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ABSTRACT Vender

Since data regulations such as the European Union’s General Data
Protection Regulation (GDPR) have taken effect, the traditional two-
step Automatic Speech Recognition (ASR) optimization strategy (i.e.,
training a “one-size-fits-all” model with vendor’s centralized data
and fine-tuning the model with clients’ private data) has become
infeasible. To meet these privacy requirements, TFE, a novel GDPR-
compliant ASR ecosystem, has been proposed by us to incorporate
transfer learning, federated learning, and evolutionary learning
towards effective ASR model optimization. In this demonstration,
we further design and implement a novel platform to promote the
deployment and applicability of TFE. Our proposed platform allows
enterprises to easily conduct the ASR optimization task using TFE
across organizations.
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1 INTRODUCTION

The global speech and Automatic Speech Recognition (ASR) soft-
ware market is still growing steadily [1], due to its wide range of
applications in industry [2, 10-12]. In existing ASR market, tra-
ditional ASR vendors usually provide a “one-size-fits-all” system
trained with centralized speech data and then fine-tune the model
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Figure 1: The workflow of our proposed TFE ecosystem
with clients’ private data. However, such a privacy-violating strat-

egy has become infeasible since data regulations such as the Eu-
ropean Union’s General Data Protection Regulation (GDPR) [15]
have taken effect and it is prohibited to access the clients’ private
speech data. Thus, a GDPR-compliant ASR ecosystem called TFE
has been proposed by us to alleviate the aforementioned privacy
concerns [5, 13, 14]. As shown in Fig. 1, TFE incorporates Transfer
learning, Federated learning, and Evolutionary learning towards
effective privacy-preserving ASR model optimization across the
involved parties (i.e., the vendor and the clients).

The operation of the TFE ecosystem requires seamlessly coordi-
nation of multiple parties, since the vendor and the clients are not
necessary to be in the same organization. To save the manual labor
involved and further increase the efficiency in deploying and main-
taining TFE, in this demonstration, we present a novel platform
to automatic TFE in ASR industry. More specifically, this platform
is designed to use software programs as robots to automate the
whole optimization process across the involved parties displayed in
Fig. 1. Through this demonstration, users will experience the work-
ing mechanisms of the TFE ecosystem and how this platform can
improve its efficiency. While there are already a substantial amount
of federated learning studies in the research community, limited of
them have explored the feasibility of deploying them into industrial
scenarios, and we hope our proposed platform would shed new
light on the deployment of more federated learning applications.

2 THE TFE ECOSYSTEM

Despite the increasing popularity of the end-to-end ASR models in
the research community [3], the hybrid ASR systems still dominate
the industry due to their flexibility and modularization [7]. Hence, in
this demonstration, we mainly focus on the optimization of hybrid
ASR systems. A hybrid ASR system is typically composed of an
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Acoustic Model (AM) and a Language Model (LM), where the AM is
a deep neural network (DNN) or a DNN-HMM (8] responsible for
translating the speech features into their phoneme representation,
and the LM estimates the probability of the word sequences. As
described in Fig. 1, TFE is composed of three machine learning
components: transfer learning (TL), federated learning (FL), and
evolutionary learning (EL).
TL for Client Given the vendor’s “one-size-fits-all” model, TFE
resorts to transfer learning to tune a highly customized ASR sys-
tem for each client. Specifically, the customized LM is achieved by
interpolating the vendor’s LM with the client’s LM (i.e., LM trained
on client’s private data) using
Pery(w) = APy (w) + (1= APy (w), (V)
where Pcpar(w) denotes the probability of the word sequence w
given by the customized LM, PXM (w) and PEM (w) are probabilities
delivered by the vendor’s LM and the client’s LM, respectively. For
the AM, TFE adopts conservative training to conduct the model-
based transfer learning for the DNN part [17]. The neural network
loss of the target domain L1 can be transferred from the source
domain loss Lg as
n
Lr=0-nLs+y Z

(x,y) €Target Domain .
where (x,y) denotes a data sample from the target domain, N

represents the total number of data samples, 7 is a transfer ratio
hyper-parameter, and pg(-) and pp(-) are the posteriors given by
the source and the target domain model, respectively. Finally, the
client will get a highly-customized ASR model for their domain.
FL between Client and Vendor TFE utilizes federated learning
[16] to achieve privacy-preserving transmission of the customized
AMs from each client. We propose a Differential Privacy AM (DP-
AM) which encrypts the gradients of the mini-batch stochastic
gradient descent (SGD) of DNNs by

wer1 = wr — 1 (Awg +6;), (3)

ps(ylx)logpr(ylx), (5

where 7; is the learning rate, §; is a generated noise, and Awy is a
scaled gradient given by

, Awy

A S, TAw /5] @
where Aw; is the gradient, and S is the sensitivity in DP [4]. The
federated learning component in TFE achieves privacy-preserving
information collection for the vendor to improve its ASR system.
EL for Vendor Evolutionary learning is used in TFE to incorporate
the customized AMs and renovate the vendor AM. We propose
an Acoustic Genetic Algorithm (AGA) which involves four steps:
initialization, selection, genetic operators, and termination. During
each iteration, the AGA generates AM candidates using genetic
operations, namely reproduction, crossover, mutation, and weighte-
dAverage, and then selects the AM with the lowest word error rate
(WER) [6] as the new vendor AM. Inspired by FedAvg algorithm [9],
the weightedAverage is a novel genetic operation specially designed

35
30
25
20
15
10

WER(%)

Vendor ASR Vendor ASRafter Federsed Leaming
and Evoluionary Leaming

(a) TL for Client Side
Figure 2: The WER comparison by the TFE ecosystem

(b) FL & EL for Vendor Side

Yuanfeng Song, et al.

Resource ! Server Interface
Execution Infrastructure q
Xecution Infrastructure AuthOl'lty

Transfer Learning

Physical Virtual 3' : : Results ,,/
ASR Tools . Evaluation

Client 1 Dispatcher =0

-
. Client N Transfer Learning
M i S— :
. — Analytics e
Acoustic Model Language Model DataSets ! % EE E ¥ Report Y
' =
Software Robots Vendor Evolutionary Learning
H Execution
Logs
Federated Learning

Figure 3: The system architecture of our proposed platform
by us for ASR model optimization [5], and it creates the parameters

of a child by weighted averaging the parameters of its two parents.
TFE Performance Analysis The TFE is built upon the open-
sourced Kaldi toolkit, and deployed on a 11-node cluster. Around
10,000 hours of speech data is used to train the vendor’s ASR model,
and another 250 hours data are used as the testing dataset. Each
client is provided with diverse domains data ranging from radio
programs to daily conversations as private data. Experimental re-
sults in Fig. 2 show that TFE can significantly improve the ASR
performance (i.e., WER) for both local clients and vendor.

3 THE PROPOSED PLATFORM

The objective of our proposed platform is to provide a flexible tool
to automate the TFE tasks across organizations.

System Architecture As shown in Fig. 3, the system roughly
contains three layers: the Resource layer, the Server layer, and the
Interface layer. The Resource layer servers as the foundation to
run the whole ecosystem, and it includes typical components such
as the infrastructure and the tools to construct the ASR models.
The Server layer includes the main implementation of the transfer,
federated, and evolutionary learning components. The Interface
layer enables the user to check the statistics of the TFE ecosystem.
User Interface and Functionalities Fig. 4 shows the user interface
(UI) of our proposed platform, including the following parts.

TL To conduct transfer learning for the local ASR model, users can
upload their client’s LM and AM or their private speech data. The
customized LM and AM will be delivered with defined parameters.
FL After the users in the client side configure their local model or
data path, TFE will conduct federated learning to transmit data-
preserving mini-batch gradient to the vendor side. A detailed ver-
sion history of the transmitted models is also provided for reference.
EL Users can choose the initial models as parents, and configure the
number of generations. After the learning converges, the system
will show the WER reduction and the updated vendor AM.
Model Evaluation This functionality evaluates the effectiveness
of generated models in the model library with user-defined data.
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Figure 4: A Ul screenshot of our proposed platform
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