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Abstract

Classification is a fundamental topic in the literature of data mining
and all recent hot topics like active learning and transfer learning
all rely on the concept of classification. Probabilistic information
becomes more prevalent nowadays and can be found easily in
many applications like crowdsourcing and pattern recognition. In
this paper, we focus on a dataset which contains probabilistic
information for classification. Based on this probabilistic dataset,
we propose a classifier and give a theoretical bound linking the
error rate of our classifier and the number of instances needed
for training. Interestingly, we find that our theoretical bound is
asymptotically at least no worse than the previously best-known
bounds developed based on the traditional dataset. Furthermore,
our classifier guarantees a fast rate of convergence compared with
traditional classifiers. Experimental results show that our proposed
algorithm has a higher accuracy than the traditional algorithm. We
believe that this work is influential since it opens a new topic on the
probabilistic dataset, allowing researchers to study all topics related
to classification like active learning and transfer learning under this
new probabilistic setting.

1 Introduction

Classification is very important in a lot of real-life applica-
tions. Consider a binary classification. We are given atrain-
ing datasetT containingn instanceswhere each instance is
associated with an attribute setX denoting itsfeaturesand a
target attributeY . In the binary classification,Y is equal to
only two possible values calledlabels, namely 0 and 1. Since
Y simply has two possible values, we call this dataset the
clear-cut dataset. The goal is to find anaccurate classifier
based onT . Some measurements to evaluate the accuracy of
a classifier areprecision, recall andf-measure.

Motivation: The accuracy of a classifier heavily depends
on thequalitiesof the labels in the training datasetT . If
the quality of the labels is poor, then it is unlikely that the
accuracy of the classifier could be high. In most cases, the
label of each instance is given by an expert or a labeler. In the
literature of classification including traditional classification
and active learning, it is implicitly assumed that the quality
of the labels in the training dataset is guaranteed. However,
it may not always be satisfied in real-life applications.
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In many real-life applications, the label of each instance
in a training dataset comes naturally withprobabilitybecause
uncertaintyoccurs in its label. When each target variable in
the dataset is displayed as the corresponding probability,we
call this dataset theprobabilistic dataset.

Crowdsourcing:In crowdsourcing applications where each
label is given by multiple labelers [1], the proportion of la-
belers giving a particular label corresponds to the probability
that the instance has this label.

Medical Diagnosis: In the medical diagnosis application,
after a patient undergoes a medical examination, his/her
medical report shows some probabilities that s/he suffers
from some diseases. For example, paying 15RMB for the
electrocardiogram (ECG) test allows the patient to check
whether s/he suffers from Coronary Heart Disease with 50%-
60% probability [2].

Pattern Recognition:In the pattern recognition application,
each instance can be regarded as an image, and attribute
setX and attributeY can be regarded as its features and
the class/group it belongs to, respectively. In particular, in
astronomy, due to the image resolution problem, we can only
determine whether there is a volcano with some probability
from an image. If the surface contains no summit visible but
with evidence of flanks or circular outline, then a volcano
exists with a probability equal to 0.6.

Natural Language Processing:In the natural language pro-
cessing application, each of the 121 most frequent words is
associated with 7.8 meanings on average [3]. In some sen-
tences, some words have ambiguities due to the possibility
of different meanings. According to the process ofword
sense disambiguation(WSD) [4] which is a topic still be-
ing studied in the literature of natural language processing,
some ambiguities are filtered but there are still uncertainties
of the meanings for some words. [4] stated that according to
the previous results, about 65%-75.2% accuracy can be ob-
tained if we want to estimate the meaning of a word in the
context after the process of WSD is involved.

In most cases, the probabilistic dataset is more informa-
tive than the clear-cut dataset. Intuitively, since each label is
associated with a probability, we can make use of the proba-
bilistic information to find the “best” classifier. However,in
the traditional classification on the clear-cut dataset, ifthe la-
beler is not sure about the label of a new instance, s/he may
give asinglepossible label. Even if the labeler knows the



probability that the label of a new instance equals a particular
value, due to the restriction on the traditional classification
model, s/he gives only a single value. Therefore, the original
probabilistic information is lost in the clear-cut dataset.

Learning on Probabilistic Label: In this paper, we study
the problem calledLearning on Probabilistic Labels (LoPL).
Specifically, LoPL is defined as follows. Given a probabilis-
tic training datasetT and a new instance, we want to find a
classifier, denoted byh, and useh to estimate theprobability
that the content of the target attribute of the new instance is
equal to a particular value.

There are two challenges in problem LoPL. The first
challenge is that the probability of the label of each instance
in the probabilistic dataset may be inaccurate or have a low
quality. Apparently, the low-quality probabilities may reduce
the accuracy of the classifier. In this paper, we address
the above low-quality probabilities issue by considering the
existence of “noise” in the probabilities. Thus, we have a
noise-insensitive classifierto find the probability of the label.
In our experimental results, even after we introduced some
noise in the training dataset, the accuracy of the classifieris
still high (e.g., at least 85% in the “wine-red” dataset when
we introduced some noise in our experiment).

The second challenge is whether we can derive a the-
oretical bound about the relationship between the accu-
racy/error of a classifier and the number of instances needed
in the probabilistic dataset. Interestingly, we derive a the-
oretical result that the error of the proposed classifier is
Õ(n−

2+γ
4 ) wheren is the total number of instances used for

finding the classifier andγ is a noise parameter which is a
non-negative real number. Note that a smallerγ means there
is morenoisein the dataset. To the best of our knowledge,
this is thefirst work to derive a theoretical bound linking the
accuracy of a classifier and the number of instances needed
in the probabilistic dataset.

It is worth mentioning that a lot of recent studies
[5, 6, 7, 8] can use our theoretical bound on the error of the
classifier studied in the paper for their error bound analysis,
giving solid theoretical guarantees of their approaches. For
example, in [8], the authors proposed a novel SVM model
which learns a classifier based on the scenario that only a
portion of labels of the instances in the dataset are known.
Since the objective function in their optimization algorithm
belongs to a regularized empirical risk minimization, which
is similar to ours, our technique can also be used to derive
the error bound of their proposed SVM model. The differ-
ence between the minimization function in our paper and that
in their paper is that other than the model complexity, the
regularizer in their objective function also includes the dif-
ference between the true label proportion and the estimated
label proportion, which is more complicated for the analy-
sis. In [5], the authors investigated the conditions of a proper
loss function for estimating the posterior probability from

partially labeled data. We can naturally plug their strategy
into our algorithm for finding a proper loss, and derive the
error bounds based on the discovered proper loss. In [6],
the authors studied the problem of estimating labels from la-
bel proportions from multiple different perspectives, propos-
ing various strategies for solving this problem. Even though
they have already analyzed the convergence bounds for their
probability estimators, our theoretical analysis is rather dif-
ferent from theirs, which may provide a supportive evidence
on their theoretical results. In [7], the authors studied the
problem of learning fromgroup probabilities, which is re-
ferred to as the posterior probabilities for a subset of the
whole dataset. Since they did not provide a theoretical guar-
antee on their estimated probabilities on the whole dataset,
our theoretical analysis can be adaptively used for analyzing
their problem as well.

Contributions: We have the following contributions.
Firstly, to the best of our knowledge, we are the first to
provide a theoretical bound on the error of the classifier in
the probabilistic dataset. Specifically, the error of our pro-
posed classifier isO( 1

n
) which has the same or at least better

complexity bound compared with the bounds in the clear-
cut dataset. Secondly, we propose a classifier on probabilis-
tic datasets for problem LoPL by using one of the regres-
sion models. Any regression models whose regression func-
tion space is convex [9] (e.g., any algorithms in a general
class of penalized least square estimators) can also be used
for this classifier so that a theoretical bound can be derived.
This is an important feature, since it opens the opportunity
of leveraging the rich literature of regression models which
give a tight theoretical bound for our classifier. In this pa-
per, for illustration, we make use of a non-parametric regres-
sion model, Gaussian Process Regression (GPR) [9], for this
classifier. Although theexactbounds for different regression
models are different, we can still obtain the samecomplexity
bound ofÕ(n−

2+γ
4 ). Thirdly, we conducted experiments to

show that in general, the accuracy of our classifier is higher
than not only the accuracy of the traditional classifier and
some other comparable classifiers.

The rest of this paper is organized as follows. We de-
scribe the related work in Section 2. We then give our prob-
lem definition in Section 3. In Section 4, we introduce our
algorithm on the probabilistic training dataset. In Section 5,
we present our experimental results. In Section 6, we give a
discussion on this paper. Finally, we conclude our work and
discuss some future works in Section 7.

2 Related Work

2.1 Classification with Non-Classical LabelsThere are
many different forms ofnon-classicallabels for classifica-
tion [10, 11, 12, 13]. A non-classical label is the label of an
instance in the training dataset which is not just equal to a



single value such as 0 and 1.
[10] studied problem LoPL where the training datasetT

is probabilistic where each instance is associated with prob-
ability. To the best of our knowledge, [10] is the first work
studying problem LoPL and proposed anorder-basedclas-
sifier. Specifically, [10] first sorts the instances inT in de-
scending order of the probabilities of their labels. LetO be
this ordering of these instances. Then, it learns a ranking
function r(·) which takes the features of an instance as an
input and outputs a score such that the ranking function sat-
isfies two conditions, namely theorder-preservingcondition
and thetarget-consistentcondition. The order-preserving
condition requires that for any two instancesI andI ′ in T ,
wheneverI appears beforeI ′ in O, the ranking score ofI
is greater than that ofI ′. The target-consistent condition
requires that the target attribute of each instance is consis-
tent with the ranking score of this instance. This condition
corresponds to the constraint commonly used in the tradi-
tional algorithm of support vector machines. Specifically,
for any instanceI with its featuresx and its labely in T ,
(r(x) − b) · y ≥ 1 whereb is a real number to be learned.

In [10], r(·) is defined in form of a weighted sum of
all features and thus the weights involved in the ranking
function are to be learnt. In order to learn the ranking
function r(·), [10] proposed the quadratic programming
approach. Since in some cases, it is difficult to satisfy all
conditions, in this approach,slack variablesare introduced
to each condition so that some conditions can be violated.
After the ranking functionr(·) is learnt, given a new instance
I, [10] estimates the label ofI according to the linear
discriminator whose weights are equal to the weights used
in the ranking function.

However, there are several weaknesses of this approach.
Firstly, there is no theoretical bound linking the accuracy
of a classifier and the number of instances used inT .
However, in this paper, we find such a theoretical bound.
Secondly, the order-based approach is not accurate when the
dataset is not linearly separable. This is because the order-
based approach makes use of the linear discriminator which
does not perform well in non-linearly separable datasets.
However, our proposed classifier isnon-parametric, which
means that our classifier is accurate in not only linearly
separable datasets but also non-linearly separable datasets.

[11] is another study related to ours. Although [11] stud-
ied the classification problem from a very different perspec-
tive, it is worth mentioning it here. In [11], the authors stud-
ied the classification problem on the training dataset with
partial labels. Specifically, for each instanceI in the train-
ing dataset,I is associated with not only a set of features but
also a set of labels (instead of a single label). [11] assumed
that for each instance in this dataset, the set of labels associ-
ated with this instance contains one correct label. Under this
problem setting, [11] proposed a quadratic programming ap-

proach for estimating the label of a new instance. Clearly,
[11] is different from us although the set of labels associ-
ated to each instance in the training dataset can be thought
as uncertainty or probability. However, there is no informa-
tion about the exact probabilities of all labels in the labelset.
The best adaption is to set the probability of each label in the
set to be1

k
wherek is the number of labels in a label set.

It is expected that the accuracy of a classifier on this dataset
(which contains labels with equal probabilities for each label
set) is smaller than that of the classifier on the dataset with
real probabilities.

Some studies [12] allow the labeler to give a value not in
the domain of the target attribute to the label of an instance.
One example is [12] in which the labeler can give not only all
possible values from the domain of the target attribute when
s/he is confident to give the label but also a special value
called “difficult” when s/he is not confident. This is different
from ours since [12] does not consider any probabilistic
information in the training dataset.

Recently, multi-label classification has been studied ex-
tensively in the literature [13]. In multi-label classification,
each instance in the training dataset is associated with a set
of labels which means that this instance can belong to all la-
bels in this set at the same time. For example, an image can
belong to multiple classes (e.g., sun and sea). Note that this
problem is different from [11] which assumes that each in-
stance belongs toexactly onelabel even though each instance
is associated with a set of labels.

2.2 Traditional Classification Some studies about classi-
fication [14] gave theoretical bounds linking the accuracy of
a classifier and the number of instances used in a clear-cut
dataset. In [14], the upper bound on the excess error of a clas-
sifier on a clear-cut training dataset isO( log n

n
) if the dataset

follows therealizability assumption (i.e., there exists a clas-
sifier which canperfectlyclassify any dataset generated from
a distribution). With the help of thechainingtechnique, the
term logn on the numerator can be eliminated, and thus the
upper bound on the excess error has the order ofn equal to
-1. In a more general case that the data distribution does not
follow the realizability assumption, the error of a classifier

becomesO(
√

log n
n

) and thus has the order ofn equal to− 1
2

after the termlogn is removed with the chaining technique.
In the literature, introducing a noise condition in a training
dataset can bridge these two bounds. One example of a noise
condition is Tsybakov Noise Condition [15]. Tsybakov [15]
proposed a parameterized condition to model the noise, with
which the error of a classifier has the order ofn between -1
and− 1

2 , depending on how much noise the dataset has. Intu-
itively, if the dataset has no noise, then the order is -1. If the
dataset has too much noise, then the order is− 1

2 . In general,
if the dataset has some noise, the order is a value between
-1 and− 1

2 . Our work also studies the error complexity of



a classifier with a variation of Tsybakov Noise Condition.
The comparison between our result and the existing results
is presented in Section 4.

3 Problem Definition

Traditional Setting: Consider a binary classification with
two classes 0 and 1. In thetraditional setting, we are given
a training datasetT called aclear-cut datasetcontainingn
instances, namelyI1, I2, ..., In. Each instanceIi is associ-
ated with a feature vectorxi and a target attributeyi where
i = 1, 2, ..., n. Let X be the set of all possible feature vec-
tors. Note that there are two possible values, namely 0 and
1, in the target attribute. Aclassifierh(·) is defined to be a
hypothesisor a function which takes a feature vectorx as an
input and outputs either 0 or 1. In the following, for clarity,
in some cases, we simply denoteh(·) by h. In the traditional
setting, an accurate classifier is to be found based onT .

In order to give a theoretical analysis on theaccuracyof
a classifier learned fromT , following [14, 16, 17, 18, 19],
we assume the following process of data generation. Let
X be the random variable denoting the feature vector of an
instance andY be the random variable denoting the target
attribute of an instance. We assume that all instances are
generated according to an underlying joint distribution on
two random variablesX andY , denoted byP (X,Y ). Given
a feature vectorx, we denoteη(x) to be the conditional
probability P (Y = 1|X = x), the probability that an
instance with its featurex has its target attribute equal to
1. We also assume that the data points in the dataset are
identically independently distributed (i.i.d.)when the joint
distribution is considered. That is, the generation of an
instance is independent of the generation of another instance.

There are many measurements to evaluate the accuracy
of a classifier. In this paper, we adopt theexcess error
as a measurement since it was adopted extensively in the
literature [14]. Roughly speaking, the excess error of a
given classifier corresponds to the “difference” between the
expected errorgenerated by this classifier and theexpected
error generated by the “best” classifier.

Given a classifierh, the expected errorof h, denoted
by err(h), is defined to beP(x,y)∼P (X,Y )(y 6= h(x)).
The Bayes classifier, denoted byh∗, is defined to be the
classifier which gives the minimum expected error. Note
thath∗ = Iη(x)≥0.5. Given a classifierh, theexcess errorof
h is defined to be the difference between its expected error
and the expected error ofh∗. That is, theexcess errorof h,
denoted byE(h), is equal toerr(h) − err(h∗). Note that
E(h) must be non-negative.

Our Setting: In our setting, we are given theprobabilistic
datasetTf instead of theclear-cut dataset. Similar to
the traditional setting,Tf containsn instances, namely
I1, I2, ..., In. Each instanceIi is associated with a feature
vector xi and a fractional scorefi (instead of a target

attribute) wherei = 1, 2, ..., n. This fractional score is a real
number ranging from 0 to 1 and corresponds to the likeliness
that this instance belong to class 1. If this score is near to 1,
then it is likely that this instance belongs to class 1. If it is
near to 0, then it is unlikely that this instance belongs to class
1 and instead, it is likely that this instance belongs to class
0. This score can be obtained by labelers and some statistical
information (e.g., the medical statistical history) described in
Section 1. Note that if eachfi is equal to either 0 or 1 where
i = 1, 2, ..., n, then the probabilistic dataset is equivalent to
the clear-cut dataset.

Consider an instance with its featurex and its fractional
scoref . Since its fractional scoref is obtained by labelers
and some statistical information, it can be regarded as an
“observed” version ofη(x), the true probability that this
instance belongs to class 1, and thus it may deviate from
η(x). Following some existing studies [9], we model the
deviation with theGaussian white noise. Specifically, the
Gaussian white noiseis represented in the form of Gaussian
distribution N (0, σ2) whereσ is a standard deviation of
this distribution. With this noise condition, each fractional
scorefi in the training dataset follows the distribution of
N (η(x), σ2). Note that it is possible that a value randomly
sampled from the distributionN (η(x), σ2) is out of the
range between 0 and 1. In this case, the value can be
truncated accordingly. Specifically, if this value is smaller
than 0, then it can be assigned to 0. If this value is larger than
1, then it can be assigned to 1. However, in our theoretical
analysis, we simply adopt the distribution ofN (η(x), σ2) in
order to simplify our theoretical analysis. Considering the
truncation method is also possible but yields uninteresting
and tedious “boundary” cases.

Problem LoPL: We define our problem calledLearning on
Probabilistic Labels (LoPL)as follows. Given a probabilistic
training datasetTf , we want to learn a classifierh such that
whenever we see a new instanceI which has the information
about its featuresx but no information about its label, we
can estimate the conditional probabilityη(x) of I, where the
estimated probability is denoted bŷη(x), and then can give
a label (either 0 or 1) to instanceI according tôη(x).

Intuitively, whenη̂(x) is very similar toη(x), our clas-
sifier performs as good as the optimal achievable classifier
(i.e., Bayes classifier). So, the key of solving the proposed
problem well is to determine an accurate estimation ofη(x).

4 Fractional Score-based Classifier

In this section, we employ one of the regression models,
namelyGaussian Process Regression[9], to obtain an ac-
curate estimation̂η(x) of the conditional probabilityη(x)
for anyx. Any regression models whose regression function
space is convex can also be used. We name the classifierh
inferred from the estimated conditional probabilityη̂(x) as a
fractional score-based classifier(FSC).



After we learn a function which estimatesη(x) accu-
rately for anyx, when we see a new instanceI with its fea-
turesx, FSC can predict the label ofI as follows.

If η̂(x) ≥ 1
2 , then FSC assigns the label ofI to 1.

Otherwise, it assigns the label ofI to 0.
In the following, we propose to use a non-parametric es-

timation model calledGaussian Process Regression (GPR).

4.1 Gaussian Process Regression (GPR)Gaussian pro-
cess is a stochastic process which can be used as our es-
timator η̂(x) in order to estimate the conditional probabil-
ity η(x) for any instanceI with its featuresx. In order to
simplify our discussion, we just give the simplest version of
Gaussian Process Regression as an example to estimate the
fractional score. There are many recent studies about more
complicated versions of Gaussian Process Regression focus-
ing on the scalability issue with large datasets. Consider-
ing the scalability issue with more complicated versions is
an orthogonal issue in this paper. We use Gaussian process
regression to find̂η(x) andV ar(x) given a feature vector
x. Since Gaussian process regression is a well-known tech-
nique [20, 21], we do not include the detailed expressions in
this section. Interested readers can read the appendix of this
paper.

4.2 Theoretical Analysis In this section, we give the the-
oretical result linking theexcess errorof our classifier and
the number of instances needed in the training dataset.

In order to give a tight theoretical bound on the error, we
want to capture a characteristic of thedistributionof proba-
bilities, η(·), in the training dataset. This can be captured by
a noise condition calledTsybakov’s Noise Condition[15],
which has been widely adopted. In the following, we study
a variation of Tsybakov’s Noise Condition, which leads to a
tight error bound in our result.

DEFINITION 1. (NOISE CONDITION) Given two noise pa-
rametersc > 0 andγ ≥ 0, for anyt ∈ (0, 0.5),

Pr(E[|η(x) − 1
2 |] < t) < c · tγ(4.1)

Both c and γ are the parameters for describing the
distribution which the probabilities,η(x), in the dataset
follow. The noise condition can be explained as follows.
Suppose thatc andγ are known. Note thatη(x) is in the
range between 0 and 1. Ift is near to 0, then the inequality in
the condition states that the probability thatη(x) is close to
1
2 is very small. Ift is near to 0.5, then the inequality means
that the probability thatη(x) is close to either 0 or 1 is very
large.

As we described before,c andγ are used to describe the
distribution of the probabilities,η(x). If c is smaller, then it

is less likely thatη(x) is near to1
2 . If γ is smaller, thentγ

will be larger (whent ∈ (0, 0.5)). In this case, it is more
likely that η(x) is near to1

2 (which can be considered that
there is more noise in the dataset). Thus, ifc is very small
andγ is very large, it is less likely thatη(x) is near to1

2 .

THEOREM 4.1. (ERROR BOUND) Leth be our FSC classi-
fier. Given a confidence parameterδ ∈ [0, 1], there exist
three constantsC1, C2 andC3 which are independent ofn
andδ such that with probability at least1− δ,

E(h) ≤ 2
√
c(

C1+C2 lnn+C3 ln 1
δ

n
)

2+γ
4

Proof: The proof can be found in the appendix.
According to Theorem 4.1, it is easy to verify that

E(h) = O(( ln n
n

)
2+γ
4 ). Following the notation convention

adopted in the literature sincelnn = O(n), we write
E(h) = Õ(n−

2+γ
4 ) where theÕ notation is used to hide

the termlnn. We say that theorder of n for the bound of
E(h) is − 2+γ

4 . Note that if the order is more negative, then
E(h) is smaller and thush is more accurate. Sinceγ ≥ 0, it
is easy to verify that the order ofn ranges from−∞ to− 1

2 .
In general, the error boundE(h) is no worse than the

existing error bounds under the realizability setting, thenon-
realizability setting and the Tysbakov’s noise setting based
on clear-cut datasets. Under the realizability setting, our
error bound is no worse than the best-known error bound
[22] (i.e.,Õ(n−1)) whenγ ≥ 2. Whenγ ≥ 2, the order ofn
for our bound ranges from−∞ to−1, which is smaller than
or equal to−1, the order ofn for the best-known bound.

Under the non-realizability setting, our error bound is
always no worse than the best-known error bound [22] (i.e.,
Õ(n− 1

2 )) since the order ofn for our error bound is at most
− 1

2 , the order ofn for the best-known bound.
Under the Tysbakov’s noise setting, our error bound is

still always no worse than the best-known error bound [22]

(i.e., Õ(n−
γ+1

γ+2 )). Note that the order ofn for this best-
known bound (i.e.,− γ+1

γ+2 ) ranges from -1 to− 1
2 and is at

least2+γ
4 , the order ofn for our error bound. Thus, our error

bound is no worse than this best-known error bound.

5 Experiment

5.1 Experimental Setup We conducted experiments on a
workstation with 1.60GHz CPU and 32GB RAM. The exper-
iments are conducted on three types of real datasets. The first
type of datasets includes a real crowdsoucring dataset. The
second type of datasets includes a set of real datasets origi-
nally used for regression. The third type of datasets includes
a real dataset originally used for classification.

First of all, let us consider a real crowdsoucring dataset
for classification, in which the probabilistic labels can beob-
tained directly. The dataset we used here is the Yahoo!news



dataset [23]. Each article in the Yahoo!news dataset cor-
responds to an instance, of which the feature vector is ob-
tained after some common text preprocessing techniques like
the stop words elimination and the TF-IDF transformation.
The label of each article could be “politics”,“business” or
“technique”. All 895 articles (298 articles from the “poli-
tics” category, 298 articles from the “business” category and
299 articles from the “technique” category) in the dataset are
crawled by the authors in [23] and the labels are provided by
5 human annotators. Thus, the probabilistic label for each
instance is the average score of five 0-1 labels. Since we
consider the problem of binary classification in the paper,
we generated three binary datasets, namely the “business vs.
politics” dataset, the “business vs. technique” dataset and
the “politics vs. technique” dataset, by randomly choosing
instances such that in each generated binary dataset, half
of the instances belong to one category and half of the in-
stances belong to one of the other categories. For instance,
in the “business vs. politics” datasets, half of the instances
belong to “business” and half of the instances belong to “pol-
itics”. Thus, we have 3 binary datasets with probabilistic
labels (called probabilistic datasets).

Consider the second type of real datasets. These
real datasets originally used for regression are “cadata”,
“abalone”, “wine-red”, “wine-white”, “solar flare”, ”auto-
mpg”, ”housing” and ”breast-cancer”. The first one is from
the StatLib Archive [24], while others are from the UCI
repository [25]. Note that each real dataset is associated with
feature attributes and a target attribute in the regressionprob-
lem. It is obvious that in our problem setting, the feature
attributes originally used for regression corresponds to the
feature attributes for our problem. The normalized value of
the target attribute of each instance originally used for re-
gression, ranging from 0 to 1, corresponds to the probability
that the instance belongs to class 1. Each dataset contain-
ing these feature attributes and the probabilities corresponds
to the probabilistic datasetTo without any noise. This can
be regarded as the ground-truth dataset in our problem set-
ting. However, as we described in Section 3, we are only
given an “observed” version of the probabilistic dataset, says
Tf . Thus, we generateTf by adding a noise value randomly
picked fromN (0, σ2) to each probability. Each added value
corresponds to a fractional score inTf . Note that if the added
value is greater than 1, we re-set this value to 1. If it is
smaller than 0, we re-set this value to 0. In all experiments,
we setσ = 0.02 as the default values if we do not specify its
value.

For the third type of datasets, we adopt the movie review
dataset1, which has the same setting as our problem setting.
In the movie review dataset, each movie corresponds to an
instance where its feature attributes are the vocabulariesfrom

1http://www.cs.cornell.edu/people/pabo/movie-review-data/

the reviews provided by the IMDb users, its fractional score
is the average normalized user rating and its target attribute is
the sentiment porality of the movie reviews. This dataset was
originally used for Movie Review Sentiment Classification.
In the dataset, there are 2000 movies where 1000 movies
are labeled as “positive” and the remaining 1000 movies
are labeled as “negative”. Since each movie in the dataset
was rated by over 50 thousands users inIMDb.com and
according to the concept of crowdsourcings, the average
rating is closely related to the probability that a person has a
positive impression on this movie.

We implemented our proposed classifier calledFSC. We
compared it with four other comparative classifiers, namely
(1) the traditional method(Trad. Method), (2) theorder-
based method(OM) [10], (3) thepartial method(Partial)
[11] and (4) thedifficult method(Difficult) [12]. The first
method is the traditional approach while the last three meth-
ods were discussed in Section 2. (1) The traditional method
was implemented by the support vector machine (SVM).
Note that since this traditional method is based on the clear-
cut dataset, according toTo, we generated the corresponding
clear-cut datasetTc by setting the target attribute value of
each instance to 0/1 labels probabilistically according tothe
probabilities inTo. (2) The order-based method is based on
Tf . (3) The partial method is based on a dataset where each
target attribute may contain multiple labels. We generated
this dataset fromTf by assigning the target attributes of all
instances with their scores in the range in[0.3, 0.7] (which
can be regarded as an uncertain region) to{0, 1}, those with
their scores in the range in[0, 0.3) to {0} and those with
their scores in the range in(0.7, 1] to {1}. Then, we set the
probability of the label of each instance to be1/k wherek
is the number of labels in the target attribute of this instance.
After that, according to these probabilities, we can use the
partial method for classification. (4) The difficult method is
based on a dataset containing 0, 1, and “difficult” tags. We
generated this dataset fromTf by labeling all instances with
their scores in the range in[0.3, 0.7] to “difficult”, those with
their scores in the range in[0, 0.3) to 0 and those with their
scores in the range in(0.7, 1] to 1. Note that this method is
originally designed for multiple labelers. If the label of an
instance given by a labeler is “difficult”, its label will be es-
timated by other labelers who give its label as either 0 or 1.
Since our problem is for a single labeler and no other labelers
are involved, we adapted the difficult method by removing all
instances with “difficult” labels and trained a classifier based
on the remaining instances.

We performed a 10-foldcross-validationfor these ex-
periments. In particular, the training set was randomly parti-
tioned into 10 pieces, each of which was held out for testing
in one of the ten folds, while the remaining nine pieces were
collected for training. We evaluated a classifier in terms of
its average accuracy on the held-out test set. We repeated
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Figure 1: Performance of different classifiers on the “busi-
ness vs. politics” dataset from the Yahoo!news dataset
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Figure 2: Performance of different classifiers on the “busi-
ness vs. technique” dataset from the Yahoo!news dataset

the cross-validation four times for each classification algo-
rithm, so each reported value is an average of 40 results, and
the residual error for each point in the figure is the standard
deviation of the corresponding 40 results. For the last ex-
periment, we performed a 10-fold cross-validation from the
sampled training set, and also repeated the cross-validation
four times for each training dataset.

5.2 Experimental Results

5.2.1 Results for the First Type DatasetsIn this part,
we compared our FSC algorithm with the four competitive
algorithms in the three binary dataset from the Yahoo!news
dataset.

Comparison Among All Algorithms: We compare the ac-
curacies of the algorithms when we vary the number of in-
stances in each binary dataset with probabilities. The results
on the “business vs. politics” binary dataset, the “business
vs. technique” binary dataset and the “politics vs. tech-
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Figure 3: Performance of different classifiers on the “politics
vs. technique” dataset from the Yahoo!news dataset
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Figure 4: Accuracies of different algorithms on different
datasets

nique” dataset are shown in Figure 1(a), Figure 2(a) and Fig-
ure 3(a), respectively. FSC performs the best among all al-
gorithms in all these datasets. In particular, FSC has a higher
accuracy than theorder-basedmethod (OM) since the order-
based method does not perform well in non-linear separable
datasets like the datasets used in the experiment, which is
usually the case. Compared with the traditional classification
algorithm (i.e., SVM), FSC always has a higher accuracy in
all cases. The accuracy of thedifficult method is not that de-
sirable in most cases, even worse than the traditional method,
since only a single labeler is involved. FSC also outperforms
thepartial method which has no information about the true
fractional scores/probabilities. Besides, since the accuracies
of OM is closest to the accuracies of FSC among all other
baseline algorithms in most cases, we compute the p-value
of the paired t-test, denoted by “FSC vs OM” to compare the
significance of the “difference” between the accuracy of FSC
and the accuracy of OM for each Yahoo!news dataset. The
p-value is a measurement in the paired t-test, ranging from 0
to 1. When it is close to 0, we say that FSC is better than OM
in a statistical significance. The results on these datasetscan
be found in Figure 1(b), Figure 2(b) and Figure 3(b). In the
figures, we can see that the p-values in the figure are close
to 0 in most cases, which indicates that FSC is statistically
much better than OM.

5.2.2 Results for the Second Type Datasets Compari-
son Among All Algorithms: We compared our FSC algo-
rithm with other algorithms in the second type datasets. Fig-
ure 4 shows this result in four second-type datasets, namely
“solar flare”, “auot-mpg”, “housing” and “breast-cancer”.
Similarly, FSC outperforms the other competitive algorithms
in general.

In order to give more experiments on different datasets,
in the following, we conducted experiments on other
datasets, namely “abalone”, “cadata”, “wine-red” and “wine-
white”, to study the effect of different factors.

Effect of Sample Size:In Figure 5, we study how the sample
size affects the accuracies of all algorithms. In this figure, the
accuracies of all algorithms increase with the sample sizen.
Similarly, our FSC classifier performs the best.
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Figure 5: Effect of sample sizen on the accuracies of different classifiers
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Figure 6: Effect ofσ on the accuracy of our FSC classifier
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Figure 7: Performance of different classifiers on the movie
review dataset with the paired t-test: FSC vs OM

Effect of Noise: We want to study the accuracy of our FSC
classifier when some noise is introduced. For the interest
of space, we show the results on only two datasets, namely
wine-white and wine-red. Figure 6 shows that the accuracy
of FSC is still high even whenσ, denoting the standard
deviation of the Gaussian noise introduced to the training
set, increases. In Figure 6, whenσ increases from 0 (i.e.,
no error) to 0.2, the accuracy of FSC decreases. However,
we can see that the accuracy of FSC will not be affected too
much when some noise exists in the dataset.

5.2.3 Results for the Third Type DatasetFor the third
type of dataset (i.e., movie review dataset), we conducted
the experiment which is the same as the one conduced on
the Yahoo!news dataset. Specifically, we vary the number
of movie instances in the training dataset. Each time we
randomly pick half of the movie instances whose reviews
are “positive” and the remaining half are the movie instances
labeled “negative”. Through Figure 7(a), we can see that
FSC performs much better than other five algorithms in
terms of accuracy. Note that OM still performs slightly

better than the other four algorithms. Thus, we continued
to compute the p-value of the paired t-test, denoted by “FSC
vs OM”, comparing the statistical significance on the results
of FSC and OM shown in Figure 7(a). Figure 7(b) shows
that FSC is better than OM since the p-values are close to 0.

Conclusion:FSC has the greatest accuracy among all algo-
rithms in most cases. FSC has a better accuracy than not
only the traditional method but also the order-based method
studying problem LoPL. Besides, we also compared FSC
with other two methods which are related to ours, namely
the partial method and the difficult method. The accuracy of
these two approaches are lower than that of FSC. Besides,
the accuracy of FSC is not affected too much even if we in-
troduce some noise.

6 Discussion

In Section 3, we assume that the “observed” fractional score
of each instance follows a normal distribution with mean
equal to the true fractional score of this instance. We call
this assumption thegood-quality assumption. Under this
assumption, we say that each label has agood quality.
Even though we consider that the “observed” fractional
score can deviate from the true fractional score with a
normal distribution, the “observed” fractional score which
is given by a human, a labeler, may beover-estimated
or under-estimated. In other words, in these cases, the
“observed” fractional score of each instance may have the
mean not equal to the true fractional score. However, we
have the following two reasons to support that our good-
quality assumption makes sense in real-life applications.

The first reason is that it is reasonable to assume that the
quality of each label in the probabilistic training datasetis
good because most existing studies about traditional classifi-
cation have the same assumption on thequalityof the clear-
cut training dataset. Most existing studies about the tradi-
tional classification assumes that the qualities of the labels of
most instances are correct and thus the quality of the dataset
is considered as good. Some studies [26, 27] consider that
the quality of the clear-cut training dataset isnot verygood,
which means that the labels ofsomeinstances are incorrect
and can be regarded as the non-realizability setting, but they
also assume that the labels ofmostinstances are correct and



thus the quality of the dataset is rather good.
The second reason is that the “observed” fractional score

of each instance can be obtained from external statistical data
sources and thus the quality of the dataset can be considered
as good. In Section 1, we discussed a lot of applications
which come with statistical data sources. For example, the
medical diagnosis application can have the statistical sources
about the likeliness of suffering from a disease. The pattern
recognition application can have the scientistic statistics of
determining the chance of the volcano existence.

7 Conclusion and Future Work

In this paper, we studied an interesting classification on the
probabilistic dataset, which has a lot of real-life applications.
We showed the theoretical error bound is at least no worse
than the best-known error bound in the traditional classifi-
cation problem in the asymptotic sense. Finally, we con-
ducted experiments showing that our proposed classifier is
better than other comparable classifiers in terms of accuracy.

There are a lot of interesting future works. Firstly, study-
ing active learning, online learning and transfer learningin
the probabilistic dataset is a possible direction. Secondly,
considering the setting of semi-supervised learning is also
possible since here, we focused on supervised learning.
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