
A Proof of Theorem 3.1

In this appendix, we give the proof of Theorem 3.1. Before
we give the proofs, we first give some notations used in
the proofs in Section A.1. Then, we give the proof of
Theorem 3.1 in Section A.2.

A.1 Notations For the ease of presentation, we define
some new notations which will be used in the proofs.

In the training process, whenever we determine whether
we need to obtain the fractional score ofxi with probability
pi, if we obtain its fractional score,Qi is set to 1 and we can
obtain its fractional scorefi. Otherwise,Qi is set to 0 andfi
is an undefined value. Thus, each instance can be represented
by (xi, fi, pi, Qi).

Next, we give error measurements, called theexcess
square loss, which are based onbothan estimated function
η̂ and the “best” estimated function.

Given an estimator̂η ∈ F , a featurex and a fractional
scoref , we define theexcess square lossof η̂ to be

(A.1) gη̂(x, f) = ℓη̂(x, f)− ℓη̂∗(x, f)

Next, we define a setG which contains functions denot-
ing the excess square loss. Specifically, we defineG to be
{gη̂ : η̂ ∈ F}. For simplicity, we writegη̂ asg if η̂ is clear in
the context.

Given a functiongη̂ ∈ G, we defineE[gη̂] andÊt[gη̂] as
follows.

(A.2) E[gη̂] = Ex,f [gη̂(x, f)]

and

Êt[gη̂] =
1
t

∑t
i=1

Qi

pi
(ℓη̂(xi, fi)− ℓη̂∗(xi, fi)),(A.3)

Note that according to Equation (A.1) and Equation (A.2),
E[gη̂] = Ex,f [ℓη̂(x, f) − ℓη̂∗(x, f)]. E[gη̂] corresponds to
theexpected excess square lossof a functiongη̂ ∈ G.

We also defineǫ-coverandcovering numberas follows.
Given an error parameterǫ ∈ (0, 1) and a set̃G of functions,
namelyg1, ..., gN , where each function takes a feature inX
as an input and a value in[0, 1] as an output fori ∈ [1, N ],
G̃ is said to be anǫ-cover of G if for each g ∈ G, there
exists a functiongi ∈ G̃ such thatE[(gj(x) − g(x))2] ≤ ǫ.
Given an error parameterǫ ∈ (0, 1), we define theǫ-covering
numberof G, denoted byM(ǫ,G), to be the minimum size
of theǫ-cover ofG among all possibleǫ-covers ofG. Assume
thatG follows theuniform Glivenko-Canelli(UGC) property.
Then, we know thatM(ǫ,G) < ∞ for any ǫ > 0. We
defineM(ǫ,F) = M(ǫ,G). It is known that the complexity
of the ǫ-cover of a function class isO(1ǫ ) [15]. That is,
M(ǫ,G) = O(1ǫ ).

A.2 Major Idea of the Proof of Theorem 3.1 In the pre-
vious section, we defined some notations and some concepts.

In this section, we give the major idea of the proof of Theo-
rem 3.1, the major result of this paper.
Major Idea of Theorem 3.1: The following shows the
major idea of showing the proof of Theorem 3.1. Note that
in Algorithm 1, for thet-th iteration wheret ∈ [1, n], we
need to estimate the optimal valueη∗. The estimated value is
denoted bŷηt. After we have this estimated value, we create
a hypothesisht and set it toIη̂t(·)≥0.5. There are different
error measurements to evaluate theerror introduced by this
estimated value.

• The first error measurement is the expected excessive
square loss of̂ηt, denoted byE[gη̂] which is equal to the
difference between the square loss ofη̂t and the square
loss of η̂∗. Formally, it is equal toEx,f [ℓη̂t(x, f) −
ℓη∗(x, f)].

• The second error measurement is the expected differ-
ence between̂ηt and its fractional scoref . Formally, it
is equal toEx,f [|η̂t(x) − f |].

After we obtain the above two error measurements, we can
deriveE(ht).

In the following, we want to show the upper bound of
the first error measurement first in the following Lemma A.1.
Then, we show that the upper bound of the second error
measurement in the following Lemma A.2. Finally, we show
the upper bound ofE(hf ) in the following Lemma A.3.

LEMMA A.1. (FIRST ERROR MEASUREMENT) Let η̂t ∈
F , which is returned at thet-th round in Algorithm 1. For
a confidence parameterδ ∈ (0, 1), with probability at least
1− δ,

E[gη̂t ] ≤ 128 · lnM(ǫ/32,G)+ln 2
δ

p2mint
+ 2σ4A2

pmint

LEMMA A.2. (SECOND ERROR MEASUREMENT) Let
η̂t ∈ F , which is returned at thet-th round in Algorithm 1.
For a confidence parameterδ ∈ (0, 1), with probability at
least1− δ,

Ex,f [|η̂t(x)− f |] ≤
√
128 · lnM(ǫ/32,G)+ln 2

δ

p2mint
+ 2σ4A2

pmint

LEMMA A.3. (ERROR BOUND FORCLASSIFICATION)
Letht = Iη̂t≥0.5 be the classifier returned at thet-th round.
For a confidence parameterδ ∈ (0, 1), with probability at
least1− δ,

E(ht) ≤ c · (128 · lnM(ǫ/32,G)+ln 2
δ

p2mint
+ 2σ4A2

pmint
)

2+γ
4(A.4)

In the following, we give the proof of Lemma A.1,
the proof of Lemma A.2 and the proof of Lemma A.3 in
Section B, Section B.2 and Section B.3, respectively.



B Proof of Lemma A.1

Lemma A.1 is the lemma showing the upper bound of the
first error measurement,Ex,f [ℓη̂t(x, f) − ℓη∗(x, f)]. Note
thatgη̂(x, f) = ℓη̂(x, f)−ℓη̂∗(x, f). Lemma A.1 is a lemma
studying the upper bound ofEx,f [gη̂(x, f)]. In order to show
this, we first compute the upper bounds of the following
probabilities.

• Pr(E[g]−Êt[g]√
E[g]

≥ ψ) for any real numberψ ∈ (0, 1)

• Pr(E[g]−Êt[g]
E[g]+ǫ ≥ β) for any real numberβ ∈ (0, 1)

After knowing the upper bounds of these two probabilities,
we can show the correctness of Lemma A.1. The first upper
bound can be found in Lemma B.1, while the second upper
bound can be found in Lemma B.2.

LEMMA B.1. Given a functiong ∈ G, for any real number
ψ ∈ (0, 1),

Pr(E[g]−Êt[g]√
E[g]

≥ ψ) ≤ exp (− p2minψ
2t

8 )

LEMMA B.2. Given a functiong ∈ G and an error param-
eterǫ ∈ (0, 1), for any real numberβ ∈ (0, 1),

Pr(E[g]−Êt[g]
E[g]+ǫ ≥ β) ≤ exp (− p2minβ

2ǫt
8(1−β) )

Next, we show the proof of Lemma B.1 in Section B.1
and the proof of Lemma B.2 in Section B.1.1. Finally, we
give the proof of Lemma A.1 in Section B.1.2.

B.1 Proof of Lemma B.1 Now, we show the proof of
Lemma B.1.

Proof. (I) Construct a martingale sequence. In the follow-
ing, we construct a martingale sequence oft + 1 random
variables, namelyZ0, Z1, ..., Zt.

Given a functiong ∈ G, we definet+1 random variables
variablesZ0, Z1, Z2, ..., Zt. LetZ0 = 0. For anyi ∈ [1, t],
we define

Zi = i · pmin(E[g]− Êi[g])(B.5)

According to the definition ofE[g] andÊi[g], Zi can also be
written as follows.

Zi = pmin
∑i

j=1(E[ℓη̂ − ℓη̂∗ ]−
Qj

pj
((η̂(xj)− fj)

2 − (η̂∗(xj)− fj)
2))

For anyi ∈ [1, t],

E[Zi|Zi−1, ..., Z0]

= E[Zi−1 + pmin(E[ℓη̂ − ℓη̂∗ ]−
Qi

pi
((η̂(xi)− fi)

2 − (η̂∗(xi)− fi)
2))|Zi−1, ..., Z0]

= Zi−1 + pmin · Exi,fi [E[ℓη̂ − ℓη̂∗ ]−
((η̂(xi)− fi)

2 − (η̂∗(xi)− fi)
2)]|Zi−1, ..., Z0]

= Zi−1

Therefore, the sequence{Z0, Z1, Z2, ...Zt} is martingale
according to its definition.

(II) Applying a Hoeffding-type bound for the martin-
gale

In order to apply a Hoeffding-type bound for the mar-
tingale, we should calculate two terms beforehand. They are
E[Zt] and the upper bound on Var(Zi|Zi−1, ..., Z0).

First, we have

E[Zt] = t · pminE[E[g]− Êt[g]] = 0.(B.6)

Second,

Var(Zi|Zi−1, ..., Z0)

= Exi,Qi,fi [(Zi − E[Zi|Zi−1, ..., Z0])
2|Zi−1, ..., Z0]

= Exi,Qi,fi [(Zi − Zi−1)
2|Zi−1, ..., Z0]

−(η̂∗(xi)− fi)
2))2|{xj , fj , Qj}i−1

j=1]

= pmin · ((E[g])2 − 2(E[g])2 + 1
pi
E[g2])

= pmin · ( 1
pi
E[g2]− E[g])

≤ E[g2]

(B.7)

Since the function classF is a class of functions represented
as the weighted linear combination of instance-based kernel
functions, we know thatF is closure convex1 and |fi −
η̂t(xi)| ≤ 1 for any(xi, fi). Therefore, according to Lemma
20.9 in [2], we know that

E[g2] ≤ 4E[g].(B.8)

Combining Inequality (B.7) and Inequality (B.8), we
have

Var(Zi|Zi−1, ..., Z0) ≤ 4E[g](B.9)

According to Azuma’s inequality, for anyλ > 0,

Pr(Zt − E[Zt] > λ) ≤ exp (− λ2

2t·Var[Zt|Zt−1,...,Z0]
)

By substituting Equation (B.5) and Equation (B.6) into the
left hand side of the above inequality, we have

Pr(t · pmin(E[g]− Êt[g])− 0 > λ)

≤ exp (− λ2

2t·Var[Zt|Zt−1,...,Z0]
)(B.10)

Furthermore, after substituting Inequality (B.9) into theright
hand side of Inequality (B.10), we obtain

Pr(t · pmin(E[g]− Êt[g]) > λ) ≤ exp (− λ2

8t·E[g] )

Letψ = λ/(t · pmin
√
E[g]). Then, we have

Pr(E[g]−Êt[g]√
E[g]

> ψ) ≤ exp (− p2minψ
2t

8 )

So the proof is done.

1closure convexis defined in Definition 20.1 in [2].



B.1.1 Proof of Lemma B.2 We show the proof of
Lemma B.2 now.

Proof. According to Lemma B.1, giveng ∈ G, suppose that
E[g]− Êt[g] ≥ ψ

√
E[g]. Then, for anyψ′ > 0 we have two

cases:
(I) If E[g] ≥ (1 + 1/ψ′)2ψ2, thenE[g] ≥ Êt[g] + (1 +

1/ψ′)ψ2.
(II) If E[g] < (1 + 1/ψ′)2ψ2, thenE[g] ≥ Êt[g] +

ψ′

1+ψ′
E[g], and soE[g] ≥ (1 + ψ′)Êt[g].

In either case,E[g] ≥ (1 + ψ′)Êt[g] + (1 + 1/ψ′)ψ2.
Hence, given a fixed functiong ∈ G,

Pr(E[g] ≥ (1 + ψ′)Êt[g] + (1 + 1/ψ′)ψ2)

≤ exp (− p2minψ
2t

8 )

Choosingψ′ = β/(1− β) andψ2 = ǫβ2/(1− β), we have

Pr(E[g] ≥ 1
1−β Êt[g] + ǫ β

1−β ) ≤ exp (− p2minǫβ
2t

8(1−β) )

which implies the result.

B.1.2 Proof of Lemma A.1 After we know the correct-
ness of Lemma B.1 and Lemma B.2, we are ready to show
the correctness of Lemma A.1.

Proof. We divide our proof of Lemma A.1 into two steps.
Firstly, we resort to the Symmetrization technique to extend
the bound on the right hand side of Lemma B.2 from a fixed
function to a set of functions by using the idea of covering
numbersM(ǫ,G).

(I) Symmetrization
Denote by Ê′

t[g] the empirical measure in terms of
anothert instance-label pairs. That is,

Ê
′
t[g] =

1
t

∑t
i=1

Qt+i

pt+i
(ℓη̂(xt+i, ft+i)− ℓη̂∗(xt+i, ft+i))

Conventionally, we called theset instance-label pairs
{xt+i, ft+i, Qt+i, pt+i}ti=1 as “ghost samples”, which in-
dicates that they are mentioned for the sake of theoretical
analysis but are not required in the real learning process.

Letβ = 0.5 in Lemma B.2. Then, given a fixed function
g ∈ G,

Pr(E[g]− 2Êt[g] ≥ ǫ) ≤ exp (− p2minǫt
16 )(B.11)

For simplicity, let

p = Pr(∃g ∈ G s.t.E[g]− 2Êt[g] ≥ ǫ).(B.12)

It is easy to verify that

p = Pr(supg∈G E[g]− 2Êt[g] ≥ ǫ)

Let gs be the function achieving the supremum (note
that it depends on{(xi, fi, Qi, pi)}ti=1). We have

I
E[gs]−2Êt[gs]≥ǫIE[gs]−2Ê′

t[gs]≤ǫ/2
≤ I

Ê
′

t[gs]−Êt[gs]≥ǫ/4

Taking expectations with respect to the “ghost samples”,
we have

I
E[gs]−2Êt[gs]≥ǫ Pr′(E[gs]− 2Ê′

t[gs] ≤ ǫ/2)

≤ Pr′(Ê′
t[gs]− Êt[gs] ≥ ǫ/4)

According to Inequality (B.11), we have

Pr′(E[gs]− 2Ê′
t[gs] ≤ ǫ/2) ≤ exp (− p2minǫt

32 )(B.13)

Hence, by substituting Inequality (B.13) into Inequality
(B.13), we have

I
E[gs]−2Êt[gs]≥ǫ(1 − exp (− p2minǫt

32 ))

≤ Pr′(Ê′
t[gs]− Êt[gs] ≥ ǫ/4)

Then, taking the expectation with respect to
{xi, fi, Qi, pi}ti=1,

Pr(E[gs]− 2Êt[gs] ≥ ǫ)(1− exp (− p2minǫt
32 ))

≤ Pr(Ê′
t[gs]− Êt[gs] ≥ ǫ/4)

Whent ≥ 32 ln 2
p2minǫ

, we have

p ≤ 2Pr(supg∈G Ê
′
t[g]− Êt[g] ≥ ǫ/4)(B.14)

Define aǫ/32-cover setG′ of G, denoted by{gj : j =
1, ...,M(ǫ/32,G)}.

Then,G can be denoted as the union ofM(ǫ/32,G)
subsets. That is,G = G1 ∪ ... ∪ GM(ǫ/32,G). For each
j ∈ [1,M(ǫ/32,G)], the subsetGj is centered atgj with
radiusǫ/32.

Considering an union bound, we have

Pr(supg∈G Ê
′
t[g]− Êt[g] ≥ ǫ/4)(B.15)

≤ ∑M(ǫ/32,G)
j=1 Pr(supg∈Gj

Ê
′
t[g]− Êt[g] ≥ ǫ/4)

According to the definition of covering number, for any
g ∈ Gj ,

1
2t

∑2t
i=1

Qi

pi
|gj(xi, fi)− g(xi, fi)| ≤ ǫ/32(B.16)

According to Inequality (B.16), we have

Êt[g]− Êt[gj ] < ǫ/16.(B.17)

Ê
′
t[gj]− Ê

′
t[g] < ǫ/16.(B.18)



Combining (B.17) and (B.18), for anyg ∈ Gj ,

Êt[g]− Ê
′
t[g] < Êt[gj ]− Êt[gj] + ǫ/8

It follows

Pr(supg∈Gj
Ê
′
t[g]− Êt[g] ≥ ǫ/4)

≤ Pr(Ê′
t[gj ]− Êt[gj] ≥ ǫ/8)(B.19)

By substituting Inequality (B.19) into the right hand side
of Inequality (B.15), we have

Pr(supg∈G Ê
′
t[g]− Êt[g] ≥ ǫ/4)

≤ ∑M(ǫ/32,G)
j=1 Pr(Ê′

t[gj ]− Êt[gj] ≥ ǫ/8)(B.20)

By substituting Inequality (B.11) into the right hand side
of Inequality (B.20), we have

Pr(supg∈G Ê
′
t[g]− Êt[g] ≥ ǫ/4)

≤ M(ǫ/32,G) exp (− p2minǫt
128 )(B.21)

Then, by substituting Inequality (B.21) into the right
hand side of Inequality (B.14) and expressp in terms of its
definition shown in (B.12), we have

Pr(∃g ∈ G s.t.E[g]− 2Êt[g] ≥ ǫ)

≤ 2M(ǫ/32,G) exp (− p2minǫt
128 ),

which can also be written as: for anyg ∈ G, with probability
at least1− δ,

E[g] ≤ 2Êt[g] + 128 · lnM(ǫ/32,G)+ln 2
δ

p2mint
(B.22)

(II) Upper bounding the regularizer
In order to obtain our result in Lemma A.1, we need to

guarantee that the term2Êt[gη̂t ] also has dependence ont of
t−1.

Therefore, we proved that2Êt[gη̂t ] = O(t−1) in the
following. Since we know that̂ηt(·) is the minimizer of the
J ′[η̂] at thet-th round,

J ′[η̂t] =
1
2

∑t
i=1

Qi

pi
(η̂t(xi)− fi)

2 + σ2

2 ‖η̂t‖2H
which can be written as

J ′[α′] = |f ′ −Kα′|2 + σ2 · α′TK ′α′.(B.23)

whereα′ = { Q1√
p1
α1, ...,

Qt√
pt
αt}, f ′ = { Q1√

p1
f1, ...,

Qt√
pt
ft}

andK ′ is a t × t matrix, in which thei-th row and thej-th
column equalsQiQj

√
pipjk(xi,xj). The minimizerη̂t(·)

is achieved by differentiatingJ ′[α′] w.r.t. α′ and set the
derivative be 0. Denotêηt(·) by

∑t
i=1 α̂ik(xi, ·). Then we

have

σ2K ′α′ +K(Kα′ − f
′) = 0,(B.24)

which can be simplified as

|Kα′ − f
′| = |σ

2K ′α′

K
|(B.25)

Since every entry inK is greater than the corresponding
entry inK ′, the right hand side of the above equation is upper
bounded by|σ2

Iα′|. Therefore, we have

1
t

∑t
i=1

Qi

pi
(η̂t(xi)− fi)

2

= 1
t (f

′ −Kα′)2 ≤ σ4

t (Iα
′)2

= σ4

t

∑t
i=1

Qi

pi
α̂2
i ≤ σ4

pmint

∑t
i=1 α̂

2
i

≤ σ4A2

pmint

whereA is the upper bound on‖α̂‖ for any η̂ ∈ F .
So we know that

Êt[gη̂t ] ≤ 1
t

∑t
i=1

Qi

pi
(η̂t(xi)− fi)

2

≤ σ4A2

pmint
(B.26)

By substituting Inequality (B.26) into Inequality (B.22) with
respect togη̂t , we have the result of Lemma A.1.

B.2 Proof of Lemma A.2 It is easy to show the correct-
ness of Lemma A.2 as follows.

Proof. Firstly, we have

(Ex[|η̂t(x)− η(x)|])2 ≤ Ex[(η̂t(x)− η(x))2](B.27)

Since

(Ex,f [|η̂t(x)− f |])2
= (Ex[|η̂t(x) − η(x)|])2
= Ex[(η̂t(x) − η(x))2 − (η̂∗(x) − η(x))2]

= E[gη̂t ],(B.28)

we have

Ex,f [|η̂t(x)− f |] ≤
√
E[gη̂t ](B.29)

Then, we can simply obtain our result from the result of
Lemma A.1. So we are done.

B.3 Proof of Lemma A.3 Next, we show the proof of
Lemma A.3 as follows.

Proof. We start our proof from the definition ofE(ht).
For convenience,E

x∼P (X)[·] is represented byE[·], and
Pr

x∼P (X)(·) is represented byPr(·). That is,

E(ht)

= Pr(x,y)∼P (y 6= ht(x)) − Pr(x,y)∼P (y 6= h∗(x))

= E
x∼P (X)[Pry∼P (Y |X)(y 6= ht(x))

−Pry∼P (Y |X)(y 6= h∗(x))].



For a certain instanceI with feature spacex, if ht(x) =
h∗(x) for patternx, thenIy 6=ht(x)−Iy 6=h∗(x) = 0; otherwise,
sincePr(y 6= h∗(x)) = min{η(x), 1 − η(x)}, Pr(y 6=
ht(x)) = max{η(x), 1 − η(x)}. Therefore, we have

E(ht) = E[|2η(x) − 1||ht(x) − h∗(x)|].

Since|η(x)− 1
2 | ≤ |η(x)− η̂(x)| whenht(x) 6= h∗(x), we

can upper boundE(ht) as follows,

E(ht) ≤ E[2|η(x)− η̂t(x)||ht(x)− h∗(x)|]
= 2E[|η(x)− η̂t(x)|Iht(x) 6=h∗(x)](B.30)

According to Cauchy-Schwarz inequality, we have

E[|η(x) − η̂t(x)|Iht(x) 6=h∗(x)](B.31)

≤
√
E[(η(x) − η̂t(x))2]

√
Pr(ht(x) 6= h∗(x))

Notice that the right hand side of the above in-
equality is the product of

√
E[(η(x) − η̂t(x))2] and√

Pr(ht(x) 6= h∗(x)). The first term can be upper bounded
according to Lemma A.1. In the following, we consider the
second term.

Since ht is the classifier returned at thet-th round,
Lemma A.1’s result is achieved. That is, with probability
at least1− δ, Ex[|η̂t(x)− η(x)|] ≤ ∆t, where we use∆t to
represent the right hand side of the inequality in Lemma A.2
with respect toht. That is,

∆t =

√
128 · lnM(ǫ/32,G)+ln 2

δ

p2mint
+ 2σ4A2

pmint
(B.32)

Therefore, with probability at least1− δ,

Pr(ht(x) 6= h∗(x))(B.33)

= Pr(ht(x) 6= h∗(x)|Ex[|η̂t(x)− η(x)|] ≤ ∆t)

Observe that whenEx[|η̂t(x)−η(x)|] ≤ ∆t, ht(x) 6= h∗(x)
only if |η(x)− 1

2 | < ∆t. Therefore,

Pr(ht(x) 6= h∗(x)|Ex[|η̂t(x)− η(x)|] ≤ ∆t)(B.34)

≤ Pr(|η(x) − 1

2
| < ∆t)

According to the definition of Margin Assumption 1, we
can upper bound the right hand side of the above inequality
by the termc · ∆γ

t . Combining this result with Inequality
(B.33) and Inequality(B.34), we have, with probability at
least1− δ,

Prx(ht(x) 6= h∗(x)) ≤ c ·∆γ
t

Let us back to consider Inequality (B.31), where we
can find that the first term is upper bounded by∆t with
probability at least1− δ, while the second term is also upper

bounded by∆γ/2
t with probability at least1 − δ. Since

Lemma A.1 implies Lemma A.2, with probability at least
1− δ,

E(ht) ≤ c ·∆1+ γ
2

t(B.35)

By substituting Equation (B.32) (i.e., the definition of
∆t) into Inequality (B.35), we complete the proof.

B.4 Proof of Theorem 3.1 After we know that
Lemma A.1, Lemma A.2 and Lemma A.3 are correct,
we show the correctness of Theorem 3.1 as follows.

Proof. Suppose that the total number of rounds equalsn.
In the following, we useE[·] to representE{xi,fi}t−1

i=1
,xt

[·]
if there is no specification. According to the definition ofpt,
we have

E[pt]

= pmin ∨
Pr(η̂t(xt) ≥ 0.5)E[Pr(η(xt) < 0.5)|{xi, fi}t−1

i=1 , xt] +

Pr(η̂t(xt) < 0.5)E[Pr(η(xt) ≥ 0.5)|{xi, fi}t−1
i=1 , xt)]

≤ pmin ∨ Pr(η̂t(xt) ≥ 0.5, η(xt) < 0.5)

+Pr(η̂t(xt) ≥ 0.5, η(xt) < 0.5)

= pmin ∨ Pr(ht(xt) 6= h∗(xt))

Since we proved in Equation (B.33) that with probability at
least1− δ, Prx(ht(x) 6= h∗(x)) ≤ c · (1 ∧∆γ

t ), where the
definition of∆t can be found in Equation (B.32). Then, we
haveE[pt] ≤ pmin ∨ c · (1 ∧∆γ

t ).
So, the expected total number of label requests equals∑n

t=1 E[pt]. That is, with probability at least1− δ, the label
complexity is upper bounded by

T ≤ pmin · n ∨ c ·∑n
t=1(1 ∧∆γ

t )(B.36)

According to Lemma A.3, we have

n ≤
128 · lnM(ǫ/32,F)+ln 2

δ

p2min

+ 2σ4A2

pmin

ǫ
4

2+γ

(B.37)

Let θ = 128 · lnM(ǫ/32,F)+ln 2
δ

pmin
+ 2σ4A2. Then, according

to (B.32) and (B.37), we haven ≤ θ

pminǫ
4

2+γ

and∆t =
√

θ
pmint

. After we substitute the above inequality and

equation into Inequality (B.36), we have

T ≤ θ

ǫ
4

2+γ

∨ (c ·∑n
t=1(1 ∧ ( θ

pmint
))γ/2)

which ends the proof.


