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Abstract
Trajectory data is becoming more and more popular nowa-
days and extensive studies have been conducted on trajectory
data. One important research direction about trajectory data
is the anomaly detection which is to find all anomalies based
on trajectory patterns in a road network. In this paper, we
introduce a road segment-based anomaly detection problem,
which is to detect the abnormal road segments each of which
has its “real” traffic deviating from its “expected” traffic and
to infer the major causes of anomalies on the road network.
First, a deviation-based method is proposed to quantify the
anomaly of reach road segment. Second, based on the ob-
servation that one anomaly from a road segment can trigger
other anomalies from the road segments nearby, a diffusion-
based method based on a heat diffusion model is proposed
to infer the major causes of anomalies on the whole road
network. To validate our methods, we conduct intensive ex-
periments on a large real-world GPS dataset of about 23,000
taxis in Shenzhen, China to demonstrate the performance of
our algorithms.

1 Introduction
Nowadays, with the advanced development of communica-
tion and information infrastructure, the movement of objects
can be captured in many ways and a large number of loca-
tion traces of moving objects have been accumulated. Partic-
ularly, GPS tracking devices have been installed on taxis in
many cities over the world. In the literature, there are a lot of
existing studies [1, 2, 3, 4, 5, 6, 7] which analyzed the loca-
tion traces of moving objects. For instance, [1, 2] proposed
different approaches to find the “periodic” movement pat-
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terns. [3, 4] are to find frequent movement patterns. [5, 6]
proposed methods to find abnormal movement patterns. In
fact, finding abnormal movement patterns, formally called
anomaly detection, has become a hot topic [5, 6, 8, 9, 10, 11]
due to the various applications of anomaly detection such as
traffic jam detection and traffic pattern monitoring.

Let us first introduce a concrete example to illustrate the
problem of anomaly detection, which we will focus on in this
paper. Consider the road network as shown in Figure 1(a). In
this figure, there are 7 road segments, namely e1, e2, ..., e7.
In this figure, each road segment is associated with two
numbers in the form of (µ, σ) where µ denotes the expected
number of taxis passing this road segment at 11:00am every
Friday, and σ denotes the standard deviation of the number
of taxis passing this road segment at the same time. These
two numbers can be obtained from the past taxi movement
data. Here, µ corresponds to the expected traffic of this road
segment. Figure 1(b) shows the same road network but each
road segment is associated with a single number, called the
real traffic, denoting the real number of taxis passing this
road segment at 11:00am on June 1, 2012 (Fri). Let us
consider the road segment e1. The expected number of taxis
passing e1 at 11:00am every Friday is 100 (Figure 1(a)) and
the real number of taxis passing e1 at 11:00am on June 1,
2012 (Fri) is 150 (Figure 1(b)). Since the real traffic of e1
at that time (i.e., 150) is “statistically” much greater than the
expected traffic of e1 (i.e., 100) (in this case, 150 is greater
than 100+3σ), the real traffic of e1 at that time is considered
as an anomaly. Similarly, we can conclude that all five road
segments “near” to e1, namely e2, e3, e4, e5 and e6, have
their real traffic considered as abnormal.

In most cases, since there are some correlations among
the traffic on different road segments, an anomaly on one
road segment triggers a lot of anomalies in other road
segments “near” this road segment. Although outputting all
anomalies can help people understand all anomalies in the
road network, in some cases returning the major cause of
the anomaly is more interesting to people because people can
better understand the reason why there are a lot of anomalies.
For instance, suppose we can find that there is a car accident
on the road segment e1 in the figure 1(b), which triggers
the abnormal traffic of all road segments “near” to e1, the
abnormal traffic of the road segment e1 causes not only the



(a) 11:00am every Friday (b) 11:00am June 1, 2012 (Friday)

Figure 1: An example showing anomalies

abnormal traffic of each of its adjacent road segments (i.e.,
e2, e3, e4 and e5) but also the abnormal traffic of a road
segment farther away from e1 (i.e., e6).

To this end, in this paper, we study the anomaly detec-
tion of traffic with the following two goals. The first goal is
to find the road segments with abnormal traffic. The second
goal is to find the major cause(s) of the anomalies found in
the previous goal.

In the literature, there are many works about traffic
anomaly detection with location traces. Particularly [5, 6]
proposed different methods to detect the anomaly with taxi
GPS data. However those methods could not meet our
two goals. To explain the reason, let us first describe their
algorithms. Both algorithms share the following two-step
framework. The first step is to partition the whole space into
a number of regions via all major road segments in the road
network. In Figure 1(a), there are 4 regions, namely A,B,C
andD. For example, RegionB is enclosed by road segments
e1, e2 and e4. The second step is to find each abnormal traffic
path from a region to another region. In Figure 1(a), some
possible abnormal traffic paths are “Region A to Region B”
and “Region A to Region C”. Note that [5] and [6] are
different in the second step under the two-step framework.

Now, we describe how those algorithms do not meet our
goals. Firstly, they cannot find the abnormal traffic of road
segments. Instead, they could only find the abnormal traffic
paths from regions to regions. Secondly, they cannot find
the major causes of the anomalies on road segments, while
they could only find the major causes of some abnormal
paths. Thirdly, more importantly, the underlying two-step
framework suffers from a fundamental boundary problem.
Specifically, even though two different taxis move on the
same major road segment in the road network, due to the
imprecise recording of the GPS device equipped in the taxi,
the location of the taxi can be recorded in one region and
the location of the other taxi can be recorded in another
region. To illustrate this, let us consider the road segment e1
in Figure 1(a). If two taxis move on e1, the location of one
taxi may be recorded in RegionB but the location of another
taxi may be recorded in Region C. The major reason for this
problem is that the taxi is moving along the boundary among
regions.

In this paper, we propose a novel method for each of the
two goals in the anomaly detection problem, which does not
have the above drawbacks. For the first goal, we propose
a deviation-based method. This method finds all road

segments on which the real traffic statistically deviates from
its expected traffic a lot. For the second goal, we propose a
diffusion model which finds the major causes of anomalies in
the road network. Specifically, we observe that the abnormal
traffic of a road segment affects the abnormal traffic of road
segments “near” to this road segment progressively. This
phenomenon is similar to the heat diffusion process on an
object. In this process, the heat energy spreads from a single
source to other places in the object progressively. Motivated
by this observation, we propose a heat diffusion model for the
second goal where we regard the major causes of abnormal
traffic in our problem as the sources of heat energy in the
heat diffusion model. Both of our methods do not suffer from
the boundary problem in the state-of-the-art algorithms since
our methods are based on road segments instead of paths and
regions.

The following shows our contributions. First, we study
the road-segment based anomaly detection problem which
is more reasonable than the existing path-based one in
applications where the abnormal traffic of road segments
(e.g., car accidents on road segments) is important. We have
two goals. The first goal is to find all anomalies in the road
network and the second goal is to find the major causes of
anomalies. Second, we propose two methods, namely a
deviation-based method and a diffusion-based method, for
the two goals. Third, we conduct experiments on a large
real dataset (600 GB) containing 23,000 taxis in Shenzhen
from January 1, 2012 to August 28, 2012 to demonstrate the
performance of our methods.

This paper is organized as follows. Section 2 gives our
problem definition. Section 3 presents our proposed meth-
ods. Section 4 shows our experimental results. Section 5
describes the related work. Section 6 concludes our paper.

2 Problem Definition
We are given a directed graph G = (V,E), representing
a road network, where V denotes a set of vertices in the
network and E denotes a set of edges in the network. Each
vertex in V is associated with its spatial location, namely the
latitude and the longitude. Each edge in E is also called a
road segment.

An objects (i.e., vehicle), equipped with the GPS device,
is moving in the road network. The GPS device records
the movement of this object at some regular timestamps.
Specifically, at each timestamp t, it records the spatial



location of this object, namely its latitude and its longitude.
Thus, each object is associated with a sequence of entries
in the form of (p, t) where p is the spatial location of an
object at time t. This sequence is called the trajectory of this
object. Suppose that we are given a set of T trajectories from
n objects.

For the trajectory of a moving object, since the GPS
device records its spatial location in a regular time period,
it does not record its spatial location in some timestamps.
However, following existing studies, we can estimate the
spatial location of a moving object at some timestamps
not recorded by the GPS device. Suppose the GPS device
records two entries, namely (p1, t1) and (p2, t2), where t1 <
t2 and we want to know its estimated position at timestamp
t where t1 < t < t2, there are a lot of existing ways which
could estimate the position at timestamp t. One way is to use
the linear interpolation method by assuming a constant speed
of this object traveling from p1 to p2 in the road network.
Since the position estimation method is not our focus in this
paper, we simply adopt the linear interpolation method. But
other position estimation methods can also be used.

Given two timestamps t and t′ where t < t′, we
represent a time interval in the form of [t, t′), denoting all
timestamps at least t and smaller than t′. Given a road
segment e ∈ E and a time interval 4t = [t, t′), an object
is said to pass the road segment e in 4t if there exists
a timestamp t ∈ [t, t′) such that its estimated position at
timestamp t is along the road segment e. Given a road
segment e ∈ E and a time interval 4t = [t, t′), the traffic
of the road segment e in the time interval 4t, denoted by
f(e,4t), is defined to be the total number of objects passing
e in the time interval4t.

In this paper, in order to define anomalies more pre-
cisely, we divide all timestamps based on both 30-minute
time slots 1 and days. Firstly, we divide all timestamps based
on 30-minute time slots as follows. We divide a single 24-
hour day into 48 time slots each of which lasts for 30 min-
utes. For example, the first time slot is from 00:00 to 00:30,
and the second time slot is from 00:30 to 01:00. Each time
slot is called a time bin. Secondly, we partition all these time
bins into a number of groups based on days. There are two
ways of partitioning, namely the day-of-the-week partition-
ing and the weekday-weekend partitioning. For the day-of-
the-week partitioning, since there are seven days per week ,
we create seven groups where each group denotes a day of
the week, and each group contains a set of time bins which
belong to this group. Each group is called a day-of-the-week

1We use time slots with the duration equal to 30 minutes in this paper
and the reason is that time slots with shorter durations (e.g., 15-minutes)
would suffer from the data sparsity issue while those with longer slots (e.g.,
1-hour) would cause serious imprecise problems. However, this setting can
be changed accordingly based on the requirement of the granularity of the
duration of a time slot in other applications.

group. In this partitioning, there are 48 × 7 = 336 possible
time bins. For the weekday-weekend partitioning, we cre-
ate two groups where one group is for the weekdays and the
other group is for the weekends, and each group contains a
set of time bins which belong to this group. Each group is
called a weekday-weekend group. In this partitioning, there
are 48× 2 = 96 possible time bins. Note that there are other
different ways of partitioning. For the sake of space, we fo-
cus on the above two ways of partitioning.

In the following, we consider one way of partitioning
(e.g., the day-of-the-week partitioning). Let B be a set of
all possible time bins based on this partitioning. Given a
time interval4t, we define a mapping function M(·) which
takes 4t as input and returns the time bin b ∈ B that 4t
belongs to. For example, suppose that4t is the time interval
from 11:00am to 11:30am on June 1, 2012 (Fri), and b is the
possible time bin in B which is the time slot from 11:00am
to 11:30am on Friday. Then, b =M(4t). We say that4t is
a time sample for b.

Consider a time interval4t. Given a time bin b ∈ B and
a road segment e ∈ E, if4t is a time sample for b, then we
say that the traffic of e in4t is a traffic sample of e for b.

Based on the past dataset, for each road segment e ∈ E
and each possible time bin b ∈ B, we can find the distribution
on the traffic samples of this road segment e for this time bin
b, denoted by D(e, b). We will describe how to find D(e, b)
later in this paper.

In this paper, we study the following two goals for the
anomaly detection problem. The first goal is detecting the
anomaly road segment. That is, given a time interval4t, we
find a set of all road segments in E, denoted by S(4t), such
that the traffic of each road segment e in the time interval
4t in this set deviates a lot from its “expected” traffic based
on D(e,M(4t)). Later, we will describe what we mean
by “expected”. Each road segment in S(4t) is called an
anomaly.

The second goal is inferring the major anomaly causes.
That is, given a time interval 4t, we find all road segments
in S(4t) which are the major “causes” of the anomalies in
S(4t). Later, we will describe what we mean by “causes”.

3 Methodology
In this section, we first present how we process the trajectory
data which cannot be found in the state-of-the-art methods
[5, 6] (Section 3.1). Then, we present our deviation-based
method for the first goal (Section 3.2) and our diffusion
method for the second goal (Section 3.3).

3.1 Processing Trajectory Data In this section, we intro-
duce an operation called map matching, a well-established
technique, to locate a “recorded” trajectory (in the two-
dimensional space) to the road network. Performing this op-
eration is beneficial since the boundary problem described in



Section 1 does not appear after this operation is executed.
Specifically, we first perform a map matching operation

which maps each trajectory in the dataset to a sequence
of road segments in E. The map matching algorithm we
used is [12]. Note a trajectory is originally represented by
a sequence of 2-tuples in the form of (p, t) where p is a
spatial location and t is the timestamp when an object is
at p. After we perform this operation on a trajectory, we
obtain a sequence of 2-tuples in the form of (e, t) where e
is an edge in E and t is the estimated timestamp when an
object is at e. In the following, for clarity, when we describe
a trajectory, we mean the sequence obtained after the map
matching operation.

3.2 Deviation-based Method In this section, we present
a deviation-based method for the first goal (i.e., the anomaly
road segment finding goal). Although this method is simple,
it is useful in practice in some cases compared with state-of-
the-art methods (which will be shown in our experiments).

Given a time interval 4t, we want to find a set of
all road segments in E, denoted by S(4t), such that the
traffic of each road segment e in the time interval 4t in
this set deviates a lot from its “expected” traffic based on
D(e,M(4t)). There are the following three issues. The
first issue is to define D(e, b) precisely where b is a possible
time bin. The second issue is to give a precise description of
the “expected” traffic based on D(e, b). The third issue is to
describe the meaning of “deviates a lot”.

Consider the first issue. We analyze our real taxi tra-
jectory dataset collected in Shenzhen from January 1, 2012
to August 28, 2012 according to two different partitioning
ways. The detailed description of this dataset can be found
in Section 4. Consider the weekday-weekend partitioning
and an arbitrary road segment e. For each possible time bin
b representing weekday/weekend and a 30-minute time slot
(e.g., 11:00am to 11:30am), we want to draw two figures to
analyze the distribution on the traffic samples of e for this
time bin b (i.e., D(e, b)). The first figure is the histogram on
all possible traffic samples of e for b. In this figure, the x-axis
denotes all possible traffic values of e for b, and the y-axis
denotes the number of traffic samples which have the corre-
sponding possible traffic value of e for b. Figure 2 shows this
histogram on our real dataset. The second figure is the Q-Q
plot (or the quantile-quantile plot) of all possible traffic sam-
ples of e for b versus a normal distribution. In the figure, the
x-axis corresponds to the normal theoretical quantiles and
the y-axis corresponds to the data quantile. Each point (x, y)
in the figure means that one of the quantiles from the normal
distribution is x and the same quantile from the data (i.e.,
traffic samples) is y. Figure 3 shows the Q-Q plot on our real
dataset.

We have the following two observations based on the
figures. Firstly, from the histogram, we observe that the traf-
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Figure 2: Histogram on all possible traffic samples of a road
segment for a time bin (Weekday-weekend Partitioning)
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Figure 3: Q-Q plot of all possible traffic samples of a
road segment for a time bin versus a Normal Distribution
(Weekday-weekend Partitioning)

fic samples in our real dataset look like a normal distribution.
Secondly, from the Q-Q plot, we observe that the points in
the plot lie on a single line, which means that the distribution
on the traffic samples of e for this time bin b (i.e., D(e, b))
is similar to a normal distribution. Based on these observa-
tions, we model D(e, b) as a normal distribution.

Similarly, we have the histogram figure and the Q-Q
plot figure when the day-of-the-week partition is adopted,
based on which, we can also model D(e, b) as a normal
distribution. Due to space limit, these figures are not shown
here.

In summary, regardless of which partition is used,
D(e, b) can be modeled as a normal distribution. Thus, based
on all possible traffic values of e for b, we can calculate
the mean and the standard deviation, denoted by µ(e, b) and
σ(e, b), for these values, two parameters in the normal distri-
bution.

The second issue can be easily addressed after the first
issue is addressed. Since D(e, b) can be modeled as a
normal distribution, the “expected” traffic based on D(e, b)
is exactly equal to the mean of this distribution (i.e., µ(e, b)).

The third issue can be addressed by introducing a con-
cept of “anomaly value”. Given a road segment e ∈ E and a
time interval 4t, the anomaly value of e in 4t, denoted by
A(e,4t), is defined as follows.

(3.1) A(e,4t) = 2 · 1

1 + exp{− |f(e,4t)−µ(e,b)|σ(e,b) }
− 1

where b = M(4t). Since the expression
“ 1

1+exp{− |f(e,4t)−µ(e,b)|
σ(e,b)

}
” above is a sigmoid function

ranging from 0.5 to 1 for any non-negative real number
(e,4t), A(e,4t) ranges from 0 to 1. If the difference be-
tween the traffic (i.e., f(e,4t)) and its expected traffic (i.e.,
µ(e, b)) is larger, then A(e,4t) will be larger. Otherwise,
it will be smaller. For example, if the difference between
f(e,4t) and µ(e, b) is equal to 3σ, then A(e,4t) is equal
to 0.905. Thus, Equation (3.1) captures the extent of the



deviation of the traffic from the expected traffic.
Now, we introduce a user parameter called the anomaly

threshold ao, which is a non-negative real number from 0 to
1, to determine whether a road segment e in a time interval
4t is an anomaly. Given a road segment e and a time interval
4t, the road segment e in the time interval 4t is said to be
anomaly if A(e,4t) is at least ao.

Thus, we propose our deviation-based method which is
to determine all road segments with their anomaly values at
least ao.

3.3 Diffusion Method In this section, we propose a diffu-
sion method for the second goal. Specifically, we want to
find all major anomaly causes of the anomalies found in the
first goal. We first introduce a model called the heat dif-
fusion model (Section 3.3.1) and then describe how we use
this model to find all major anomaly causes (Section 3.3.2).

3.3.1 Heat Diffusion Model We observe that the phe-
nomenon that the abnormal traffic of a road segment af-
fects the abnormal traffic of road segments “near” to this
road segment progressively is similar to the heat diffusion
phenomenon on an object that the heat energy spreads from
a single source to other places in the object progressively.
Motivated by this observation, we propose a heat diffusion
model for the second goal where we regard the major causes
of abnormal traffic in our problem as the sources of heat en-
ergy in the heat diffusion model.

Before we introduce our heat diffusion model, we define
the concept of “adjacency”. Given two edges e and e′ in E,
e is said to be adjacent to e′ if e and e′ shares a vertex. e is
also called a neighbor of e′. Given an edge e ∈ E, we denote
the set of all possible neighbors of e by N(e). Given a time
interval 4t, the duration of the time interval, denoted by
|4t|, is defined to how long the time interval is. For example,
the duration of the time interval from “Jul 1, 2012 11:00am”
to “Jul 1, 2012 11:30am” is 30 minutes.

Now, we present our heat diffusion model as follows.
Each edge e ∈ E is associated with heat energy. We denote
the amount of the heat energy for e at a timestamp t by
E(e, t) which is a non-negative real number. At timestamp t,
each edge e receives an amount of heat from its neighbor e′

during the time interval 4t whose start timestamp is equal
to t. This amount is denoted by Q(e, e′, t,4t). It should
be proportion to the duration of the time interval (i.e., |4t|)
and the difference in the amount of the heat energy between
e and e′ (i.e., E(e′, t) − E(e, t)). Besides, the heat energy
flows from e′ to e via the vertex shared by these two edges.
Thus, we have

Q(e, e′, t,4t) = α · |4t| · (E(e′, t)− E(e, t))

where α is a non-negative real number called the thermal
conductivity-the heat diffusion coefficient. Thus, the total

amount of heat energy that an edge e receives between
timestamp t and timestamp t + |4t|, denoted by δ(e, [t, t +
|4t|]), is equal to the sum of the amount of heat energy that
e receives from all of its neighbors, which is equal is

α · |4t| ·
∑

e′∈N(e)

(E(e′, t)− E(e, t))

Note that in our problem, since anomalies (e.g., road seg-
ments with car accidents) will be recovered by some exter-
nal mechanisms (e.g., towing away cars in accidents). In our
heat diffusion model, we model this external mechanism by
an exponential decay process in which the amount of heat en-
ergy of an edge decreases with time exponentially. Thus, the
total amount of heat energy of e which can be kept at times-
tamp t+ |4t| due to its original heat energy at timestamp t,
denoted by R(e, t+ |4t|), is

exp(−λ|4t|) · E(e, t)

where λ is the decay factor of the exponential decay process.
Thus, the total amount of heat energy of e at timestamp
t+ |4t| (i.e., E(e, t+ |4t|)) is equal to the following.

E(e, t+ |4t|) = δ(e, [t, t+ |4t|]) +R(e, t+ |4t|)

That is,

E(e, t+ |4t|) = α · |4t| ·
∑

e′∈N(e)

(E(e′, t)− E(e, t))

+ exp(−λ|4t|) · E(e, t)

We re-write it as follows.

E(e, t+ |4t|)− exp(−λ|4t|) · E(e, t)

|4t|
(3.2)

= α ·
∑

e′∈N(e)

(E(e′, t)− E(e, t))

Suppose that e1, e2, ..., em correspond to the road
segments in E. Let E(t) be a vector with m entries
where the ith entry is equal to E(ei, t), i.e., E(t) =
(E(e1, t), E(e2, t), ..., E(em, t))

T . We can further express
Equation (3.2) as follows.

(3.3)
E(t+ |4t|)− exp(−λ|4t|)E(t)

|4t|
= αHE(t)

where H is an m×m matrix with

Hij =


1 if ei is a neighbor of ej
−|N(ei)| if i = j

0 otherwise

We approximate exp(−λ|4t|) with the first two terms
of its Taylor series, that is,

(3.4) exp(−λ|4t|) ≈ 1 + (−λ|4t|)



Substituting Equation (3.4) in Equation (3.3), we obtain

(3.5)
E(t+ |4t|)− E(t) + λ|4t|E(t)

|4t|
= αHE(t)

That is,

(3.6)
E(t+ |4t|)− E(t)

|4t|
= αHE(t)− λE(t)

With4t approaching 0, we further deduce that

(3.7)
d

dt
E(t) = H′E(t)

where
H′ = αH− λI

By solving Equation (3.7), we obtain

(3.8) E(t) = exp(H′t)E(0)

where

exp(H′t) = I + tH′ +
t2

2!
H′2 + ...

We call the matrix exp(H′t) the diffusion kernel.

3.3.2 How to Find Major Anomaly Causes Next, we
present our method which finds major causes of anomalies.

As we described before, we regard the major causes
of abnormal traffic in our problem as the sources of heat
energy in the heat diffusion model. Consider a road segment
e ∈ E and a time interval 4t. If the anomaly value of e
in 4t is large, then the amount of heat energy of e is large.
Otherwise, the amount of heat energy of e is small. Thus,
we assume that the “expected” anomaly value of e in 4t
can be regarded as the amount of heat energy of e at the
starting timestamp of4t in our model. In order to make this
assumption holds, the initial amount of heat energy of each
edge should be set to the anomaly value of e calculated based
on the trajectory data (by Equation (3.1)).

The major idea of finding the major anomaly causes is
to find all road segments such that their “observed” anomaly
values deviates a lot from their “expected” anomaly values
in a given time interval. The “observed” anomaly value of a
road segment in a given time interval can be calculated based
on the trajectory data (by Equation (3.1)). As described
before, the “expected” anomaly value of a road segment in
a given time interval can be regarded as the amount of the
heat energy of e at the starting timestamp of 4t in the heat
diffusion model. In order to determine whether the deviation
is large, we introduce a user parameter ε called the major
cause threshold (which is a non-negative real number). If the
difference between the “observed” anomaly value of a road
segment e in a time interval 4t and its “expected” anomaly
value is at least ε, we say that the traffic of e in 4t is a

major anomaly cause. Whenever we find a major anomaly
cause of a road segment e, we can find out a heat source
in the heat diffusion model. In this case, we re-start the
heat diffusion model by re-initializing the initial state/value
of the heat energy of each road segment e which is found
to be a major anomaly cause (representing the “expected”
anomaly value) to the current “observed” anomaly value so
that e can be regarded as a heat source in the proceeding
diffusion process.

Now, we are ready to introduce our diffusion-based
method which is presented in Algorithm 1. Algorithm 1
maintains three variables, namely S, t and toffset. S is a
variable which stores the set of all major anomaly causes
each in the form of (e,4t) meaning that the traffic of the
road segment e in4t is a major anomaly cause. toffset is a
variable used in this algorithm denoting the time difference
between the starting timestamp (i.e., 0) and the timestamp of
the current initial state. t is a variable used in this algorithm
denoting the time difference between the current timestamp
and the timestamp of the current initial state.

Algorithm 1 involves two steps. The first step is the
initialization step. S is first initialized to ∅ (line 2). Since the
starting timestamp is 0 and we assume that the first initial
state starts at this timestamp, toffset is set to 0 (line 3).
Since the current timestamp is 0 and the timestamp of the
current initial state is 0, t is set to 0 (line 4). Besides, we
set a variable4t to [0, 30 mins) (line 5). Then, we initialize
E(0) by setting the i-th entry of E(0) to A(ei,4t) for each i
∈ [1,m] where4t = [0,30 mins) (lines 6-7).

The second step is the iterative step. For each timestamp
t which is a multiple of 30 minutes, we do the following
two sub-steps. The first sub-step is called the heat diffusion
step. In this sub-step, we compute E(t) (denoting the
“expected” anomaly values of all road segments) according
to Equation (3.8) (line 12). The second sub-step called the
major anomaly cause finding is to find all road segments
which are major anomaly causes. In this sub-step, we do
3 things as follows. Firstly, we find the “expected” anomaly
value of road segment ei (i.e., the i-th entry of E(t)) and set
variable Ei to this value. (line 15). Secondly, we set 4t to
[t + toffset, t + toffset+30 mins) if t + toffset+30 mins
is at most the greatest time stamp of the trajectory dataset
(line 16-17); otherwise, we terminate the algorithm (line
18). Thirdly, we check whether the difference between the
“observed” anomaly value of ei and its “expected” anomaly
value is at least ε (i.e., |A(ei,4t) − Ei| ≥ ε). We have
two cases. Case 1: there exists no i such that |A(ei,4t) −
Ei| ≥ ε. In this case, we find no major anomaly causes
and thus do nothing. Case 2: there exists an i such that
|A(ei,4t) − Ei| ≥ ε (line 19). In this case, we find
some major anomaly causes. Thus, we start a new heat
diffusion process and re-set the initial state by assigning the
content of E(t) to E(0) (line 20). Besides, for such major



Algorithm 1 Algorithm for finding all major anomaly causes
Input: a major cause threshold ε
Output: A set S of major anomaly causes each in the form of (e,4t) which is

outputted in real time when found.
1: // Step 1 (Initialization)
2: S ← ∅
3: toffset ← 0
4: t← 0
5: 4t← [0,30 mins)
6: for each i ∈ [1,m] do
7: the i-th entry of E(0)← A(ei,4t)
8: // Step 2 (Iterative Step)
9: while true do

10: t← t+ 30 mins
11: // Step 2(a) (Heat Diffusion)
12: compute E(t) according to Equation (3.8)
13: // Step 2(b) (Major Anomaly Cause Finding)
14: for each i ∈ [1,m] do
15: Ei ← the i-th entry of E(t)
16: if t + toffset+30 mins is at most the greatest time stamp of the trajectory

dataset then
17: 4t← [t+ toffset, t+ toffset+30 mins)
18: else break
19: if there exists an i such that |A(ei,4t)− Ei| ≥ ε then
20: E(0)← E(t)
21: for all i such that |A(ei,4t)− Ei| ≥ ε do
22: S ← S ∪ {(ei,4t)}
23: output (ei,4t)
24: the i-th entry of E(0)← A(ei,4t)
25: toffset ← toffset + t
26: t← 0

anomaly cause (ei,4t) (line 21), we include it into S (line
22), output it (line 23) and update the i-th entry of E(0) with
A(ei,4t) (line 24) since (ei,4t) corresponds to a new heat
source. At the end, since the initial state has been re-set at
this timestamp, we update toffset by increasing it by t (line
25)and reset t to 0 (line 26).

4 Experiments
4.1 Data and Set-up We used a taxi trajectory dataset
which contains the trajectories of 23,876 taxis in Shenzhen
City within a period of 8 months (from January 1, 2012 to
August 28, 2012). In this dataset, the spatial location of a taxi
is sampled with an average sampling rate of 33.3 seconds
and the average distance between two consecutive sampled
positions is 316.9 meters.

We constructed the road network of Shenzhen from
OpenStreeMap (OSM) (www.openstreetmap.org). We have
about 300 road segments in the road network.

We compared our algorithms, namely Detect and
Diffuse, with the two state-of-the-art algorithms, namely
minDistort [5] and PCA [6]. Detect is our deviation-based
algorithm used to detect anomalies. Diffuse is our diffusion
algorithm used to find the major causes of anomalies.

4.2 Performance Study In this section, we conducted ex-
periments to compare our proposed algorithms (i.e., Detect
and Diffuse) with the two state-of-the-art algorithms (i.e.,
minDistort and PCA).

In order to measure the goodness of the algorithms, we
have to know the ground truth. In our experiments, we con-

sider two types of events as the ground truth of traffic anoma-
lies, namely a traffic event, which corresponds to either an
accident or a traffic control event, and a holiday event, which
corresponds a traffic anomaly due to public holidays. We
collected the events from three sources: (1) Shenzhen News
online edition (http://dtzbd.sznews.com/), (2) Wikipedia
(http://zh.wikipedia.org/zh-cn/) and (3) Shenzhen Traffic Po-
lice on MicroBlog (http://e.weibo.com/shenzhenjiaojing). In
total, we collected 30 traffic events and 50 holiday events.

For each event type, we partition the datasets into 3 parts
for cross evaluation. Specifically, we use two of the parts as
training data and the remaining part as testing data. Thus,
our cross evaluation is three-fold.

We adopt F1 score, a common accuracy measure of a
test, to measure the goodness of each algorithm. Specifically,
F1 score is defined as follows.

(4.9) F1 score = 2 · precision · recall
precision + recall

The experimental results are shown in Figure 4. We
have the following observations. First, our algorithm Diffuse
consistently performs the best for all event types in all
folds of cross evaluation. This essentially shows that our
new framework of detecting traffic anomalies and at the
same time, finding the major causes for the detected traffic
anomalies is superior over the existing methods. Second,
our algorithm Detect (the one without being augmented
with the “heat diffusion” technique) performs better than the
existing methods for the holiday event in all folds of cross
evaluation. This give us a clue that Detect, though simply
a deviation-based method, is quite useful in practice. Third,
there is a clear effectiveness gap between Diffuse and Detect.
This shows clear justice of our novel idea of capturing the
“diffusion phenomenon” of traffic anomalies with the “heat
diffusion” model. We note here that the F1 scores of all
algorithms are relatively low which is mainly due to the fact
that our collected events correspond to the a small portion of
real anomaly events only (In this case, the precision of each
algorithm is usually quite small).

We also observe that our algorithm Diffuse usually per-
forms better than the existing methods PCA and minDistort
in terms of both precision and recall. For example, for the
traffic event type, the average precisions (recalls) of Diffuse,
PCA and minDistort are 0.095 (0.260), 0.057 (0.316) and
0.065 (0.150), respectively.

4.3 Case study In this section, we have two case studies
about real world events. The following shows two prominent
examples of known events.

Event 1. The first event is the “International Children’s
Day” (1 June of each year). Children’s Day is recognized on
different days in different countries to honor children.

Event 2. The second event is an “car accident in
Huanggang flyover”. This accident happened in Huanggang



Figure 4: The test F1 of different algorithms using 3-fold cross validation for different event types

(a) (b)
Figure 5: Case Study 1: Results on Road Network between 9:00am to 9:30am, On June 1, 2012

flyover, North Ring of Shengzhen from 8:00am to 8:30am
on January 16, 2012.

Figure 5 shows the results of for Event 1 (the Interna-
tional Children’s Day), where the color of a road segment
indicates the anomaly value of this segment. A darker color
indicates that the corresponding road segment has a higher
anomaly value. Figure 5(a) shows the result returned by De-
tect, which shows the real anomaly values of the road seg-
ments, and Figure 5(b) shows the result returned by Diffuse,
which shows the major anomaly causes. As could be noticed,
in Figure 5(b), the traffic of the road segments near to some
children’s parks on the International Children’s Day were ab-
normal, which might be explained by the phenomenon that
on the International Children’s Day, many parents guided
their children to parks, thus resulting in some abnormal traf-
fic patterns.

Figure 6 shows the results for Event 2 (a car accident
in Huanggang flyover). In the figure, we observe that on
January 16, the traffic of “Huanggang flyover” are identified
as abnormal, which can give us the information where the
car accident happened (Figure 6(b)) and the information how
the car accident affected the traffic of other road segments
(Figure 6(a)).

5 Related Work
5.1 Traffic Anomaly Detection The increasing capabil-
ity to track moving objects and a huge volume of spatio-
temporal data leads to more studies on trajectory mining, es-
pecially outlier detection among traffic data. Sun et al. [13]
proposed a measure, spatial local outlier measure (SLOM),
to capture the local behaviour of trajectory data in their spa-
tial neighbourhood. This measure takes into account the

local stability around a spatial point and reports outliers in
highly unstable areas. There are also studies about temporal
outlier detection. One example is [14], which proposed Tem-
poral Outlier Discovery (TOD) framework and utilizes ag-
glomerated temporal information of the entire dataset to de-
tect outliers which are determined based on drastic changes
in the trends.

There are three closely related studies about traffic
anomaly detection, namely [5, 6, 8]. In Section 1, we
described the two-step framework for the first two related
studies [5, 6]. The two algorithms in [5, 6], the two state-
of-art algorithms, are region-based approaches. That is,
they both first need to partition the whole space into a
number of regions via all major road segments, and then
find “unexpected” movements from regions to regions. In
particular, [5] proposed an algorithm which detects Spatial-
temporal outlier (STO) and infers its causal interaction,
and [6] proposed a two-step mining and an optimization
framework for interring the root cause of anomalies. The
third closely related study is [8], which was an older study
compared with [5, 6]. The algorithm in [8] is an grid-
based approach. Instead of partitioning the whole space
into regions via road segments used in [5, 6], [8] partitions
the whole space into a number of regular grids in order
to find “unexpected” abnormal traffic patterns in the data
space. However, same as [5, 6], the algorithm in [8],
focusing on finding abnormal traffic patterns based on grids,
does not return abnormal traffic patterns on road segments,
studied in this paper. Returning abnormal traffic patterns on
road segments is more reasonable since all taxi trajectories
studied in [5, 6, 8] must lie on road segments and thus the
abnormal traffic patterns should be defined based on road



(a) (b)
Figure 6: Case Study 2: Results on Road Network between 8:00am to 8:30am, on January 16, 2012

segments.

5.2 Heat Diffusion Model To the best of our knowledge,
we are the first to introduce the Heat Diffusion Model to sim-
ulate the diffusion processes of traffic anomalies. We briefly
introduce the heat diffusion model and its applications as fol-
lows. Heat diffusion is a physical phenomenon such that in a
medium, heat always flows a position with high temperature
to a position with low temperature. Recently, heat diffusion-
based approaches have been successfully applied in various
domains such as classification and dimensionality reduction
problems [15, 16, 17]. In [17], Ma et al. used the diffusion
model to simulate the diffusion of product adoption for viral
marketing in social networks. In this paper, we model the
diffusion of anomalies as a process of heat diffusion.

6 Conclusion
In this paper, we propose a novel framework to detect and an-
alyze the traffic anomaly. The proposed framework consists
of two steps: 1) detecting the road segments with abnormal
traffic, and 2) inferring the major causes of all anomalies on
the road network. A deviation-based method and a diffusion-
based model were introduced to finish the two steps respec-
tively. With a large amount of GPS data collected from about
20 thousands taxi in Shenzhen, China over eight months, we
conduct comprehensive experiments to validate our methods.
The experimental results demonstrate that our methods are
better than the state-of-the-art algorithms. In the future, we
plan to discover more abnormal patterns from the trajectory
data.
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