earthquakes/quake-info/
1451397/mag4quake-Oct-24-2016-Leukerbad-VS.html

[3] “Snell’s law in vector form,” 2024. [Online]. Available: https://physics.
stackexchange.com/questions/435512/snells-law-in-vector-form

[4] L. Aleksandrov, M. Lanthier, A. Maheshwari, and J.-R. Sack, “An
ε-approximation algorithm for weighted shortest paths on polyhedral
surfaces,” Workshop on Algorithm Theory, 1998.

[5] C. Amante and B. W. Eakins, “Etopo1 arc-minute global relief model:
procedures, data sources and analysis,” 2009.

[6] C. Bassem, S. Honcharuk, and M. Mokbel, “Route recommendation to
facilitate carpooling,” MDM, pp. 29–34, 2022.

[7] M. Chen, R. A. Chowdhury, V. Ramachandran, D. L. Roche, and
L. Tong, “Priority queues and dijkstra’s algorithm,” 2007.

[8] J.-L. De Carufel, C. Grimm, A. Maheshwari, M. Owen, and M. Smid, “A
note on the unsolvability of the weighted region shortest path problem,”
Computational Geometry, vol. 47, no. 7, pp. 724–727, 2014.

[9] K. Deng, X. Zhou, H. T. Shen, Q. Liu, K. Xu, and X. Lin, “A multi-
resolution surface distance model for k-nn query processing,” VLDBJ,
vol. 17, no. 5, pp. 1101–1119, 2008.

[10] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[11] B. Huang, V. J. Wei, R. C.-W. Wong, and B. Tang, “Ear-oracle: on
efficient indexing for distance queries between arbitrary points on terrain
surface,” SIGMOD, vol. 1, no. 1, pp. 1–26, 2023.

[12] M. Kaul, R. C.-W. Wong, and C. S. Jensen, “New lower and upper
bounds for shortest distance queries on terrains,” VLDB, vol. 9, no. 3,
pp. 168–179, 2015.

[13] M. Kaul, R. C.-W. Wong, B. Yang, and C. S. Jensen, “Finding shortest
paths on terrains by killing two birds with one stone,” VLDB, vol. 7,
no. 1, pp. 73–84, 2013.

[14] M. Lanthier, “Shortest path problems on polyhedral surfaces.” Ph.D.
dissertation, Carleton University, 2000.

[15] M. Lanthier, A. Maheshwari, and J.-R. Sack, “Approximating shortest
paths on weighted polyhedral surfaces,” Algorithmica, vol. 30, no. 4,
pp. 527–562, 2001.

[16] S. H. Lee, S. M. Im, and I. S. Hwang, “Quartic functional equations,”
Journal of Mathematical Analysis and Applications, vol. 307, no. 2, pp.
387–394, 2005.

[17] H. Li and Z. Huang, “82 die in sichuan quake, rescuers
race against time to save lives,” 2024. [Online]. Avail-
able: https://www.chinadailyhk.com/article/289413#82-die-in-Sichuan-
quake-rescuers-race-against-time-to-save-lives

[18] L. Liu and R. C.-W. Wong, “Finding shortest path on land surface,”
SIGMOD, pp. 433–444, 2011.

[19] B. Max and W. Emil, “Principles of optics,” 1959.
[20] J. E. Nichol, A. Shaker, and M.-S. Wong, “Application of high-resolution

stereo satellite images to detailed landslide hazard assessment,” Geomor-
phology, vol. 76, no. 1-2, pp. 68–75, 2006.

[21] C. Shahabi, L.-A. Tang, and S. Xing, “Indexing land surface for efficient
knn query,” VLDB, vol. 1, no. 1, pp. 1020–1031, 2008.

[22] A. Suppasri, K. Pakoksung, I. Charvet, C. T. Chua, N. Takahashi,
T. Ornthammarath, P. Latcharote, N. Leelawat, and F. Imamura, “Load-
resistance analysis: an alternative approach to tsunami damage assess-
ment applied to the 2011 great east japan tsunami,” Natural Hazards
and Earth System Sciences, vol. 19, no. 8, pp. 1807–1822, 2019.

[23] X. Teng, G. Trajcevski, J.-S. Kim, and A. Züfle, “Semantically diverse
path search,” MDM, pp. 69–78, 2020.

[24] N. Tran, M. J. Dinneen, and S. Linz, “Close weighted shortest paths on
3d terrain surfaces,” SIGSPATIAL, pp. 597–607, 2020.

[25] V. J. Wei, R. C.-W. Wong, C. Long, and D. M. Mount, “Distance oracle
on terrain surface,” SIGMOD, pp. 1211–1226, 2017.

[26] V. J. Wei, R. C.-W. Wong, C. Long, D. M. Mount, and H. Samet,
“Proximity queries on terrain surface,” TODS, 2022.

[27] V. J. Wei, R. C.-W. Wong, C. Long, D. M. Mount, and H. Samet,
“On efficient shortest path computation on terrain surface: A direction-
oriented approach,” TKDE, no. 1, pp. 1–14, 2024.

[28] S. Xing, C. Shahabi, and B. Pan, “Continuous monitoring of nearest
neighbors on land surface,” VLDB, vol. 2, no. 1, pp. 1114–1125, 2009.

[29] Y. Yan and R. C.-W. Wong, “Path advisor: a multi-functional campus
map tool for shortest path,” VLDB, vol. 14, no. 12, pp. 2683–2686, 2021.

[30] Y. Yan and R. C.-W. Wong, “Efficient shortest path queries
on 3d weighted terrain surfaces for moving objects (technical
report),” 2024. [Online]. Available: https://github.com/yanyinzhao/
WeightedTerrainCode/blob/master/TechnicalReport.pdf

[31] Y. Yan and R. C.-W. Wong, “Proximity queries on point clouds using
rapid construction path oracle,” SIGMOD, vol. 2, no. 1, pp. 1–26, 2024.

20

