A Proof of Theorem[3.1l In this section, we give the major idea of the proof of Theo-

In this appendix, we give the proof of Theoréml3.1. Befof6M3.1, the major result of this paper.

we give the proofs, we first give some notations used M@ajor Idea of Theorem 3.1 The following shows the

the proofs in Sectiofi Al1. Then, we give the proof dhajor idea of showing the proof of TheorémI3.1. Note that

Theoreni31L in Sectidn A.2. in Algorithm[d, for thet-th iteration wheret € [1,n], we
need to estimate the optimal valgie The estimated value is

A.l Notations For the ease of presentation, we defirféenoted by),. After we have this estimated value, we create
some new notations which will be used in the proofs. @ hypothesigi; and set it tol;, ()>o.5. There are different

In the training process, whenever we determine whet{f&FOr measurements to evaluate éweor introduced by this
we need to obtain the fractional scorexgfwith probability estimated value.

pi, if we obtain its fractional scor€); is setto 1 and we can , 1pe first error measurement is the expected excessive
obtain its fractional scorg;. Otherwise(); is setto 0 and; square loss of;, denoted byE[g,] which is equal to the
is an undefined value. Thus, each instance can be representeddiﬁerence between the squarg lossipind the square

by (Xufzaquz) Nk it 0. _
Next, we give error measurements, called txeess Igoi?xo%].. Formally, it is equal tdx, s[5, (x. /)
square losswhich are based obothan estimated function A
7 and the “best” estimated function. e The second error measurement is the expected differ-
Given an estimatofy € F, a featurex and a fractional ence betweer), and its fractional scor¢. Formally, it
scoref, we define thexcess square l0sg 7 to be is equal taEx, ¢[|7:(x) — f]].
(A.1) 9i(x, f) = La(x, f) — L= (%, f) After we obtain the above two error measurements, we can
_ _ _ ) deriveE(hy).
Next, we define a s&f which contains functions denot- | the following, we want to show the upper bound of

ing the excess square loss. Specifically, we definte be ihe first error measurementfirst in the following LenimalA.1.
{5 : ) € F}. For simplicity, we writeg;; asg if 7 is clearin Then we show that the upper bound of the second error

the context. measurement in the following LemmaA.2. Finally, we show

ol Given a functiory; € G, we defineE[g;] andE:[g;] @S the upper bound oF (k) in the following Lemm4&AB.
ollows.

LEMMA A.1l. (FRSTERRORMEASUREMENT) Let 7, €

(A-2) Elga] = Ex.flga(z, )] F, which is returned at the-th round in AlgorithniL. For
and a confidence parametére (0, 1), with probability at least
1-19,

(A3)  Eilgs) = L300 Li(ls(xi, fi) — Li- (x4, £2)),
o ' Elgy,] < 128 . RME/R29) g | 20'a7

Note that according to Equatioh (A.1) and Equation {A.2), Prmint Pmint

Elgs] = Exs[ls(x, f) = €3 (x, f)]. Elgy] corresponds to | emma A.2. (SECOND ERRORMEASUREMENT) Let
theexpected excess square la$s functiong;, € G. fi, € F, which is returned at the-th round in AlgorithniL.

We also define-coverandcovering numbeas follows. For a confidence parameter e (0,1), with probability at
Given an error parameterc (0, 1) and a seg of functions, |east1 — §

namelygs, ..., gn, Where each function takes a featureXin
qu.an irllput and a value in, 1] a§ an output foi € [1, N], E [7(x) — f]] < \/128~ mM(e/;,z,gt)Hn% + 20434;
G is said to be are-coverof G if for eachg € G, there Pmin
exists a functiory; € G such thatE[(g;(x) — g(x))?] < e.
Given an error parametere (0, 1), we define the-covering
numberof G, denoted byM (¢, G), to be the minimum size
of thee-cover ofG among all possible-covers ofG. Assume
thatg follows theuniform Glivenko-Canel{UGC) property.

min

LEMMA A.3. (ERRORBOUND FORCLASSIFICATION)
Leth, = L;,>0.5 be the classifier returned at theth round.
For a confidence parameter € (0, 1), with probability at
leastl — 4,

Then, we know thatM(e,G) < oo for anye > 0. We In M(€/32,G)+In 2 | 9,442\ 2+
. ! . . 4) E(hy) <c-(128- > 5 T

defineM(e, F) = M(e, G). Itis known that the complexny( ) E(h) < c- (128 Pinint * int)

of the e-cover of a function class i©(1) [15]. That is,

M(e,G) = O(3).

In the following, we give the proof of Lemmia_A.1,
A.2 Major Idea of the Proof of Theorem[3.1l In the pre- the proof of Lemma_Al2 and the proof of LemrhaA.3 in
vious section, we defined some notations and some concepextiod B, Sectioh Bl2 and Section B.3, respectively.



B Proof of LemmalA.dl Therefore, the sequend&y, Z1, Zs,...Z:} is martingale

Lemma[A.l is the lemma showing the upper bound of tRécording to its definition. _
first error measuremeni,, (£, (x, f) — £,-(x, f)]. Note (1) Applying a Hoeffding-typebound for the martin-
thatgy (x, f) = ls(x, f)—Ls- (x, f). LemmdAl is alemma 98l€ .
studying the upper bound &, ;[g; (x, f)]. In order to show In order to apply a Hoeffding-type bound for the mar-
this, we first compute the upper bounds of the followi gale, we should calculate two terms beforehand. They are
probabilities. [Z:] and the upper bound on \@&;|Z;_1, ..., Zo).
R First, we have
o Pr(Eldl=2ddl > ) for any real numbep € (0, 1) .

Elg] (B.6) E[Z:] =t pninE[E[g] — E¢[g]] = 0.
. Pr(E[j‘é][;]i[g] > B) for any real numbes € (0,1) Second,
After knowing the upper bounds of these two probabilities, Var(Z;|Z;i—1, ..., Zy)

we can show the correctness of LemmalA.1. The first upper _ Ex, 0..1.1(Zi — BZi| Zior, s Z))2| Zir, oory Zo]
bound can be found in LemrhaB.1, while the second upper - (2 — Zi )22, %]
bound can be found in LemrhaB.2. T eQuniar T s s s 2

=" (%) = fi)7) K=y, f5, @} 4]

LEmMMA B.1. Given a functiory € G, for any real number

¥ € (0,1), = Pmin - ((E[9])* - 2(E[g])* + --E[g])
E[g]—E:[g] Ponin¥?t = Pmin (p%]E[gz] — E[g])
PT(W > 1) < exp (— =) P

LEMMA B.2. Given a functiory € G and an error param- (B.7)
etere € (0, 1), for any real numbep € (0, 1),
Elg]—B.[o] 2 e Since the _funcuop clasg is a _clas_s of fu.nct|ons represented
Pr(Sggrre - 2 B) < exp (- 8(1-5) ) as the weighted linear combination of instance-based kerne

Next, we show the proof of LemniaB.1 in SectB.i“nCtionS* we know thafF is closure conveﬂ_ and |f; —
and the proof of Lemm&B.2 in Section BAL.1. Finally, wi(Xi)| < 1forany(x;, f;). Therefore, according to Lemma

give the proof of Lemm&Al1l in Sectién B.1.2. 20.91in 2], we know that
(88) Elg?] < 4E[g].
B.1 Proof of Lemma [B.1 Now, we show the proof of o . .
LemmdB.1. ) Combining Inequality[BJ]7) and Inequality_(B.8), we
ave
Proof. (I) Construct a martingale sequence. In the follow-
ing, we construct a martingale sequencet of 1 random (B-9) var(Z;|Zi-1, ..., Zo) < 4E|[g]
variables, namelyo, 7y, ..., Z;. _ According to Azuma’s inequality, for any > 0,
Given afunctiory € G, we defing+1 random variables )

variablesZy, Z1, Z, ..., Z;. Let Zy = 0. For anyi € [1,1], Pr(Z, —E[Z] > X\) <exp(— zt-Var[ztf\Zt,l. ZO])
we define

_ . By substituting Equatiorf (Bl5) and Equatidn (B.6) into the
(B.5) Zi = i pmin(Elg] — Eq[g]) left hand side of the above inequality, we have
According to the definition of[¢] andE;[g], Z; can also be Pr(t - pmin(E[g] — Ei[g]) — 0> X)
written as follows. A2

; (B.10) < exp(- zt-Var[zt|Zt,1,...,zo])
Zi =  Pmin Zj:l (E[éﬁ - Eﬁ*]_ L .
Furthermore, after substituting Inequality (B.9) into tigght

%((ﬁ(xﬂ') — [ = (7 () = 15)) hand side of Inequality (B.10), we obtain
For anyi € [1,4), Pr(t - pman(Elg) = Edlg]) > A) < exp (—g3g37)
E[Zi|Zi-1,.... Z
_ E{ZJ_l +1pmm(§31[fﬁ 0] - Lety = A/(t - pmin+/E[g]). Then, we have
% (i(x) — Fi)? — (7°(x0) = )| Zin, o Zo) Pr(L2i > ) < exp (- Pag™)

= Zifl + Pmin Exi,fi [E[gﬁ - éﬁ*] -
((A(x) = fi)* = (0% (xi) = fi)* ) Zi-1, .., Zo)

= Zi1 Iclosure convess defined in Definition 20.1 iri]2].

So the proof is done.



B.1.1 Proof of Lemma We show the proof of Let g, be the function achieving the supremum (note

LemmdB.2 now. that it depends of\(x;, fi, Q:, pi)}._,). We have
Proof. According to Lemm&Bl1, given € G, suppose that Ig . I ~
-~ [9s]—2E+[gs] > € E[gs] —2E{[gs] <e/2
Elg] — E.[g] > ¥+/Elg]. Then, for any)’ > 0 we have two < L ! X ! ! !
cases: = TEilgs]-Et[gs]>e/4
(1 |2f Elg] > (1+1/¢')*y?, thenE[g] > E[g] + (1 + Taking expectations with respect to the “ghost samples”,
1/9")g. ) we have
() If Elg] < (1 4 1/4)%¢?, thenE[g] > BE;[g] + X
’ A / /
T2 Elg), and saE[g] > (1 + ¢')Ey[g]. L g,) =28, [g.]> Pri(Elgs] — 2E;[gs] < €/2)
In either caseE[g] > (1 + ¢")E[g] + (1 + 1/4")p>. < Prl(E)[gs] — Eilgs] > €/4)

Hence, given a fixed functiop € G,
According to Inequality[(B.111), we have

Pr(E[g] > (1 +9)E[g] + (1 +1/9")¢?)

(= P ¥t (B.13) Pr/(E[gs) - 21[gs] < ¢/2) < exp (—~Pp)
8

S exp 32

. ) ) Hence, by substituting Inequalify (B]13) into Inequality
Choosingy’ = 3/(1 — §) andy* = ¢3%/(1 — ), we have ([B13), we have

Pr(Elg] > r5Blg] + exly) < oxp (~Lmnlt) Ty 1 1 — exp (— L
TE9] 2 =5 Rel9] T €1=5) = eXP(—g1-p) ]E[gs]fQIEt[gs]Ze( exp (—=%3—))

anti A
which implies the result. < Pri(Eilgs] — Etgs] > €/4)

Then, taking the expectation with respect to
B.1.2 Proof of Lemma[A.Dl After we know the correct- X5, o Qi pi}t
ness of LemmABI1 and Lemrha B.2, we are ready to show’ ="~ /=

the correctness of LemmaA.1. - 2 e
Pr(E[gs] — 2Eq[gs] > €)(1 — exp (—Lzin))

Proof. We divide our proof of LemmBZAIL into two steps. < Pr(Ei[g.] — Ei[gs] > €/4)

Firstly, we resort to the Symmetrization technique to edten
Y y q Whent > 32112 \ye have

the bound on the right hand side of LemmalB.2 from a fixed PZE
function to a set of functions by using the idea of covering . .
numbersM (e, G). (B.14) p < 2Pr(supyeg Et[g] — Et[g] > €/4)

(1) Symmetrization i , L
Denote by[[g] the empirical measure in terms of ~ DEfine a¢/32-cover sey” of G, denoted byy; : j =

X § ; . 1,...,M(e/32,G)}.
anothert instance-label pairs. That is, Then. ¢ can be denoted as the union fi(c/32,G)

Brfg] = LS Qurigp i fina) — Cne i fros subsets. Thatisg = Gi U ... U Gaq(e/32,6)- For each
tlo = % it 5o oG fir) = b G, fir4)) J € [1,M(e/32,G)], the subsetF; is centered ay; with
radiuse/32.
Considering an union bound, we have

Conventionally, we called theseé instance-label pairs
{Xt1i, frei, Qevi, PeviJi_q @s “ghost samples”, which in-
dicates that they are mentioned for the sake of theoretigal fr 5
.15 P E —E >e/4
analysis but are not required in the real learning process. E@ ) T(Sup?fg tlg] t19] - €/4) .
Lets = 0.5in LemmdB.2. Then, given a fixed function < Zj:(f/ ’ )PT(Supgegj Eilg] — Et[g] > €/4)

€g, . _— ,

g According to the definition of covering number, for any

(B.12)Pr(E[g) — 28,[g] > €) < exp (- Lo 9€ G

For simplicity, let (B.16) % Zfil %ng (Xiv fZ) - g(xi7 f1)| < 6/32

. According to | lity[(B.16), we h
(B12) p = Pr(Jg € G s.LE[g] — 2B,[g] > o). ccording to Inequality[(B.16), we have

. . (B.17) By[g] — Belgy] < €/16.
Itis easy to verify that

p = Pr(sup,eg Elg] — 2E[g] > ¢) (B.18) Eilg;] — Eilg] < €/16.



Combining [B.1¥) and(B.18), for any< G, which can be simplified as

f,[g] — Bilg] < Balgy] — Bulgs] + /8 (B.25) Kol = 11| = |

It follows

Since every entry inK is greater than the corresponding
Pr(sup,cq, ]E’[ ] — I, [g] > ¢/4) entry in K, the right hand side of the above equation is upper
. . bounded byo2Ia/|. Therefore, we have
(B.19) < Pr(Eig;] — Eilgs] = €/8)

i Z(n(xi) = fi)?
By substituting Inequality (B.19) into the right hand side ‘ Lo

of Inequality [B-I%), we have = (' -Kd)< 07(104 )?
~ ~ — U_4 t Q1 "
Pr(supyeq Bilg] — Balg] > ¢/4) P 0l S T R
< oA

Pmint

(B.20) < YD pr(l[g;] — Belgs] > €/8)

reA is the upper bound oj|| for any7) € F.

- . . . . whe
By substituting Inequality (B.11) into the right hand sid¥ So we know that

of Inequality [B.20), we have
i B B fgn] < 150 i(p,(x;)— fi)2
Pr(sup,eg Bylg] — Eulg] > ¢/4) tload < t}j;:l (i (xi) = fi)

(B21) < M(e/32,G)exp (—Lumt) (B.26) < L4

—  Pmint

By substituting Inequality (B.26) into Inequalify (BJ22)tv

Then, by substituting Inequality_(B.P1) into the righFespect tays,, we have the result of LemriaA. 1.

hand side of Inequalitf (B.14) and exprgsi terms of its

definition shown in[(B.12), we have B.2 Proof of LemmalA.Z It is easy to show the correct-

Pr(3g € G s.LE[g] — o, 9] > ¢) ness of LemmAAl2 as follows.

< 2M(6/32,g)exp(—p2%%€t), Proof. Firstly, we have

which can also be written as: for agye G, with probability (B-27)  (Ex[[7:(x) — n(x)[1)* < Ex[(7:(x) — 1(x))?]
atleastl — ¢,

Since
2 In M(e/32,G)+1In 2
(B22)  Elg] < 2Malg] + 128 =200 (B 17 (x) = f1))?
— N 2

(I) Upper bounding the regularizer = (Ex(lie(x) = nGl))

In order to obtain our result in LemniaA.1, we need to = Ex[(fe(x) = n(x))* — (7 (x) — 1(x))?]
guarantee that the terit,[g;, ] also has dependence bof (B.28) = E[g;,],
th

Therefore, we proved thatli;[g;,] = O(t~1) in the Wehave
following. Since we know thafy(-) is the minimizer of the (B.29) Bt [7:(x) — 1] < /Elg]

J'[7)] at thet-th round,
) 2o Then, we can simply obtain our result from the result of
T[] = 5 2oy L (i) — £)2 + Sl LemmdA.l. Sowe are done.
which can be written as B.3 Proof of Lemma[A.3 Next, we show the proof of
(B.23) J'[/]=|f' — Ko/|2 +02.dTK'. LemmeA.3 as follows.

wherea’ = {2 Qo) f = Proof. We start our proof from the definition oF(h;).

1
;. \/p_lo‘l"_'" Vpr . ' ’\/_ft} For convenienceE, . p(x)[| is represented b¥E[-], and
and K’ is at x t matrix, in which thei-th row and thej-th Pryp(x)() is represented byr(-). Thatis,

column equal€);Q;./p:p;k(xi,x;). The minimizers;(-)

is achieved by differentiating’[«/] w.r.t. o' and set the E(hy)
. . t A
gg\r;(\e/atwe be 0. Denotg () by 3= dik(xi, ). Thenwe — — pp o o(y £ hy(x)) — Precyp(y # 1 (%))

= Exopx)[Pry~pry|x)(y # he(x))
(B.24) o?K'a + K(Ko' — ') =0, —Pry pvix)(y # h*(x))).



For a certain instancé with feature space, if h,(x) =

h*(x) for patternx, thenl,, ., x) —I,.n-(x) = 0; otherwise,

since Pr(y # h*(x)) = min{n(x),1 - 5(x)}, Pr(y #
ht(x)) = max{n(x),1 — n(x)}. Therefore, we have

E(h) = E[]2n(x) = 1|[h:(x) = h*(x)]].

sinceln(x) — 4| < [n(x) — 7(x)| whenh, (x) # h*(x), we
can upper bound'(h;) as follows,

E(he) < E[2In(x) — n:(x)[|ht(x) — h* (x)]]
(B.30) = 2E[n(x) — 7:(3)|Th, (x)£h* (x)]

According to Cauchy-Schwarz inequality, we have

bounded byAz/2 with probability at leastl — 6. Since
LemmalA.l implies Lemma_Al2, with probability at least
1-4,

(B.35) E(h) <c A2

By substituting Equatiod (B.32) (i.e., the definition of
A,;) into Inequality [B.35), we complete the proof.

B.4 Proof of Theorem [B. After we know that
Lemmal[Al, Lemmd_Al2 and Lemnia_A.3 are correct,
we show the correctness of Theorleni 3.1 as follows.

Proof. Suppose that the total number of rounds equals
In the following, we use€E[] to representi , i1 [']

(B.31)  Efln(x) —n(x )|Hht (ke ()] if there is no specification. According to the definitionyf
< VE[(n(x) — 7e(x))2]y/ Pr(h(x) # h*(x)) we have
Notice that the right hand side of the above in- E[p:]
equality is the product of\/E[(n(x) —7:(x))?] and — ,
\/Pr(hi(x) # h*(x)). The first term can be upper bounded Pr(iy(x:) > 0.5)E[Pr(n(x:) < 0.5)|{xs, fi}= 1 i +
according to Lemm@a_A]l1. In the following, we consider the . - =
second term. Pr(ie (%) < 0.5)E[Pr(n(xt) 2 0.5)[{xi, fi}iZ1, x¢)]
Since h; is the classifier returned at theth round, < Pmin V Pr(i:(x¢) > 0.5,1(x;) < 0.5)
Lemmal[A.1’s result is achieved. That is, with probability +Pr(f:(x¢) > 0.5,n(x;) < 0.5)
atleastl — ¢, Ex[|7:(x) — n(x)|] < A, where we usé\, to Prin V Prha(xc) # h*(x2))

represent the right hand side of the inequality in Lerhma A. 2
with respect toh;. That s, Since we proved in Equatioh (B133) that with probability at
leastl — d, Prx(hi(x) # h*(x)) < c¢- (1 A A}), where the
definition of A; can be found in Equatiof (B.B2). Then, we
haveE[p;] < pmin V- (1A A]).

So, the expected total number of label requests equals
>or_, Elp]. Thatis, with probability at least— &, the label

(B.32) A, = \/128 ln/\/[(51{32 ,G)+1n 2 + 204 A2

LA Prmint

Therefore, with probability at leagt— ¢,

(B.33) Pr( (%) # h*(x)) complexity is upper bounded by

= Pr(h() 0GB~ 1 S A)  B36) T < prnonver S (1AAD)
Observe that wheBx |l (x) —7(x)[] < A¢, he(x) # h*(X)  According to Lemm&ZAR, we have
only if |n(x) — 3| < A;. Therefore,

R 128 - lnM(e/iQ ,F)+In 2 4 204 A2
©36)  Prin(x) £ W EG) i) < 8) a7y n P i
m
< Pr(l(o) - 5l < A) ‘
Letd = - % +20% A2, Then, according

According to the definition of Margin AssumptiGh 1, w i
can upper bound the right hand side of the above inequa Ei?y-) and -7) we have <
by the terme - A7. Combining this result with Inequality
(B.33) and Inequality(B.34), we have, with probability
leastl — ¢,

j a.nd At =

Pmin€ 3T

ﬁ After we substitute the above inequality and
a man
equation into Inequality (B.36), we have

(A G

TS—Z—\/(C

THT

Pry(hi(x) # h*(x)) < c-A]

Let us back to consider Inequality {B]31), where wwhich ends the proof.
can find that the first term is upper bounded Ay with
probability at least — ¢, while the second term is also upper



