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Abstract In many real-life applications, the label of each instance

Classification is a fundamental topic in the literature dédaining N @ training dataset comes naturally wittobabilitybecause
and all recent hot topics like active learning and transéerting uncertaintyoccurs in its label. When each target variable in
all rely on the concept of classification. Probabilisticomhation the datasetis displayed as the corresponding probabity,
becomes more prevalent nowadays and can be found easilF@ this dataset thprobabilistic dataset

many applications like crowdsourcing and pattern recégmitin  Crowdsourcing:In crowdsourcing applications where each
this paper, we focus on a dataset which contains probabilidabel is given by multiple labelers [1], the proportion of la
information for classification. Based on this probabitisfiataset, belers giving a particular label corresponds to the prditabi
we propose a classifier and give a theoretical bound linkireg tthat the instance has this label.

error rate of our classifier and the number of instances eeqgeaical Diagnosis: In the medical diagnosis application,

for training. Interestingly, we find that our theoreticalumal is gfier g patient undergoes a medical examination, his/her
asymptotically at least no worse than the previously besih - egical report shows some probabilities that s/he suffers
bounds developed based on the traditional dataset. Fortier from some diseases. For example, paying 15RMB for the
our classifier guarantees a fast rate of convergence cothpatie electrocardiogram (ECG) test allows the patient to check

traditional classifiers. Experimental results show thatproposed whether s/he suffers from Coronary Heart Disease with 50%-
algorithm has a higher accuracy than the traditional allgori We = 504, probability [2].

believe that this work is influential since it opens a new ¢api the
probabilistic dataset, allowing researchers to studyogilcs related
to classification like active learning and transfer leagnimder this
new probabilistic setting.

Pattern Recognitionin the pattern recognition application,
each instance can be regarded as an image, and attribute
set X and attributeY” can be regarded as its features and
the class/group it belongs to, respectively. In partiguitar
astronomy, due to the image resolution problem, we can only
determine whether there is a volcano with some probability
from an image. If the surface contains no summit visible but
with evidence of flanks or circular outline, then a volcano
Sexists with a probability equal to 0.6.

1 Introduction

Classification is very important in a lot of real-life apglic
tions. Consider a binary classification. We are givéram-
ing datasetl’ containingn instancesvhere each instance i
associated with an attribute s€tdenoting itsfeaturesand a _
target attribute’”. In the binary classificatiort; is equal to Natural Language Processindn the natural language pro-
only two possible values calléabels namely 0 and 1. Sincecessing application, each of the 121 most frequent words is

Y simply has two possible values, we call this dataset fgsociated with 7.8 meanings on average [3]- In Some sen-
clear-cut dataset The goal is to find amccurate classifier €NC€S, some words have ambiguities due to the possibility

based of". Some measurements to evaluate the accuracy?’bfifferent meanings. According to the processvaird
a classifier ar@recision recall andf-measure sense disambiguatiofWvSD) [4] which is a topic still be-
ing studied in the literature of natural language procegsin

Motivation: - The accuracy of a classifier heavily dependg,ne ambiguities are filtered but there are still unceiiggnt
on thequalities of the labels in the training datasét If ¢yhe meanings for some words. [4] stated that according to
the quality of the labels is poor, then it is unlikely that thg, o previous results, about 65%-75.2% accuracy can be ob-

accuracy of the classifier could be high. In most cases, {404 if we want to estimate the meaning of a word in the
label of each instance is given by an expert or a labeler.dn tf) ot after the process of WSD is involved.

literature of classification including traditional clafgsation In most cases, the probabilistic dataset is more informa-
and active learning, it is implicitly assumed that the dyaliye than the clear-cut dataset. Intuitively, since eatielis

of the labels in the training dataset is guaranteed. HOwevRlsqiated with a probability, we can make use of the proba-
it may not always be satisfied in real-life applications.  pjjistic information to find the “best” classifier. Howevén,

the traditional classification on the clear-cut datas¢hdfla-
—The Hong Kong University of Science and Technology beler is not sure about the label of a new instance, s’lhe may
tUniversity of lllinois at Chicago give asingle possible label. Even if the labeler knows the



probability that the label of a new instance equals a pdeicupartially labeled data. We can naturally plug their strateg
value, due to the restriction on the traditional classifarat into our algorithm for finding a proper loss, and derive the
model, s/he gives only a single value. Therefore, the oalgirerror bounds based on the discovered proper loss. In [6],
probabilistic information is lost in the clear-cut dataset  the authors studied the problem of estimating labels frem la

Learning on Probabilistic Label: In this paper, we study bel proportions from multiple different perspectives, pos-

the problem calletiearning on Robabilistic Labels (LoPL) ing various strategies for solving this problem. Even tHoug _
Specifically, LoPL is defined as follows. Given a probabiliéhey have already analyzed the convergence bounds for their

tic training datasef’ and a new instance, we want to find Qrobability esti_mators_, our theoret?cal analysis ?S ratﬂ!'é
classifier, denoted by, and usé to estimate therobability ferent from theirs, which may provide a supportive evidence

that the content of the target attribute of the new instascel" their theoretpal results. In [7], thgla}uthors. Su_’d'ed th
equal to a particular value problem of learning frongroup probabilities which is re-

There are two challenges in problem LoPL. The ﬁrg?rred to as the posterior probabilities for a subset of the

challenge is that the probability of the label of each inseanWhOIG dataset. Since they did not provide a theoretical-guar
ee on their estimated probabilities on the whole dataset

in the probabilistic dataset may be inaccurate or have a | h ical Vs be adaptivel dqf .
quality. Apparently, the low-quality probabilities mayduece our_t eoretical analysis can be adaptively used for anagyzi
gir problem as well.

the accuracy of the classifier. In this paper, we addrég
the above low-quality probabilities issue by considerimg t
existence of “noise” in the probabilities. Thus, we have@ontributions: ~ We have the following contributions.
noise-insensitive classifiéo find the probability of the label. Firstly, to the best of our knowledge, we are the first to
In our experimental results, even after we introduced sofy®vide a theoretical bound on the error of the classifier in
noise in the training dataset, the accuracy of the classfieine probabilistic dataset. Specifically, the error of ous-pr
still high (e.g., at least 85% in the “wine-red” dataset whetpsed classifier i©( ;) which has the same or at least better
we introduced some noise in our experiment). complexity bound compared with the bounds in the clear-
The second challenge is whether we can derive a ti§&! dataset. Secondly, we propose a classifier on probabilis
oretical bound about the relationship between the acéig-datasets for problem LoPL by using one of the regres-
racylerror of a classifier and the number of instances nee§i! models. Any regression models whose regression func-
in the probabilistic dataset. Interestingly, we derive e-thtion space is convex [9] (e.g., any algorithms in a general

oretical result that the error of the proposed classifier Giss of penalized least square estimators) can also be used
O(n*HTW) wheren is the total number of instances used fdPr this classifier so that a theoretical bound can be derived

finding the classifier and is a noise parameter which is gl his is an important feature, since it opens the opportunity

non-negative real number. Note that a smajleneans there of leveraging the rich literature of regression models whic
is morenoisein the dataset. To the best of our knowledg8iVe @ tight theoretical bound for our classifier. In this pa-
this is thefirst work to derive a theoretical bound linking thd’€" forillustration, we make use of a non-parametric regre

accuracy of a classifier and the number of instances need@d m_odel, Gaussian Process Regress?on (GPR) [9], f_or this
in the probabilistic dataset. classifier. Although thexactbounds for different regression

It is worth mentioning that a lot of recent studiefodels are different, we can still obtain the saznenplexity

w2ty ) i
[5, 6, 7, 8] can use our theoretical bound on the error of tR@Und ofO(n~="). Thirdly, we conducted experiments to
classifier studied in the paper for their error bound ansjysthow that in general, the accuracy of our classifier is higher
giving solid theoretical guarantees of their approaches. ghan not only the accuracy of .the traditional classifier and
example, in [8], the authors proposed a novel SVM mockdMe other comparable classifiers.

which learns a classifier based on the scenario that only a The rest of this paper is organized as follows. We de-
portion of labels of the instances in the dataset are knowhribe the related work in Section 2. We then give our prob-
Since the objective function in their optimization alghrit |€m definition in Section 3. In Section 4, we introduce our
belongs to a regularized empirical risk minimization, whicalgorithm on the probabilistic training dataset. In Setto

is similar to ours, our technique can also be used to derfyg Present our experimental results. In Section 6, we give a
the error bound of their proposed SVM model. The dif-fefi!SCUSSIOI’] on this paper. F|_naIIy, we conclude our work and
ence between the minimization function in our paper and tig4gcuss some future works in Section 7.

in their paper is that other than the model complexity, the

regularizer in their objective function also includes the d2 Related Work

ference between the true label proportion and the estima®eti Classification with Non-Classical LabelsThere are
label proportion, which is more complicated for the analyaany different forms ofion-classicalabels for classifica-
sis. In [5], the authors investigated the conditions of gpro tion [10, 11, 12, 13]. A non-classical label is the label of an
loss function for estimating the posterior probabilityrfro instance in the training dataset which is not just equal to a



single value such as 0 and 1. proach for estimating the label of a new instance. Clearly,

[10] studied problem LoPL where the training datéBet[11] is different from us although the set of labels associ-
is probabilistic where each instance is associated with-prated to each instance in the training dataset can be thought
ability. To the best of our knowledge, [10] is the first worlas uncertainty or probability. However, there is no informa
studying problem LoPL and proposed arler-basecclas- tion about the exact probabilities of all labels in the ladetl
sifier. Specifically, [10] first sorts the instancesiinn de- The best adaption is to set the probability of each labelén th
scending order of the probabilities of their labels. Lebe set to be% wherek is the number of labels in a label set.
this ordering of these instances. Then, it learns a rankings expected that the accuracy of a classifier on this datase
function r(-) which takes the features of an instance as &mhich contains labels with equal probabilities for eadiela
input and outputs a score such that the ranking function ssgt) is smaller than that of the classifier on the dataset with
isfies two conditions, namely tterder-preservingondition real probabilities.
and thetarget-consistentondition. The order-preserving  Some studies [12] allow the labeler to give a value not in
condition requires that for any two instanceandl’ in T, the domain of the target attribute to the label of an instance
wheneverl appears beforé’ in O, the ranking score of One example is [12] in which the labeler can give not only all
is greater than that of’. The target-consistent conditiorpossible values from the domain of the target attribute when
requires that the target attribute of each instance is sensihe is confident to give the label but also a special value
tent with the ranking score of this instance. This conditiaralled “difficult” when s/he is not confident. This is differe
corresponds to the constraint commonly used in the traffom ours since [12] does not consider any probabilistic
tional algorithm of support vector machines. Specificallinformation in the training dataset.
for any instancel with its featuresx and its labely in T, Recently, multi-label classification has been studied ex-
(r(x) — b) -y > 1 whereb is a real number to be learned. tensively in the literature [13]. In multi-label classiftin,

In [10], »(-) is defined in form of a weighted sum ofeach instance in the training dataset is associated with a se
all features and thus the weights involved in the rankimg labels which means that this instance can belong to all la-
function are to be learnt. In order to learn the rankirggls in this set at the same time. For example, an image can
function r(-), [10] proposed the quadratic programminbelong to multiple classes (e.g., sun and sea). Note ttet thi
approach. Since in some cases, it is difficult to satisfy aitoblem is different from [11] which assumes that each in-
conditions, in this approacisjack variablesare introduced stance belongs texactly ondabel even though each instance
to each condition so that some conditions can be violatéslassociated with a set of labels.

After the ranking functiom(-) is learnt, given a new instance

I, [10] estimates the label of according to the linear2.2 Traditional Classification Some studies about classi-
discriminator whose weights are equal to the weights ud@zhtion [14] gave theoretical bounds linking the accuraty o
in the ranking function. a classifier and the number of instances used in a clear-cut

However, there are several weaknesses of this approalziaset. In[14], the upper bound on the excess error of a clas
Firstly, there is no theoretical bound linking the accuraayfier on a clear-cut training datase@sél”%) if the dataset
of a classifier and the number of instances usedl'in follows therealizability assumption (i.e., there exists a clas-
However, in this paper, we find such a theoretical boursifier which camperfectlyclassify any dataset generated from
Secondly, the order-based approach is not accurate wheretligstribution). With the help of thehainingtechnique, the
dataset is not linearly separable. This is because the-ordemlog n on the numerator can be eliminated, and thus the
based approach makes use of the linear discriminator whigiper bound on the excess error has the order @fual to
does not perform well in non-linearly separable dataset$. In a more general case that the data distribution does not
However, our proposed classifiernien-parametric which follow the realizability assumption, the error of a clagsifi

means that our classifier is accurate in not only Iinearll)yécome@( /logn) and thus has the order afequal to—2
separable datasets but also non-linearly separable tatase o . . 2
[11]is another study related to ours. Although [11] stw?fter the termogn is removed with the chaining technique.

. e : n the literature, introducing a noise condition in a trai

ied the classification problem from a very different perspeg, . .
T T ataset can bridge these two bounds. One example of a noise
tive, it is worth mentioning it here. In [11], the authorsdtu

. . o condition is Tsybakov Noise Condition [15]. Tsybakov [15]
led the classification problem on the training dataset W'E'Poposed a parameterized condition to model the noise, with
partial labels Specifically, for each instandein the train- ,

; ) . . which the error of a classifier has the ordemofetween -1
ing dataset] is associated with not only a set of features b

. : —1, depending on how much noise the dataset has. Intu-
also a set of labels (instead of a single label). [11] assum |\(/%Iy, if the dataset has no noise, then the order is -1héf t

that for each instance in this dataset, the set of labelsass . .
ated with this instance contains one correct label. Undsr tgataset has too much noise, then the orde@s In general,
) if the dataset has some noise, the order is a value between

problem setting, [11] proposed a quadratic programming QR'and—%. Our work also studies the error complexity of



a classifier with a variation of Tsybakov Noise Conditiorattribute) wheré = 1,2, ..., n. This fractional score is a real
The comparison between our result and the existing resultsnber ranging from 0 to 1 and corresponds to the likeliness

is presented in Section 4. that this instance belong to class 1. If this score is hear to 1
then it is likely that this instance belongs to class 1. Ikit i
3 Problem Definition near to 0, then it is unlikely that this instance belongs &ssl

Traditional Setting: Consider a binary classification withl @nd instead, it is likely that this instance belongs to<las
two classes 0 and 1. In theaditional setting, we are given 0. This score can be obtained by labelers and some stdtistica
a training dataseT called aclear-cut datasetontainingn information (e.g., the medical statistical history) désed in
instances, namelyi, I, ..., I,. Each instancd; is associ- Section 1. Note that if eachi is equal to either O or 1 where
ated with a feature vector; and a target attributg; where ¢ = 1,2,...,n, then the probabilistic dataset is equivalent to
i =1,2,...,n. Let X be the set of all possible feature vecthe clear-cut dataset. o _ _
tors. Note that there are two possible values, namely 0 and Consider an instance with its featurend its fractional
1, in the target attribute. Alassifierh(-) is defined to be a Scoref. Since its fractional scorg is obtained by labelers
hypothesi®r a function which takes a feature vectoas an and some statls_t|cal information, it can be. _regarded as an
input and outputs either 0 or 1. In the following, for clasity©0served” version ofy(x), the true probability that this
in some cases, we simply dendig) by k. In the traditional instance belqngs to class_ 1, and th.us it may deviate from
setting, an accurate classifier is to be found basefi.on ~ 7(x). Following some existing studies [9], we model the

In order to give a theoretical analysis on #eeuracyof deviation with theGaussian white noiseSpecifically, the
a classifier learned fror#, following [14, 16, 17, 18, 19], Qau_ssia_n white noisis represented in the form of qussian
we assume the following process of data generation. ditribution N'(0,0?) whereo is a standard deviation of
X be the random variable denoting the feature vector of @lis distribution. With this noise condition, each fraciz
instance and” be the random variable denoting the targ€€0re fi in the training dataset follows the distribution of
attribute of an instance. We assume that all instances Af&1(x),o%). Note that it is possible that a value randomly
generated according to an underlying joint distribution i@mpled from the distributioV(n(x), o) is out of the
two random variable& andY’, denoted by?(X,Y). Given range between 0 and 1. In this case, the value can be
a feature vectork, we denoten(x) to be the conditional truncated acpordmgly. S_pecmcally, if tr_ns valug is sreall
probability P(Y = 1|/X = x), the probability that an than O,t_hen it can be_ass,lgned to 0. If this value is Iargert_ha
instance with its feature has its target attribute equal tol, then it can be assigned to 1. However, in our theoretical
1. We also assume that the data points in the dataset@alysis, we simply adopt the distribution®f((x), o) in
identically independently distributed (i.i.dyhen the joint order to simplify our theoretical analysis. Considering th
distribution is considered. That is, the generation of &ncation method is also possible but yields unintergstin
instance is independent of the generation of another instarfNd tedious “boundary” cases.

There are many measurements to evaluate the accuRgblem LoPL: We define our problem callddearning on
of a classifier. In this paper, we adopt tegcess error Probabilistic Labels (LoPL)as follows. Given a probabilistic
as a measurement since it was adopted extensively in tifaéning datasef’;, we want to learn a classifiér such that
literature [14]. Roughly speaking, the excess error ofwveghenever we see a new instarfc&hich has the information
given classifier corresponds to the “difference” between tabout its features but no information about its label, we
expected errogenerated by this classifier and tbepected can estimate the conditional probabilifyx) of I, where the

error generated by the “best” classifier. estimated probability is denoted ljyx), and then can give
Given a classifierh, the expected errorof i, denoted a label (either O or 1) to instandeaccording taj(x).
by err(h), is defined to beP ,)~px,v)(y # h(x)). Intuitively, whensj(x) is very similar ton(x), our clas-

The Bayes classifierdenoted byh*, is defined to be the sifier performs as good as the optimal achievable classifier
classifier which gives the minimum expected error. Nofee., Bayes classifier). So, the key of solving the proposed
thath* = I, x)>0.5- Given a classifieh, theexcess erroof problem well is to determine an accurate estimation(af).

h is defined to be the difference between its expected error

and the expected error &f. That is, theexcess erroof h, 4 Fractional Score-based Classifier

denoted byE(h), is equal toerr(h) — err(h”). Note that | this section, we employ one of the regression models,
E(h) must be non-negative. namely Gaussian Process Regressifg], to obtain an ac-
Our Setting: In our setting, we are given thgobabilistic curate estimationj(x) of the conditional probability;(x)
datasetT; instead of theclear-cut dataset Similar to for anyx. Any regression models whose regression function
the traditional setting, I’y containsn instances, namelyspace is convex can also be used. We name the clagsifier
I, I, ..., I,. Each instancd; is associated with a featuranferred from the estimated conditional probabilitik) as a
vector x; and afractional score f; (instead of a target fractional sore-basedlassifier(FSC).



After we learn a function which estimategx) accu- is less likely that)(x) is near to%. If v is smaller, thert”
rately for anyx, when we see a new instanfavith its fea- will be larger (whent € (0,0.5)). In this case, it is more

turesx, FSC can predict the label dfas follows. likely that n(x) is near to% (which can be considered that
If H(x) > % then FSC assigns the label éfto 1. there is more noise in the dataset). Thus; i very small
Otherwise, it assigns the label 6fto 0. and~ is very large, it is less likely thaj(x) is near tol

In the following, we propose to use a non-parametric _Is

timation model calledaussian Process Regression (GPR} HEOREMA4.1. (RRORBOUND) Leth be our FSC classi-

ier. Given a confidence parametére [0, 1], there exist
three constant§’;, Co and C3 which are independent af

4.1 Gaussian Process Regression (GPRJaussian pro-
y S P 2pdo such that with probability at least — 4,

cess is a stochastic process which can be used as ou
f[imatorﬁ(x) in o_rder to estima_te the conditional probabil- E(h) < 2\/E(cl+cz Inn+Cs ln%)HTW
ity n(x) for any instancd with its featuresx. In order to "

simplify our discussion, we just give the simplest versién o
Gaussian Process Regression as an example to estimate th
fractional score. There are many recent studies about more
complicated versions of Gaussian Process Regressmnfocus o 20y i ’ )

ing on the scalability issue with large datasets. Considérl?) = O((%*) 7). Following the notation convention
ing the scalability issue with more complicated versions 3opted in the literature sindein = O(n), we write
an orthogonal issue in this paper. We use Gaussian prodéds) = O(n~ ) where theO notation is used to hide
regression to findj(x) and Var(x) given a feature vectorthe termlnn. We say that therder of n for the bound of
x. Since Gaussian process regression is a well-known teBlb) is —%%. Note that if the order is more negative, then
nique [20, 21], we do not include the detailed expressionsfin) is smaller and thus is more accurate. Since> 0 it

this section. Interested readers can read the appendiisof gheasy to verify that the order afranges from-oc to —3
paper. In general, the error boun#(h) is no worse than the

existing error bounds under the realizability setting,riba-

4.2 Theoretical Analysis In this section, we give the the-realizability setting and the Tysbakov’s noise settingeloas
oretical result linking theexcess errof our classifier and On clear-cut datasets. Under the realizability setting, ou
the number of instances needed in the training dataset. €rror bound is no worse than the best-known error bound
In order to give a tight theoretical bound on the error, Wig2] (i.e.,O(n~")) wheny > 2. Wheny > 2, the order of
want to capture a characteristic of tHistribution of proba- for our bound ranges fromoc to —1, which is smaller than
bilities, (-), in the training dataset. This can be captured 9y equal to—1, the order of: for the best-known bound.
a noise condition calledsybakov's Noise Conditiofi5], Under the non-realizability setting, our error bound is
which has been widely adopted. In the following, we studjways no worse than the best-known error bound [22] (i.e.,

a variation of Tsybakov’s Noise Condition, which leads to@(n 2)) since the order of for our error bound is at most
tight error bound in our result. —1, the order ofx for the best-known bound.

Under the Tysbakov’s noise setting, our error bound is
DEFINITION 1. (NoISE CONDITION) Given two noise pa- still always no worse than the best-known error bound [22]
~ 1
rametersc > 0 andy > 0, for anyt € (0,0.5), (i.e., O(n~7+)). Note that the order of for this best-
known bound (i.e. —7—“) ranges from -1 to— and is at
Ieast”” the order oh for our error bound. Thus, our error
bound is no worse than this best-known error bound.

%roof: The proof can be found in the appendix.
According to Theorem 4.1, it is easy to verify that

(4.1) Pr(E[|n(x) — %H <t)<c-tv

Both ¢ and v are the parameters for describing the Experiment
distribution which the probabilitiesy)(x), in the dataset 5.1 Experimental Setup We conducted experiments on a
follow. The noise condition can be explained as followsworkstation with 1.60GHz CPU and 32GB RAM. The exper-
Suppose that and~ are known. Note thaf(x) is in the iments are conducted on three types of real datasets. The firs
range between 0 and 1.#fs near to 0, then the inequality intype of datasets includes a real crowdsoucring dataset. The
the condition states that the probability thgk) is close to second type of datasets includes a set of real datasets origi
% is very small. Ift is near to 0.5, then the inequality meansally used for regression. The third type of datasets iretud
that the probability tha(x) is close to either 0 or 1 is verya real dataset originally used for classification.
large. First of all, let us consider a real crowdsoucring dataset
As we described before,andy are used to describe thefor classification, in which the probabilistic labels candie
distribution of the probabilities;(x). If ¢ is smaller, then it tained directly. The dataset we used here is the Yahoo!news



dataset [23]. Each article in the Yahoo!news dataset ctire reviews provided by the IMDb users, its fractional score
responds to an instance, of which the feature vector is abthe average normalized user rating and its target atéribu
tained after some common text preprocessing techniques tike sentiment porality of the movie reviews. This dataset wa
the stop words elimination and the TF-IDF transformatioariginally used for Movie Review Sentiment Classification.
The label of each article could be “politics”,“business” din the dataset, there are 2000 movies where 1000 movies
“technique”. All 895 articles (298 articles from the “poli-are labeled as “positive” and the remaining 1000 movies
tics” category, 298 articles from the “business” categarg aare labeled as “negative”. Since each movie in the dataset
299 articles from the “technique” category) in the dataset avas rated by over 50 thousands usersiMdDb.com and
crawled by the authors in [23] and the labels are provided &gcording to the concept of crowdsourcings, the average
5 human annotators. Thus, the probabilistic label for eaging is closely related to the probability that a persos &a
instance is the average score of five 0-1 labels. Since pasitive impression on this movie.

consider the problem of binary classification in the paper, We implemented our proposed classifier cakf&C. We

we generated three binary datasets, namely the “business@mpared it with four other comparative classifiers, namely
politics” dataset, the “business vs. technique” datasdt gi) the traditional method(Trad. Method, (2) the order-

the “politics vs. technique” dataset, by randomly choositgised methodOM) [10], (3) the partial method(Partial)
instances such that in each generated binary dataset, Hdlf and (4) thedifficult method(Difficult) [12]. The first

of the instances belong to one category and half of the method is the traditional approach while the last three meth
stances belong to one of the other categories. For instarmats were discussed in Section 2. (1) The traditional method
in the “business vs. politics” datasets, half of the inseancwas implemented by the support vector machine (SVM).
belong to “business” and half of the instances belong to-“pdote that since this traditional method is based on the <clear
itics”. Thus, we have 3 binary datasets with probabilistaut dataset, according #,, we generated the corresponding
labels (called probabilistic datasets). clear-cut dataset,. by setting the target attribute value of

Consider the second type of real datasets. Thesarh instance to 0/1 labels probabilistically accordintheo
real datasets originally used for regression are “cadatpfpbabilities inT,. (2) The order-based method is based on
“abalone”, “wine-red”, “wine-white”, “solar flare”, "auto T'. (3) The partial method is based on a dataset where each
mpg”, "housing” and "breast-cancer”. The first one is frortarget attribute may contain multiple labels. We generated
the StatLib Archive [24], while others are from the UCthis dataset fronTs by assigning the target attributes of all
repository [25]. Note that each real dataset is associaitid vinstances with their scores in the rang€ir8, 0.7] (which
feature attributes and a target attribute in the regregsiol- can be regarded as an uncertain regior{)al }, those with
lem. It is obvious that in our problem setting, the featutieir scores in the range i, 0.3) to {0} and those with
attributes originally used for regression correspondséo their scores in the range 16.7,1] to {1}. Then, we set the
feature attributes for our problem. The normalized value pfobability of the label of each instance to bg: wherek
the target attribute of each instance originally used fer iis the number of labels in the target attribute of this instan
gression, ranging from 0 to 1, corresponds to the probgbil&fter that, according to these probabilities, we can use the
that the instance belongs to class 1. Each dataset contpartial method for classification. (4) The difficult methad i
ing these feature attributes and the probabilities comedp based on a dataset containing 0, 1, and “difficult” tags. We
to the probabilistic dataséf, without any noise. This cangenerated this dataset frdfi by labeling all instances with
be regarded as the ground-truth dataset in our problem #e¢ir scores in the range j0.3, 0.7] to “difficult”, those with
ting. However, as we described in Section 3, we are ortheir scores in the range [, 0.3) to 0 and those with their
given an “observed” version of the probabilistic datas@yss scores in the range if0.7, 1] to 1. Note that this method is
Ty. Thus, we generaté; by adding a noise value randomlyoriginally designed for multiple labelers. If the label of a
picked from\/(0, o%) to each probability. Each added valuéstance given by a labeler is “difficult”, its label will bese
correspondsto a fractional scorelip. Note that if the added timated by other labelers who give its label as either 0 or 1.
value is greater than 1, we re-set this value to 1. If it 8ince our problemis for a single labeler and no other labeler
smaller than 0, we re-set this value to 0. In all experimentsge involved, we adapted the difficult method by removing all
we setr = 0.02 as the default values if we do not specify itthstances with “difficult” labels and trained a classifiesed
value. on the remaining instances.

For the third type of datasets, we adopt the movie review We performed a 10-foldross-validationfor these ex-
dataset, which has the same setting as our problem settimgriments. In particular, the training set was randomlyipar
In the movie review dataset, each movie corresponds totmmed into 10 pieces, each of which was held out for testing
instance where its feature attributes are the vocabulades in one of the ten folds, while the remaining nine pieces were

collected for training. We evaluated a classifier in terms of

—_— its average accuracy on the held-out test set. We repeated
http://www.cs.cornell.edu/people/pabo/movie-revidata/ 9 y P
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Figure 1. Performance of different classifiers on the “bustigure 4: Accuracies of different algorithms on different
ness vs. politics” dataset from the Yahoo!news dataset datasets
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s 1 nique” dataset are shown in Figure 1(a), Figure 2(a) and Fig-
os | ure 3(a), respectively. FSC performs the best among all al-

o N | gorithms in all these datasets. In particular, FSC has ahigh

ST g ol N\ | accuracy than therder-basednethod (OM) since the order-

Partial = 01 e T

L7 1 based method does not perform well in non-linear separable
" o | f 4 brese Fgatasets like the datasets used in the experiment, which is
(&) The average accuracy (k) he prvalue of paired ttesC Fig | ally the case. Compared with the traditional classiéioat

. ) . .._algorithm (i.e., SVM), FSC always has a higher accuracy in
Figure 2: Performance of different classifiers on the bu%lll cases. The accuracy of théficult method is not that de-

ness vs. technique” dataset from the Yahoo!news Olat""se%irable in most cases, even worse than the traditional rdetho
since only a single labeler is involved. FSC also outperform
the cross-validation four times for each classificatioroalgihe partial method which has no information about the true
rithm, so each reported value is an average of 40 results, ga@tional scores/probabilities. Besides, since the mmies
the residual error for each point in the figure is the standggfloOM is closest to the accuracies of FSC among all other
deviation of the Corresponding 40 results. For the last %Se”ne a|gorithms in most cases, we Compute the p-va'ue
periment, we performed a 10-fold cross-validation from thg the paired t-test, denoted by “FSC vs OM” to compare the
sampled training set, and also repeated the cross-validatjignificance of the “difference” between the accuracy of FSC

acy(%)

60 -

Accur:

four times for each training dataset. and the accuracy of OM for each Yahoo!news dataset. The
_ p-value is a measurement in the paired t-test, ranging from 0
5.2 Experimental Results to 1. Whenitis close to 0, we say that FSC is better than OM

in a statistical significance. The results on these datasets
5.2.1 Results for the First Type Datasetdn this part, pe found in Figure 1(b), Figure 2(b) and Figure 3(b). In the
we compared our FSC algorithm with the four competitiigyures, we can see that the p-values in the figure are close
algorithms in the three binary dataset from the Yahoo!neyso in most cases, which indicates that FSC is statistically
dataset. much better than OM.

Comparison Among All Algorithms: We compare the ac-

curacies of the algorithms when we vary the number of i§-> 5 Results for the Second Type Datasets Compari-
stances in each binary dataset with probabilities. Theteesy,, Among All Algorithms: We compared our FSC algo-
on the “business vs. politics” binary dataset, the "busnesnm with other algorithms in the second type datasets: Fig
vs. technique” binary dataset and the “politics vs. tecflre 4 shows this result in four second-type datasets, namely
“solar flare”, “auot-mpg”, “housing” and “breast-cancer”.
Similarly, FSC outperforms the other competitive algarith
e T ingenerall.
] o7 ] In order to give more experiments on different datasets,
g os 1 in the following, we conducted experiments on other

oa 1 datasets, namely “abalone”, “cadata”, “wine-red” and “@#n
oa [T R, 1 white”, to study the effect of different factors.
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(a) The average accuracy (b) The p-value of paired t-tesC Fg_ffeCt of Sample Slze'ln. Figure 5, we .StUdy how the .Sample
oM size affects the accuracies of all algorithms. In this figtive
accuracies of all algorithms increase with the samplessize

Similarly, our FSC classifier performs the best.

Figure 3: Performance of different classifiers on the “pasit
vs. technique” dataset from the Yahoo!news dataset
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Figure 5: Effect of sample size on the accuracies of different classifiers

better than the other four algorithms. Thus, we continued
e to compute the p-value of the paired t-test, denoted by “FSC
"1 vs OM”, comparing the statistical significance on the result

( ol ] - | of FSC and OM shown in Figure 7(a). Figure 7(b) shows
ol | ol | that FSC is better than OM since the p-values are close to 0.

500 U‘UZ 0‘04 U.‘UE D‘DB U‘vl 0‘12 0‘14 0‘16 Uv‘lE 0.2 500 U‘UZ 0‘04 U.‘UE D‘DB U‘vl 0‘12 0‘14 0‘16 Uv‘lE 0.2 ConC|USIOn:FSC has the grea-test aCCuraCy among a” algo_
’ ’ rithms in most cases. FSC has a better accuracy than not
only the traditional method but also the order-based method

Figure 6: Effect ofr on the accuracy of our FSC classifierstudying problem LoPL. Besides, we also compared FSC
with other two methods which are related to ours, namely

(a) wine-white (b) wine-red
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oo 1 the partial method and the difficult method. The accuracy of
- o7 1 these two approaches are lower than that of FSC. Besides,
g 5 oo 1 the accuracy of FSC is not affected too much even if we in-
2 R | | troduce some noise.
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N - In Section 3, we assume that the “observed” fractional score
of each instance follows a normal distribution with mean
Figure 7: Performance of different classifiers on the mowgual to the true fractional score of this instance. We call
review dataset with the paired t-test: FSC vs OM this assumption thgood-quality assumption Under this
assumption, we say that each label hagaod quality
Effect of Noise: We want to study the accuracy of our FSEven though we consider that the “observed” fractional
classifier when some noise is introduced. For the interesbre can deviate from the true fractional score with a
of space, we show the results on only two datasets, namatymal distribution, the “observed” fractional score whic
wine-white and wine-red. Figure 6 shows that the accurasygiven by a human, a labeler, may lwer-estimated
of FSC is still high even whemr, denoting the standardor under-estimated In other words, in these cases, the
deviation of the Gaussian noise introduced to the trainif@pserved” fractional score of each instance may have the
set, increases. In Figure 6, whenincreases from 0O (i.e.,mean not equal to the true fractional score. However, we
no error) to 0.2, the accuracy of FSC decreases. HoweVveye the following two reasons to support that our good-
we can see that the accuracy of FSC will not be affected maality assumption makes sense in real-life applications.
much when some noise exists in the dataset. The first reason is that it is reasonable to assume that the
quality of each label in the probabilistic training datamset
5.2.3 Results for the Third Type DatasetFor the third good because most existing studies about traditionalifitass
type of dataset (i.e., movie review dataset), we conducttion have the same assumption ondhality of the clear-
the experiment which is the same as the one conducedcanhtraining dataset. Most existing studies about the tradi
the Yahoo!news dataset. Specifically, we vary the numbliemal classification assumes that the qualities of thel$adife
of movie instances in the training dataset. Each time west instances are correct and thus the quality of the datase
randomly pick half of the movie instances whose revievis considered as good. Some studies [26, 27] consider that
are “positive” and the remaining half are the movie instanctne quality of the clear-cut training datasenist verygood,
labeled “negative”. Through Figure 7(a), we can see thahich means that the labels sbmeinstances are incorrect
FSC performs much better than other five algorithms @amd can be regarded as the non-realizability setting, leyt th
terms of accuracy. Note that OM still performs slightlglso assume that the labelsrmbstinstances are correct and

(a) probabilistic data (b) clear-cut data



thus the quality of the dataset is rather good. [7]1 S. Rueping, “Svm classifier estimation from group prabab
The second reason is that the “observed” fractional score ties,” in Proceedings of the 27th International Conference on

of each instance can be obtained from external statistatald ~ Machine Learning (ICML-1Q)2010, pp. 911-918.

sources and thus the quality of the dataset can be considéfed™ X. Yu, D. Liu, S. Kumar, T. Jebara, and S.-F. Chang,

as good. In Section 1, we discussed a lot of applications ProPotion-svm for learning with label proportionsgrXiv

which come with statistical data sources. For example, t@? gregg‘str?gg’;?’q%ﬁii?;nlirocesses in machine ledrming

medical diagnosis application can have the statisticalcssu ) ’ ’

N . . Advanced Lectures on Machine Learnjpg. 63—71, 2004.
about the likeliness of suffering from a disease. The patteﬂo] Q. Nguyen, H. Valizadegan, and M. Hauskrecht, “Leagnin

recognition application can have the scientistic statistf classification with auxiliary probabilistic informatidnin In-
determining the chance of the volcano existence. ternational Conference on Data Mining (ICDM)IEEE, 2011.

[11] N. Nguyen and R. Caruana, “Classification with parti |
7 Conclusion and Future Work bels,” inKDD. ACM, 2008, pp. 551-559.

In this paper, we studied an interesting classification en 2] B- C. Wallace, K. Small, C. E. Brodley, and T. A. Trikatis,
probabilistic dataset, which has a lot of real-life appiizas. Who should label what? instance allocation in multiple @tp
We showed the theoretical error bound is at least no worse active learning.”ifSDM - SIAM/ Omnipress, 2011, pp. 176~
thap the best-knpwn error boun_d in the trad_itional classiﬂ-3] G. .Tsoumakas and 1. Katakis, “Multi-label classificat}
cation problem in the asymptotic sense. Finally, we €on-"ntemational Journal of Data Warehousing & Miningol. 3,
ducted experiments showing that our proposed classifier is no. 3, pp. 1-13, 2007.
better than other comparable classifiers in terms of acgurge4] M. Anthony and P. L. BartlettNeural network learning:
There are alot of interesting future works. Firstly, study- Theoretical foundations cambridge university press, 2009.
ing active learning, online learning and transfer learrimg [15] A. Tsybakov, “Optimal aggregation of classifiers intitcal
the probabilistic dataset is a possible direction. Seggndl learning,"The Annals of Statisti¢csol. 32, no. 1, pp. 135-166,
considering the setting of semi-supervised learning ie als 2004.

possible since here, we focused on supervised learning. [16] M. Balcan, A. Beygelzimer, and J. Langford, “Agnostittiae
learning,” inProceedings of the 23rd international conference
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