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Abstract For association rule mining, the difficult subproblem of
frequent itemset discovery has been the focus of research
Frequent pattern discovery in data streams can be very for some time. Many motivating examples are given in [12]
useful in different applications. In time critical applica  for the mining of frequent itemsets in data streams. A major
tions, a sliding window model is needed to discount stale issue with mining frequent itemsets is that user has to define
data. In this paper, we adopt this model to mine tke a support or frequency threshal@n the resulting itemsets,
most interesting itemsets, or to estimate #kiemost fre- and without any guidance, this is typically a wild guess. In
guent itemsets of different sizes in a data stream. In oursome previous study [6, 7], it is found that, in differentalat
method, the sliding window is partitioned inboickets We sets, or even with different subsets of the same data set, the
maintain the statistics of the frequency counts of the item-proper values of can differ by an order of magnitude. In
sets for the transactions in each bucket. We prove that ourmost previous work of data stream mining a major concern
algorithm guarantees no false negatives for any data distri is to minimize the error of the false positive to a small frac-
butions. We also show that the number of false positives re-tion of s. However, if the threshold is not appropriate in
turned is typically small according to Zipfian Distribution the first place, such a guarantee is quite pointless.
Our experiments on synthetic data show that the memory  Therefore, it is of interest to replace the requirement of
used by our method is tens of times smaller than that of a5 frequency threshold to that of the simpler threshold on

naive approach, and the false positives are negligible. the amount of results. It is much easier for users to specify
that say the 20 most frequent patterns should be returned.
1 Introduction Some previous work assumed that such a threshold can be

Data mining processing is typica”y time_consuming_ applled to itemsets of all sizes. HOWeVer, there is a majOI’
However, there are some recent demands on real-time dat&itfall with such an assumption. It is that it implies a uni-
mining for unbounded data stream arriving at high speed.form frequency threshold for itemsets of all sizes. It is ob-
Examples include financial data monitoring and network Vious that small size itemsets have an intrinsic tendency to
monitoring_ The mining process becomes much more dif- appear more often than Iarge size itemsets. The result from
ficuit because it requires not Oniy the handiing Of massive th|S assumption iS tha.t Sma”er Size itemsets can dominate
unbounded data stream but also the ability to return the re-and hide some interesting large size itemsets. The mining
sults within a short time. of closed patterns does not help much. For example, an in-

With limited memory storage, it is natural to devise teresting closed itemses of size 4 may have a frequency
methods to store some kinds of statistics or summary ofof 0.01, while many smaller size closed itemsets have fre-
the data stream. Until now, most research work considerduencies above 0.1, and hen&ecannot hope to reach the
all data read so far. However, in many applications, old data!oP & frequency. Therefore, some previous work has pro-
are less important or not relevant, compared with more re-P0Sed to mine thés' most frequent itemsets of sizefor
cent data. There are two common approaches to deal witfachi that is within a range of sizes specified by user. We
this issue. The first one ging[11, 5], where each data is Shall focus on this mining problem for data streams.
assigned a weight, with more weight for more recent data Let us call an itemset of sizeani-itemset. Our problem
(e.g. exponential-decay model). Another approach is to useis about miningK [-itemsets with the greatest frequencies
asliding window{2, 4, 8, 3, 9], so that only the most recent (supports) for eachup to a certain.. We shall tackle this
W data elements in the data stream is considered, wiere problem for a data stream with a sliding window of size
is the width of a sliding window. In this paper, we adopt the m (containsm transctions). In our approach, the sliding
second approach. window is divided inton g partitions, callecdouckets Each



bucket corresponds to a set of transactions and we maintairTherefore, each bucket stores information about thédtbp
the statistics for the transactions in each bucket seggrate frequentitemsets.

The window is slided forward one bucket at a time. When  Let f; ..., be the frequency of thé/ ,-th frequenti-
the window is advanced, the oldest bucket is discarded andtemset in bucket3;. For entrye in bucketB;, fi. >
a newly generated bucket is appended to the sliding win- f; .. We definemin(e) and max(e). min(e) =
dow. At the same time, the candidate tépinteresting > p .4 . fie @and maz(e) = > p (nap. fie +
itemsets are adjusted. Our method have some guarantees._is recorded is recorded

for the results. It gives no false negatives for any data dis- 4~ B: and fi . (fimin = 1)-

is not recorded

tribution. Given a leflan data diStribution with lef|an pa- When we sum up a” recorded frequencfgg of itemset
rameterf and an error parameter> 0, it outputs no more ¢ in different buckets3;, this value should be the least pos-
thanK[(1 + €)'/? — 1] false positives. The memory usage  siple frequency of itemset However, in some buckefs;,

of our algorithm is bounded W("Jgi/m@””()_ From our there may be no recorded frequencies. The iteraseay
experiment, we found that error in frequency of false pos- appear in those buckets. To estimate the maximum possible
itives is very small, and the proposed method can achievefrequency, we assume the maximum possible frequency for

memory usage that is many times less than a more naivdtemsetse with no recorded frequency, and this frequency

approach. iS fi,min — 1 fOr bucketsB;. Thereforenin(e) is the mini-
mum possible frequency of itemsein the sliding window
2 Problem Definitions and Terminologies while max(e) is the maximum possible frequency of item-

sete in the sliding window. Letf. be the frequency of in

In this section we introduce the problem definition and h !
the sliding window. Thuspin(e) < f. < max(e).

also other terminologies.

Problem Definition: The data stream is considered a Ve define fu, = maz.{min(e)}, which is the
sequence ofquisized data buckets withs; transactions ~ dreatest value ofmin(e) among all e.  We de-
each. The most recents full buckets in the data stream fine M; = ming,{fimin}, wWhich is the minimum

is considered as the sliding window. Given two positive Valué Of fimin among all buckets. We also define

integersK and L. For eachl, wherel < L, and let the Amaz, = %:fi,min - M.

K-th highest frequency among alitemsets in the sliding '

window bef (1), find alli-itemsets with frequencies greater 3 Algorithm

than or equal tof(!) in the sliding window. These are Let the size of the sliding window be: (there arem

called the topkK [-itemsets. 0 transactions). There ares buckets in the sliding window.

So, the bucket sizep is [m/ng]. For each full bucket we

Note that in the above definition, at any time, there will store a list of entriese( f). The 2 major steps of our algo-

be a most recent buckét, which may or may not be full.  rithm will be introduced in this section. At the beginning

A bucket is full when it containsp transactions. When a  of the algorithm, we process the first full bucket containing

transactioril” arrives at the data stream, it will be inserted the transactions at the beginning of the data stream in Step

into B if it is not full; otherwise, a new bucket contain- 1. For each new bucket, we need to accumulaterans-

ing only T will be created and becomes the most recent actions in the memory temporarily. After receiving thg

bucketB. Letm = np x sg. Hence the size of the sliding transactions, we process the transactions with Step 2yEver

window is m (number of transactions). The sliding win- time a bucket leaves the sliding window, the bucket and its

dow contains bucketB;, Bs, ..., B, in chronological or- entries will be removed.

der, where buckeB,, , represents the most recently created  There are two major parameters in our algorithm -41)

bucket. and (2)e. (1) 0 is a Zipfian parameter in a Zipfian distribu-
In our algorithm we need to process itemsets of sizes tion. The greater the value 6f the greater the skewness of

1 <1 < L. Without loss of generality let us consider size the distribution. The Zipfian paramet&t> 1 is commonly

[ itemsets, for a certaih We are going to find the tof used in the Zipfian distribution in previous research on data
l-itemsets. streams[12, 10]. In [12]¢ = 1.25; and [10] set¥) to be

Let [-itemset denote itemset of size Each bucketB; 1.0, 1.25 and 1.5. In our real data set, we found that the
stores a list of entrie@, f), wheree is one of the topk/ , > distribution is quite skew, which also correspondg to 1.
K l-itemsets andf is the frequency of in the bucket.! (2) € is an error parameter. The smaller the value ¢,

We usef; . to denote the frequency efin bucketB;. We the more accurate the algorithm is. However, with a small

say thatf, . is recorded i is among the topk/ , itemsets.  Value ofe, the memory consumption will be great. $as a
' user input parameter of our algorithm. It can determine the

INote thatk’ , can be different for different and will be determined ~ Storage and the accuracy of our algorithm. The the accuracy
by our algorithm automatically. bound and storage bound can be found in Corollaries 1 and




2, respectively in Section 4.
The major steps of our algorithm are described as fol-
lows.

1. After receiving the first bucket of transactions at the
beginning of the data stream, we do the following. Let
To = [nB("B_l)(2K9(11+1/e) +n€r:1 )~']"/%, 2 where

0 is the Zipfian parameter ards an error parameter.

If 7o is greater than the number of possible itemsets,

is assigned to be the number of possible itemsets.

(a) find toprg itemsets of sizé
For this task, we can use an existing algorithm
for mining top K itemsets (e.qg. [7]).

(b) store the entrieg, s) of the itemsets found

. After the first bucket, we can process other buckgts
in the following way. We definenaa’(e) with the
same definition ofnax(e) but maa’(e) is evaluated
with the scope of all buckets in the current sliding win-
dow except for the buckds;.

(a) find theK-th largest value ofnin(e) of itemset
e of sizel, K,in i, Within the current buckeB;
and all previous buckets in the sliding window

(b) Determine the rank; . of eache in bucketB;.
Find the greatest rank; ., say;, in order that
maz’'(€) + fie > Kpin,g andr; . < 1. Store
all entries of itemsets of sizel with r; . < 7.
Again we can make use of the existing algorithm
in [7].

~ _ fa)
calculateA = SR

ﬁmwl, then store the additional next top fre-
guent itemsets in the bucket (if any) until
Amam,l < A 8

(©)

If A1’naw7l >

max,l

max,l*

3. We continue our process in Step 2. Whenever a bucke
leaves the sliding window, we can remove the entries
in that bucket and the bucket itself.

. We output the result on demand. We find thieth
largest value ofmin(e) of itemsete of sizel, say
K pnin,1, for all buckets in the sliding window. Then,
we output all itemsets of sizel with max(e) greater
than or equal td<, s ;-

Theorem 1 For any data distribution, the proposed algo-
rithm gives no false negatives.

2\We shall see in Section 4 thag is a bound on the ranks of itemsets
that we keep in all buckets.

3Storing more top frequent itemsets can lead to a smallerevafu
fi,min and thUSAmax,l'

Proof: In the algorithm, the-th largest value ofnin(e)
(i.e. Kimnin,) is found. In this step, we make sure that we
have foundK [-itemsetse wheremin(e) > Kpin,i. AlSO
these are at leadt’ itemsets found in the algorithm, which
have the chance to become the fgptemsets.

The possible values of frequency of an itemsetre in
the range betweemin(e) and maz(e). Hence the only
other itemsetg which have the chance to become the top
K itemsets are those witthaz(e) > Kin,. Thus, the
entries withmaz(e) > K, are in the output. This
ensures that no tofi’ I-itemset will be missed, forall

The above theorem shows the correctness. Itis quite easy
to understand all steps in our algorithm except for Step 2b
and Step 2c. The purpose of Step 2b is to store as few entries
as possible. Meanwhile, the accuracy can be maintained.
We prune all entries with r; . > 7; even though the entries
satisfymax(e) > Kpin,i. After pruning those entries, we
can save a lot of space and can still maintain the accuracy.
Step 2c is to maintain the inequalitit,,qq; < A

max,l

by making A4, smaller and smaller. When,,,4; is
smaller, f; nin is also made to be smaller at the same time.
This implicitly means that more itemsets are stored and a
smaller value ofnaz(e) which depends off; i, is cal-
culated. Whermaz(e) is smaller, the number of possible
frequencies of each itemset in the range betwegn(e)
andmaz(e) is smaller, leading to a higher accuracy of our
algorithm. Thus, the number of false positves in the output
can be reduced.

4 Analysis

In this section, we are going to analyze our algorithm,
and show some useful properties.

We first consider the number of false positives. From our
analysis, we have the following theorem.

Theorem 2 The frequency difference between aigmset
which is a false positive returned by the algorithm and the
% -th frequent-itemset is at mostA

max,l*

X f
Reca" thatAma%l - m

showsﬁm%l for some particular values ¢f;), K ande.

In the following table, we observe thgitmw,l is small rel-
ative to f(;). By Theorem 2, The frequency difference be-
tween any-itemset which is a false positive returned by the
algorithm and thei(-th frequenti-itemset is small, which
can be shown in Table 1 (a).

In the remaining discussion of this section we assume
that thel-itemsets in the sliding window follow the Zipfian
distribution. We have derived the following theorem and
corollary.

The following table

Theorem 3 Our algorithm outputs the itemsets of ranks



f(l) K € Doawl 0 € Max. No. of False Positives K np € 0 m Max. No. of Entries
1000 >0 T 05 833 1 T K 20 10 05 | 1 500,000 107,767
100020 T 1550 T 05 0.5 X K 20 0 T T | 500,000 71,896
To00 T 10 T 5500 2 T 0.41 X K 20 0 T 2 | 500,000 3,741
T0.000 20 1 12500 05 T 3 X K 20 20 T T | 500,000 606,157
(@) (b) c)
Table 1. Some values of the theoretical bound
Table 2.1 Table 2.2 S0 Algorh BONO Table 2.
] i ream Algorithm i Stream Algorithm BOMO -
Stream Algorithm BOMO N s Ratio 9
L Structur=gRecem Structufe STamng | Ratio B Structurp Recent| Structufe Shding K Structurp Recent| Structufe STding Ratio
Bucket Windoy Bucket Windo Bucket Windo
T | 810K | 400K X 20M | 39.66 2K 5979K | 80K 16M 8M 158 T 4595K | 400K BM 40M | 10,01
665K 200K e T = ce K 5799K | 160K | 3.2M T6M 322 161 5680k | 400K M Z0M =89
=——2667K 200K - ToN o 6K 6069K | 240K | 48M | 24M 456 50 5735k | 400K B ZoM 5
6867k 200K M v 550 8K 5744K | 320K | 64M | 32M 6.33 50 | 5760k | 200K I ZOM 775
- 10K | S5735K | 400K 8M 40M 7.82 100 | 5780K | 400K BV 200 777

Table 2. Synthetic Data Set: Memory Usage (Defaulte =1, L = 6, K = 20, sg = 10K and np = 100)

within the sliding window with the following bound. 5 Empirical Study
r<K(1+e)t/f The experiment was conducted with a Pentium IV

1.5GHz PC with 512MB memory on the Linux platform.
We compare our algorithm with BOMO. BOMO mines the
top K itemsets of at most sizk in all transactions of in the

Table 1 (b) gives the bound of false positives for some sliding window. Thus, BOMO has to store all such trans-
values off ande. actions. Our algorithm and the BOMO algorithm are im-

Next, we are going to analyze the storage capacity in plemented in C/C++. The code of the BOMO algorithm
each bucket and in the whole sliding window. Additionally, is provided by [7]. We make use of the BOMO algorithm
we have proved that there is a bound of the entries stored inn our algorithm to obtain tog<’ itemsets in the bucket.
buckets in the following theorem and corollary. Synthetic data sets are tested. We have conducted some ex-
periments to study the memory usage, the amount of false
positives and the execution time, by varying three factors i
our algorithm - (1)L, the largest size of the itemsets to be

Corollary 1 The number of false positives returned by our
algorithm is no more that [(1 + €)'/? — 1].

Theorem 4 Each bucket stores entries of ranks smaller
than or equal ta-, where

r < [ns(ns =) (srrtzg + 450 7Y mined and (2) Bucket Size.
— 1 np—1\—111/0 We adopt the IBM synthetic data set[1]. The data set is
Note thatro = [ (. —1) (zgoqigazey + 5 )" generated?/vith the foII)(/)wing parameteEs](same as the pa-
Corollary 2 Our algorithm stores at mostg[ng(npg — rameters of [9]): 1,000 item8,x 10° transactions, 10 items
1)(2K9(11+1/6) + 22=1)~111/% entries in all buckets. The per transaction on average, and 4 items per frequent item-
a2/ 10 set on average. We apply the same methodology as [9] to
memory required i€)(~*— 77— ). scramble the item-number mapping, in order to simulate the

Proof: By Theorem 4, each bucket should store at seasonal variations. For every five buckets, we permutate
most [ng(ng — 1)(2”(11“/6) + njfnfl)fl]l/e entries. 200 items. In all experiments, we get= 1. In most previ-
ous work,f was set greater than 1. However, from the anal-
nplns(ng — 1)(2}{9(11“/6) 4 nb:n_l)_l]l/g entries. The YSIS of our algorithm, the worst case for the false positives
. . 1420, 1705 and memory usage occurs wheris thg smallest. Hence
memory requirement is thL@("BT). 0 we choose a small value for the experiments. For each mea-
surement, we have repeated the experiments 5 times and
The above theorem shows that the memory usage of outtaken the average.
algorithm is very small. Table 1 (c) shows the number of = The experimental results of memory usage with the study

As there arenp buckets, the total storage is at most

entries for some particular values 0f;, ¢ andd. We ob- of the factors of_, bucket sizesg andK are shown in Table
serve that more buckets, a smaller value ahd a smaller 2. The ratio measured is the ratio of the memory usage
value off require more storage space. of BOMO over that of our algorithm. The ratio shows our

algorithm uses much less memory.
The experimental results of the number of false positives
. np—1y-171/0 over the number of itemsets returned are shown in Table 3.
o (”B [np(np — 1)(2K9(1+1/e) + ) + For the number of false positives found in the experiment,
memory for the transactions stored in the most recent we observe that the numbers in the above tables are smaller
bucket thanK[(1+¢)? — 1] as predicted in Theorem 3. That means

Theorem 5 The memory usage used in our algorithm is
bounded by




Table 3.1 Table 3.2 Table 3.3

sp\l 1 2 3 4 5 6 K\ 1 2 3 4 5 6
L\ll 0.100 2 3 4 5 6 ’ ng 0.00 0.00 0.31 0.29 0.67 0.23 1 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 500 038 20K 0.00 0.00 0.26 0.33 0.69 0.33 10 0.00 0.09 0.09 0.33 0.23 0.63
5 0.00 0.00 038 035 074 30K 0.00 0.00 0.29 0.33 0.73 0.29 20 0.00 0.00 0.38 0.35 0.74 0.33
7 0.00 0.00 038 035 074 033 071 40K 0.00 0.00 0.38 0.30 0.71 0.29 50 0.00 0.00 0.35 0.38 0.39 0.82
50K 0.00 0.00 0.38 0.35 0.74 0.33 100 0.00 0.00 0.27 0.45 0.84 0.64

Table 3. Synthetic Data Set: Fraction of False Positives (Defaulte =1, L = 6, K = 20, s = 10K and
npg = 100)
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the experimental results give a verification of our analysis and the execution time are many times smaller compared
The experimental results of the execution time are shownwith a naive approach.
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