A Appendix-l: Preliminaries for Gaussian Process B Appendix-II: Proof of Theorem 4.1

Regression Proof. Before we give this proof, we first give the following

The Gaussian Process Regressidnvolves two steps. lemma which will be used in the proof.

Firstly, we need to introduce tigrior by specifying gorior ] ]

mean functiorand aprior covariance function After that, LEMMA B.1. Given a confidence parametér € (0, 1),
we can use these functions to calculatpasterior mean there exist three constants,, C'> and C3 which are in-
function The posterior mean function is exactly the estilépendent ofi such that with probability at least — 4,
matorij(x) that we want. We introduce these two steps offle, 7 [(7(x) — f)?] < A whereA = M

by one in the following.

Consider the first step. Thprior of the Gaussian ! X . !
process based dfi; is specified by two components. ThéS Lieo>1/2: Wheren_(-_) €Flis the_ regression fu_nctlon_ for
first component is the mean function taking the features $itimating the conditional probability. We write it a6 ) if
an instance as an input, denoted #y-), and the second the context is clear. We define the hypothesis spade be

component is the covariance function taking two featurgl(") : A(-) = Ly)>1/2 foreachi(-) & F}. Letd be the

as an input, denoted b¥(-,-). In the second <:omp0nent,vC dir_nension OfH_' )
Given a functionj € F, x € X andf € [0,1], we

for any two featuresx; andx; wherei € [1,n] andj € define th losof 7. d db b
[1,n], k(x:, x,) outputs a real value denoting therrelation d€fine thesquare losof 7, denoted by; (x, /), to be

betweenx; andx,;. Formally, the distribution is represente X (Al )2
in the form ofGP(m(.), k(-,-)). te) g0, ) = (6) = §)

Following previous studies [9], we set the mean functidret G = {g;(-,-) : € F}. For simplicity, we writeg; (-, -)
m(-) to 0.5. We adopt th®adial Basis Function (RBHP] asg(-,-) if 7 is clear in the context.
as a covariance functioe(-, -) since it has a nice theoretical  In order to prove this lemma, we used the following
property to be used in our theoretical analysis. existing lemma (Lemma 20.8 in [14]).

We define am x n matrix denoted bys where the entry

at thei-th row and at thej-th column inK is k(x;, x;) for LEMMA B.2. ([14]) Suppose that we are given a sgt
i € [1,n] andj € [1,n]. This matrix will be used in the Of €lements and we observed elements inZ, namely

second step of the model. 21,22, ..., 2. Consider a clas of real-valued functions

Consider the second step. We definegibsterior mean defined on se¥, and suppose that for ea¢he £ and each
function of the Gaussian process as follows. According € 4 [l(2) < Ki| where K, is a real number greater
to [9], sincer(x) follows GP(m(x), k(-,-)) and the RBF than 0. Givene € (0,1), we denoteM (L, ¢) to be the

be a probability distribution orZ for whichE[i(z)] > 0 and

E[l(2)?] < K> - E[i(2)] for eachl € £ whereK, is another
real number at least 1. Then, fer> 0,0 < o < % and
n > max{4(K; + K3)/(a?¢), Kf/(oﬂe)},

Proof. Givenx € X, the hypothesis(x) used in this paper

(A1) i(x) = k(x)T (K + oT)7'f.

wherek(x) = {k(x,x;)},,f = {f;}, andI denotes the

n x n identity matrix We say that(x, x;) is aninstance- PrdleL, E”(Z)]E‘[f(lz%%; 20 > )
based kernel functiowherex € X and: € [1,n] since it o 0Pen
involves an instance with its featuxe. < 2M(L, ) exp (— SK;+324K5 )+
N i i i - e (Y2€77,
Note thatj(x) can be written as a weighted linear com AM(L, 3= exp (— e )

bination of instance-based kernel functions. Specificilly
can be written aé(x)” a wherea is ann-dimensional vector

and
Consider a functiog € G. Note that forank € X and

. f € 0,1, lg(x, f)| < 1 andE[g(x, )?] < E[g(x. )]. Let

(A-2) a=(K+o"T)'f XF={(x,f):x€X,[e01]}
We use Lemma B.2 by setting the parameters in this
We define F to be thefunction classcontaining all lemma as follows. We sef to X F. Each observation;

possible functiongj(-) in the above form of;(x)”a such is set to(x;, f;) wherei € [1,n]. Besides, we sef = G,
that thea vector associated with each function hasfits | = g, a = % Ky =1andK,; = 1. By Lemma B.2, we
norm value at most a given valué where A is a positive have
real number given by userd. can be regarded as a parameter
describing the complexity of the function classAlfs larger, Pr(3g € G,Elg(x, f)] — 2 320, 9(xi, fi) > €)

then the complexity of this class is higher. (B.AX 6M(G, {5)exp (— 13?f§8)




We setd = 6M(G, 16)exp( 13558). Note that We have just given Lemma B.1. We are ready to give
M(G, 5) < (<)% wheree is the natural logarithmic basethe proof of Theorem 4.1.

[14]. Thus, we derive that In this proof, for conveniencé&,.. p(x)[] is represented
©5) - @(d NI ) ?ﬁ/al'[?[-], andPryp(x)(-) is represented byr(-). We know
3n d )
From (B.4) and (B.5), we derive that with probability at pad’(h) = Prxy(y # h(x)) = Prxy(y # h*(x))
1 — 4, there exists a function € G such that = Ex[Pryx(y # h(x))] = Ex[Pryx(y # h™(x))].
lg(x, f)] < cl+cz-1n:+cg»1n§ (B.12)= ]Ex[PTy|x(y # h(x)) — PTu\x(y # h*(x))]

Consider a certain featurg. We want to show that
whereCy = 2 (dln §+1In6), C2 = 23 andCs = 255, pr (y # h(x)) — Pry(y # h*(x)) can be expressed
Next, we want to find the upper bound oOfs|25(x) —1|- |k(x) — h*(x)|. Note thatPr,, (y # h(x))
> e 9(xi, fi)- is equal to eithen(x) or 1 — n(x). Similarly, Pr,«(y #
From (B.3), we know that h*(x)) is equal to either(x) or 1 — n(x). Consider two
n nooa casesCase 1:h(x) = h*(x). Inthis caselh(x) —h*(x)| =
(B6)  iig(xi fi) = i (i) — f3)? 0. Since there(is)no er£02 of hypotheﬁLs((co)mpar((ed)lwith
Note that7i(x;) = k(x;)Ta for i € [l,n]. Be- h"), wederivethar,(y # h(x))—Pryx(y # h*(x)) =
sides, it is easy to verify thafi can be expressed ad). Itiseasytoseethdtr, x(y # h(x))—Pryx(y # h*(x))
(K(x1), ., k(xX5), ..., k(x,))T. Let 77 = {f(x;)}7,. We can be expressed &&)(x) — 1] - [h(x) — h*(x)|. Case 2:
can deduce thall = Ka. Thus, it is easy to show that  h(x) # h*(x). Inthis case, sinca*(-) is optimal, we know
that Pr,x(y # h*(x)) = min{n(x),1 — n(x)} (because
(B (i) — fi)* = (Ka—f) - (Ka—f) h*(-) introduces the smallest error). Sinbéx) # h*(x),
we derive thatPr, . (y # h(x)) = max{n( ),1 —n(x)}.
From (B.6) and (B.7), we have Thus, we havePr (y # hg X)) — Pryx(y # h*(x)) =

(B.8) Y., g(xi,fi)=(Ka—f) - (Ka—f) [2n(x) — 1]. Note that|h(x) — h*(x)] = 1. Thus,
_ Pryx(y # h(x)) — Pryx(y # h*(x)) can be expressed
From Equation (A.2), we have as|2n(x) — 1| - |h(x) — h*(x)|. Therefore, from (B.12), we
a = (K402 'f conclude that
(K +0T)a = f (B.13) E(h) = E[2n(x) —1]-|h(x) — A" (x)]].
Ka—f = —o’a We know that wherh(x) # h*(x), we haveln(x) — 3| <
(B.9) (Ka—f)-(Ka—f) = o%a-a In(x) — A(x)|. This is because ify(x) < 3, then we
_ know thati(x) > 1 and thus we derive tha(x) — 3| <
From (B.8) and (B.9), we derive that In(x) — 7i(x)|. Besides, ify(x) > 3, then we have a similar
S g(xi, fi) = ota-a conclusion.
=LA Since [n(x) — 4| < [n(x) — 7(x)|, we derive that
Since|| a |= v/a-aand| a ||< A, we have [2n(x) — 1] < 2|n(x) — 7(x)|. Besides, from (B.13), we
have
(B.10) Yo g(xi, fi) < ot A2

- E(h) < E<2In(x) —0(x)| - |h(x) = b*(x)]]
Therefore, by combining (B.10) and (B.6), we have (B.14) = 2-E[n(x) — 71()] - Tnpoer o)

[ (X f)] S Cl+Cz~lnn+C3-ln%

. According to HoIder Inequality, we have
[|77( ) = 1(X)] - Ineozneo) < VE[( (x))?] -
whereC; = 13284 1p £ 4 925142 Cy = 13284 and (5 =
1525 ! HaT o 3 3 VvE Hrf: x);éh*I(Ex))Q] Since( Hh x);&h*(xﬁ) = Hh(x);&h*(x)<a
Since g(x,f) = (i(x) — f)?, we have "o V€ n(Z( = 000l Dozl S
E[((x) — f)?]< StCluniCubny | o vElnG) =ap - VEegeeol Since
g = n ' []Ih(x);éh (x)] = P”(h(x) 5& h*(x )), we have
81y A CitCalnntCy ‘Ind E[ln(x) = 2(x)] - Inmzheo) < VEln (x))?] -
(B.11) = " : \/Pr x) # h*(x)). From (B. 14) we derlve the follow-
ing.

We haveE[(7(x) — f)?] < A.

0 E(h) <2VE[n(x) —1(x))?]y/Pr(h(x) # h*(x))



After we find the upper bound of the right-hand side As we discussed beforé,(x) # h*(x) implies that
of the above inequality, we can complete the proof. In the(x) — 1| < |i(x) — n(x)| for anyx € X. Thus, we
following, we will show that with probability at least— &, haveE[jn(x) — 3]] < E[A(x) — n(x)|] when h(x) #
E[(n(x) — 7(x))?] < A andPr(h(x) # h*(x)) < c¢-Az. h*(x). From (B.17), we derive thak(x) # h*(x) and
With these results, we derive that with probability at leaBY]|s(x) — n(x)|] < VA impliesE[|n(x) — ]] < VA with
1-6,E(h) <2- VA Ve AT = 2. NE AT Thus, probability atleast — 6. Therefore, with probability at least
after substituting Equation (B.11) into the above inedualil — J,
we haveFE(h) < 2-/c- (M)Q%, where . .
Cr = B8(dIn g +1n6), Cy = 1828 andCy = 1328, Prih(x) #h (IX)’E“”(X) 16l < VA

The remaining part of this proof is to show the correct- < Pr(E[n(x) — =|] < VA)
ness of the upper bound of the right-hand side of the inequal- 2

ity. Firstly, we will show that with probability at leagt— 4, < A7 (By Definition 1)
5 2
E[(ngzce )] < A Thus, with probability at least — &,
E[(n(x) — /(x))2] + o (B.18)  Pr(h(x) #h*(x)) <c-A2
= E[(n(x) —i(x))* + (n(x) = f)°] Finally, we will show that event?; : “E[(n(x) —
= E[(n(x) —02(x)* + (n(x) - f)? 7i(x))2] < A” occurs if and only if event, : “ Pr(h(x) #
—2(n(x) — /(%)) (n(x) — n(x))] h*(x)) < ¢- A%” occurs. With this result, we conclude
_ IPYARRY 2 that with probability at least — ¢, these two events occur
E[(n(x) nA(x)) +(x) — f) simultaneously. Thus, we complete the proof. Note that
—2(n(x) = 7(x))(n(x) - f)] when we show Pr(h(x) # h*(x)) < c- A3”, we make
= E[((n(x) —1(x)) — (n(x) = f))?] use of ‘E[(n(x) — 7(x))2] < A”. Thus, if By is true, then
= E[(H(x) - f)?] E is true. Otherwise, thef; is not true.
Thus, we complete the proof. 0

we know that

aso? > 0.

From Lemma B.1, we derive that with probability at
leastl — 4,
(B.15) E[(n(x) - 7(x))*] < A

Next, we will show that with probability at least— ¢,
Pr(h(x) # h*(x)) < cAz.

Since (E[|(x) — n(x)[))* < E[(9(x) — n(x))?], from
(B.15), we derive that with probability at least- 4,

(B.16) E[Ji(x) —n(x)[] < VA
Since
Pr(h(x) # h*(x))
B[ x)h= ()]
= Elly o ne 0, El1700 - n(x) 1< VA]
HEh )1 () 1 10) - ) 1> VA]
and according to Inequality (B.16), the second term above
equals 0 (i.e.E[J7i(x) — n(x)|] < VA) with probability at
leastl — §, we claim that with probability at leagt— §,
Pr(h(x) # h*(x))
(BA7)= Pr(h(x) # 1" (x),E[li(x) —n(x)|] < VA)



