Selective Sampling on Probabilistic Data

Peng Peng Raymond Chi-Wing Wong

Abstract recognition application, an existence of a volcano is deter
In the literature of supervised learning, most existingligts as- Mined with 60% probability by an astro-researcher based on
sume that the labels provided by the labelers deeerministic the observation that “the surface shown in the image cositain
which may introduce noise easily in many real-world apgiares. N0 SUmmit visible but with evidence of flanks or circular out-

In many applications like crowdsourcing, however, manyelats in€” [?71- In natural language processing, due to multiple
may simultaneously label the same group of instances arscttien Mea@nings of some frequent words (e.g., 7.8 meanings on av-
label of each instance is associated with a probability. iwaeed €rage for each of the 121 frequent words) [1], some existing

by this observation, we propose a new framework where et [s5tudies [[21] which make use aford sense disambiguation
is enriched with a probability. In this paper, we study ariac- (WSD)to reduce some possible meanings of a word give the

tive sampling strategy, namelgelective samplingin which each /9-2% accuracy for eStimat_ing the meaning of a word.
selected instance is labeled with a probability.Specificate flip Probabilistic Labels: In this paper, we propose to learn

a coin every time when we read a new instance and decide whefheclassifier from an “enriched” version of labels called
it should be labeled according to the flipping result. We prthat Probabilistic fractional scoregor fractional scoresn short).
in our setting the label complexity can be reduced dramigtidsi- Consider a binary classification with two classes, classtD an

nally, we conducted comprehensive experiments in ordeetifyy C/ass 1. Each instance is associated with a fractional score
(instead of 0/1 labels) which denotes the probability that t
instance belongs to class 1. We consider an active learning
1 Introduction algorithm which delicately selects an “informative” insta

Selective Sampliffilil6] has been studied extensively in thgzor labeling in each round in .terms Of a probability Wh'.Ch
X = . IS related to the corresponding fractional score and finds
literature. In most circumstances, when unlabeled in&t®n¢ o .

. . . an accurate classifier based on these selected “informative
are read sequentially, selective sampling allows us tome'nstances

cost of labeling in supervised learning and learn a classifie : _—
There are two major challenges for designing a super-

which is as good as those learned with many more labeled : : , .
) : . ; ised learning algorithm. The first challenge is whether a
instances. We aim at showing that the labeling cost can

further reduced when the classifier is learned based on Eﬁ%t theoretical b_ognd on thiabel complexnywhlch is de-
. . e inéd to be the minimum number of instances used for clas-
training dataset with probabilistic labels.

Consider a binary classification problem. Traditionallsmcat'on’ can be derived for an accurate algorithm/cl&ssi

-~ . . '@ hoseerror is at most an error parametewherec € [0, 1].
the training dataset used for supervised learning contlEins L e L .
L ) . .. Most existing studies [4, 13, 188, 5] focus on finding this the-
terministic labelonly. Given an instance, we say that its la- g

. AT retical bound in either aealizablesetting or anagnostic
bel isdeterministidf this instance has a label exactly equal ;.. ) . : S

: g Setting. Both settings are defined in terms of the distribu-
to either 0 or 1. However, we can ugmbabilistic labelsfor

tion which generate the label of a given instance. The re-

learning a classifier as well. That is, instead of labeling an . SN
. . . > alizable setting corresponds to such a group of distribstio
instance with a 0-1 label, we could label an instance Wltl’} a

probability value which denotes the probability that itsda _hat "?"Ways. re_tu_rn the_same label fo_r agiven instance, which
; e . is quite optimistic, while the agnostic setting correspotal
is 1. In many cases, probabilistic labels can be obtained eas N .
. i o . agroup of distributions which may generate the label of a
ily. In crowdsourcing applications where each label is give . . o S . o
by multiple labelers[[12], the proportion of labelers ggingwen Instance grbnranly, W.h'Ch IS qw_te peSS|m|§t|c. We
. e " say that there is no noise in the realizable setting, while
a particular label corresponds to the probability that the i; s . .
. . ) . . .it could be very noisy in the agnostic setting. However,
stance has this label. In the medical diagnosis application : 2o ;
a patient’s disease is diagnosed as Coronary Heart Dis g any real-life applications, we obtain a dataset sampled
with 50%-60% probability by a doctor based on the resultgpm a distribution which containgrell-behavechoise. In

the effectiveness of our proposed labeling framework.

an electrocardigogram (ECG) teSt[25]. In the galaxy ima %0], the authors found that the well-behaved noise can be

éscribed by thenarginassumption (which will be discussed
in this paper). Under this assumption, there is a distrduati
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used to describe the well-behaved noise. Due to its advared proper loss. 1n [22], the authors studied the problem of
tage to tighten the theoretical bound, This assumption tesgimating labels from label proportions from multiple-dif
been commonly adopted in a lot of studiesl|[28, 26, 6, 19rent perspectives, proposing variant strategies forirsgl
For example[28] considering this assumption showtas$t this problem. Even though they have already analyzed the
rate of theconvergenceof an SVM model. Some otherconvergence bounds for their probability estimators, ber t
examples considering this assumption include the decisametical analysis is rather different from theirs, whichyma
tree [26], the least square regression [3] and the regeldriprovide a supportive evidence on their theoretical resuits
boosting [6]. In this paper, we derive our theoretical bourf@4], the authors studied the problem of learning frgroup
based on this assumption in active learning. probabilities which is referred to the posterior probabilities
The second challenge is whether the algorithm fisr a subset of the whole dataset. Since they did not provide
tractableand thus can be executed efficiently. Firstly, it ia theoretical guarantee on their estimated probabilitithe
very usual that an algorithm with a very good theoreticalhole dataset, our theoretical analysis can be adaptiselg u
bound is intractable. To the best of our knowledge, both tfax analyzing their problem as well.
passive learning algorithnmi [30] and the active learning &ontributions: There are the following contributions.
gorithm [19] considering the margin assumption which ha¥érstly, to the best of our knowledge, we are the first to study
the best-known theoretical bounds are intractable and thius active learning algorithm from a training set with prob-
are inefficient. Secondly, it is also usual that an algorithabilistic labels. Secondly, we propose an active sampling
which is tractable does not give a tight theoretical bounstrategy by leveraging the probabilistic information ire th
To the best of our knowledge, there is only one tractable $eining dataset. The major idea of the sampling strategy
lective sampling strategy (importance weighted activerleafollows the rule ofuncertainty samplingbut we compute
ing [5]) considering the margin assumption but it does nthte uncertainty from the fractional scores. Thirdly, wewsho
resultin a “good” theoretical bound. that there is a theoretical bound on the label complexity of
In this paper, we consider the importance weightedir proposed algorithm. In particular, this result is bette
active learning algorithm learned from a probabilisticadatt than the traditional result in the same setting in most cases
such that these two challenges can be addressed. Théatasirthly, experiments were conducted to show its superior
the algorithm has a tight theoretical bound on the lab@trformance over the traditional active learning framéwor
complexity, while it is still tractable. Specifically, the  The remainder of our paper is organized as follows.
algorithms in [30] and[[19], though with good theoreticalVe give the problem definition in Secti@h 2. In Sectidn 3,
bounds, are not tractable. Although [5] is tractable, tlwge propose our factional _Sore-based Ative Learning
label complexity of [5] (i.e.0(e~2)) is higher than that of (FSAL) algorithm, which outputs a classifier with the help
our algorithm (i,e,,o((ﬁ)) sincee2 > ¢ =+ for any of fractional scores. In Sectidn 4, we show the experimental
v > 0. results. In Sectiohl]5, we present the related works. Finally
It is worth mentioning that a lot of recent studie¥e conclude our work and discuss some future works in
[10,[22,[24] 31] can use our theoretical bound on the latsectiori6.
complexity of the classifier studied in the paper for their la
bel complexity analysis so that their approaches can héve Problem Definition
solid theoretical guarantees. For example[in [31], the aKraditional Setting: Consider a binary classification with
thors proposed a novel SVM model which learns a classifi@o classes 0 and 1. In theaditional setting, we are
based on the scenario that only a portion of labels of the given a training datase$ called adeterministic dataset
stances in the dataset are known. Since the objective fugentainingn instances, namely, I, ..., I,,. Each instance
tion in their optimization algorithm belongs to a reguladz 7, is associated with a feature vector and a target attribute
empirical risk minimization, which is similar to ours, oukwherei = 1,2, ..., n. Let X be the set of all possible feature
technique can also be used to derive the label complexityettors. Note that there are two possible values, namely 0
their proposed SVM model. The difference between the mimnd 1, in the target attribute. Given an instadgavhere
imization function in our paper and that in their paper igtha= 1,2, ..., n, the content of its feature vector is denoted by
other than the model complexity, the regularizer in their ok; ¢ X and the content of its target attribute is denoted by
jective function also includes the difference betweenthe t y, ¢ {0,1}. A classifierh(-) is defined to be &ypothesis
label proportion and the estimated label proportion, wischor a function which takes a feature vectoas an input and
more complicated for the analysis. [n[10], the authorssaveputputs either 0 or 1. In the following, for clarity, in some
tigated the conditions of a proper loss function for estingat cases, we simply denotd-) by h.
the posterior probability from partially labeled data. \Wanc Following [2,[4,13] 18], we assume the process of data
naturally plug their strategy into our algorithm for findiag generation as follows. LeX andY be the random variables
proper loss, and derive the error bounds based on the dis@shoting the feature vector and the target attribute of an



instance, respectively. All instances are generated dowpr method is also possible but yields uninteresting and tediou

to an underlying joint distribution on two random variableéboundary” cases.

X andY, denoted byP(X,Y). Given a feature vectat, Problem FSAL: Our problem is calledFractional Sore-

the conditional probability?(Y = 1|X = x) is denoted by based Ative Learning (FSAL)on the probabilistic training

n(x). We also assume that the data points in the dataset@ataset as follows. Given a probabilistic training dataset

identically independently distributed (i.i.dyhen the joint Sy, we want to learn a classifiér such that whenever we

distribution is considered. see a new instance which has the information about its
Given a classifieth, the expected errorof h, denoted featurex but no information about its fractional scorg

by err(h), is defined to bePy ., ~px,v)(y # h(x)). we can calculate thestimatedvalue of(x), denoted by

The Bayes classifierdenoted byh*, is defined to be the 7j(x), and thus we can determine whether we should obtain

classifier which gives the minimum expected error. Notke fractional score of instande€from an expert accordingly.

thath* = I, (x)>0.5- Given a classifieh, theexcess erroof There are three issues to be addressed in this problem.

h is defined to be the difference between its expected erfdre first issue is how to calculate the estimated vai@e.

and the expected error &f. That is, theexcess erroof h, The second issue is how to determine whether we should

denoted byE(h), is equal toerr(h) — err(h*). Note that obtain the fractional score of a given instance from an exper

E(h) must be non-negative. accordingly. The third issue is how to design a classifier

Our Setting: In our setting, we are given probabilistic which sovles problem FSAL.

datasetS; instead of adeterministic dataset Similar to

the traditional setting,5; containsn instances, namely3 Methodology

I, I, ..., I.. Each instancd; is associated with a featureas e discussed before, there are three issues to be ad-
vector and dractional score(instead of a target attribute)qressed. In this Section, we give the solutions to thesesssu
wherei = 1,2, ..., n. This fractional score is a real numbef, sectiof 311, Sectidn 3.2 and Section 3.3.

ranging from O to 1 and corresponds to the likeliness that thi

instance belong to class 1. If this score is near to 1, themi§  Formulation of Fractional Score Estimation In this

is likely that this instance belongs to class 1. If it is ne@gction, we give the formulation of the estimated fractiona
to O, then it is unlikely that this instance belongs to classgtgre by usingGaussian Process Regressioifhe reason

and instead, it is likely that this instance belongs to c@&ssyhy we choose Gaussian Process Regression is that it is
_This score can be obtaineq by Iab_el_ers aqd some_statistg: pular nonparametric estimatbr[23], which can give an
information (e.g., the medical statistical history) désed accyrate estimation via perfectly combining the informati

in Section[1. Given an instandg wherei = 1,2,...,n, from the training dataset and the prior knowledge. In order
the content of its feature vector is denotedshye & and g simplify our discussion, we just give the simplest vemsio
the content of its fractional score is denoted oye [0,1]. of Gaussian Process Regression as an example to estimate
Note that if eachf; is equal to either O or 1 where = the fractional score. There are many recent studies about
1,2,...,n, then the probabilistic dataset is equivalent to thgore complicated versions of Gaussian Process Regression
deterministic dataset. focusing on the scalability issue with large datasets. @ens

Consider an instance with its featurand its fractional ering the scalability issue with more complicated versisns
scoref. Sincef is obtained by labelers and some statisticgl, orthogonal issue in this paper.

information, it can be regarded as an “observed” version | the following, in order to give an accurate estimation

of 7(x), and thus it may deviate from(x). Following of the fractional score, in addition to the estimated valfie o
some existing studies_[23], we model the deviation witfyx) e find thevarianceof this estimated value, denoted
the Gaussian white noiseSpecifically, theGaussian white Var(x). As we will see in the algorithm to be shown
noiseis represented in form of the Gaussian distributiqgter, we leverage both the estimated value and its variance
N(0,0%) whereo is a standard deviation of this distributionys gecide whether we should obtain the fractional score of an
With this noise condition, each fractional scofgin the jnstance from an expert or not.

Note that it is possible that a value randomly sampled fropfhr(x) given a feature vectox.

the distribution\V(1(x), 0®) is out of the range between 0 Consider the first prior stage. Tipeior of the Gaussian
and 1. In this case, the value can be truncated according%Cess is specified by two components. The first component
Specifically, if this value is smaller than 0, then it can bg the prior mean function, denoted by(-), which takes the
assigned to 0. |If this value is larger than 1, then it c3gatures of an instance as an input and returns a real number
be assigned to 1. However, in our theoretical analysis, Wetween 0 and 1 as an output. The second component is
simply adopt the distribution ofV(n(x),o?) in order to  the prior covariance function, denoted by, -), which takes
simplify our theoretical analysis. Considering the truf@a 1o features as inputs and returns a positive real number as



an output. Formally, the prior of the Gaussian Processbist Var(x) is not.
represented in form &P (m(-), k(-, -)).

Inthis stage, we need to sef-) andk(-,-). We setn(-) 3.2 Strategy In the previous section, we know the formu-
to 0.5, because 0.5 corresponds to a random guess wheratien of the estimated fractional scorgx) (or 7 in short),
have no prior knowledge. In the following, we are studyingnd the variance of this estimated value, (¥ar(or Var in
the Gaussian Process in form@p (0.5, k(-, -)). short). In this section, we are ready to address the second

We adopt the Radial Basis Function (RBF), one of thigsue. That is, we present a strategy to decide whether we
most commonly used kernels, as the covariance funct&muld obtain the fractional score of a given instance viéth i
k(-,-). With the Radial Basis Function (RBF), we define afeaturex from an expert.

n x n matrix denoted by where the entry at théth row Note thats; and Var are used to estimate the trge
and at thej-th column inK is k(x;,x;) fori € [1,n] and and their formulations are independentsaimplingused in
Jj€[l,n]. the algorithm. Next, we introduce another estimated value

Consider the second posterior stage. We define thee F whose formulation is dependent on sampling for
posterior mean functiofi.e.,7(x)) based orf; as follows. ¢ € [1,n]. 7, is called thesample-based estimated vaiared

Let f be ann-dimensional vector containing real is used for sampling.
numbers which is equal tof; }*_, andI be then x n identity Before we describe how to find this sample-based esti-
matrix. We denotek(-,-) to be thecovariance function mated value, we define thEobabilistic regularized empir-
which takes two features as inputs and returns a positite rieal error, an error measurement of a given sample-based
number as an output. We define matfixof ordern x n estimated valug;. Then, we want to find this sample-based
where the entry at theth row and at the-th column inkK  estimated valué; which has the smallest probabilistic regu-
is k(x;,x;) fori € [1,n] andj € [1,n]. According to[28], larized empirical error.
we can express(x) as follows. Probabilistic Regularized Empirical Error: Let ¢ be an
R T integer in the range of [13]. Consider that we are determin-
3.1) (%) = a”k(x) +0.5. ing whether the fractional score of theh instance should

wherea is ann-dimensional vector containing real num- be obtained. Lefy(x) (or 7, in short) be thesample-based
bers, which is equal toK + o2I)~L(f — 0.5), andk(x) is ©€Stimated value (or fractional scorej an instancevhenwe

ann-dimensional vector containing covariance functions, &€ determining whether the fractional score of ¢ in-
which is equal to{k(x,x;)}",. Leta = (aas...an)T stances are obtained. We denote the sampling probability of
whereq; is a real number foi € [1,n]. We denote|a]| to thet-th insFan(_:e by, for ¢ € [1, n]. We also denote a vari-
be theL,-normof a. Given an instance with its featuse able@; which is equal to 1 if the fractional score of th¢h
wherei = 1,2, ..., n, we callk(x, x;) as aninstance-based instance is obtained and is equal to 0 otherwise forf1, n].
kernel function In the above form ofi(x), we can regard We define_theprobabilistic regularize_d empirical error
/(x) as aweighted linear combinatioof n instance-based@s follows. Given a sample-based estimated valyehe
kernel functions where each valag in the vectora is re- probabilistic regularized empirical erroof 7j;, denoted by
garded as We|ght J/[’I?t], is defined as follows.

Due to the nice property th&t(x) can be expressed as L e 2 | 1 il Q . 9
a weighted linear combination, we define foaction class (3-3Y'l] = el + 3 20iy 5 (fi = (i)
denoted byF, to be used later in this paper. It contains all 12 fo1 b1 . .
possible functions each of which maps the feature spac®/Nerellilly, = 3oy 35—, ciajk(xi, x;) is thf norm n .
of any instancd to a real number ranging from 0 to 1 anéhe Reprod_ucmg Kemel Hilbert Space (RKHS) [.23]' Itis
is expressed in a weighted sumofinstance-based kernefasy to verify that the expected Vall‘.'e.Of the fuf‘c“oﬁ@'ﬂ
functions. That is, for each functiof(-) € F, it can be is exactly the same as that of the original functiogj] for

written asa’k(x), wherea is ann-dimensional vector of anyn. . i,
Fmdlng 7 with Minimum Empirical Error:  After we de-

R™. In this paper, we consider all functions in the functio; hi irical btain th le-based esti
class where the vector associated with each function ha8'® this empirical error, we obtain the sample-based esti-

its Lo-norm value at most a given valué where A is a mated vaIug?t for¢ & [1,n] by minimizing the empirical
positive real number given by usergl can be regarded aseor Thatis,
a parameter describing the complexity of the function cla%§_4)
If Ais larger, then the complexity of this class is higher.
Similarly, Var(x) can be expressed as follows[23].  Strategy: Before we introduce the strategy, we define the
_ following notations first. We assume that the trpéllows
(3:2)ar(x) = k(x,x) = k(x)" (K + 0°I)"'k(x) the distribution of V'(7}, Var). Given a real numbeu,

Note thatj(x) is dependent on the fractional scores (if§., the probability thaty = v is equal tOexp(—(;\_/g):).

7y = arg minge J [77]




Given a real numbet, the cumulative distribution function Algorithm 1 Algorithm for Fractional-Score-based Active
of the distribution, denoted b¢'D(u, ), Var), is equal to Learning

f“ exp (_ M)dv_ Input: an unlabeled_datase{bcl, ..., Xn }, @ Noise parameter, a kernel function
—oo e ar /. i . . . k(-,-), asmoothing parametet,, ;.
Specifically, given an instance, after we derive its eStutput. a classitier:, a training datases ;

mated valuej and its variance Var described in Section 3.15; 5o < 0:0() <= 0.5:Varo(-) < k()
we will obtain its fractional score from an expert with @: calculate the sampling probability, . — A(i¢—1, Vars_1)
sampling probabilitywhich is calculated based on these twg flip a coin with two possible outcomes 0 and 1 where P(outcorbp=p;
. . : letQ: be the outcome of the coin flip
terms together with the sample-based estimated vajue 6: it Q, = 1 then
The principle of our sampling strategy is basedwer- 7 ‘;b‘fﬂ‘ tgeffaff‘??a' SCO;? of x¢
tainty sampling If the sample-based estimated valydde- o  urdaer. () accoring b EquatorZ34); update Vé) according to
pending on sampling) is very different from the estimatelta: elggua‘m“@)
values; (independent of sampling), its fractional score must: s, « 5,14, « As_1; Var, < Var,_;
be obtained with a high probability. Suppose that they af# ‘Z”‘(’_i)fe L
similar. We consider the following strategy. ffis close t0 17 enafor  ©
0.5, then it is very likely that the trugis near to 0.5 and this 15: return £, andS.,
instance is very uncertain. In this case, its fractionatesco
will be obtained with a higher probability. If Var is very
small, then it is very likely that the trug is equal toj. In Pe the VC dimension dft. Note that) < d < oo.
this case, its fractional score will be obtained with a lower Given a function) € 7 and an instance-score pair
probability since our estimation is very accurate and thereX, f) wherex € X and f € [0,1], we define thesquare
no need to obtain the fractional score of this instance.  105sof 7) with respect to this pair, denoted by(x, f), to be

Based on the above strategy, we define the sampl%x) - >

probability, denoted by (7, Var), as follows. Let X be a random variable denoting the feature of an
instance and” be a random variable denoting the fractional
A(7), Var) = { CD(0.5,9,Var) if i > 0.5 score of an instance. Followinig [2,4]13] 18], we assume that
’ 1-CD(0.5,7,Var) otherwise all instances are generated according to the joint digtabu

._on two random variableX andF’, denoted byP (X, F).
In some cases, we want to guarantee that the fractional ~. N i N
Givenn € F, we define theexpected losef 7, denoted

score of each instance should be obtained with at least a N o
certain probability. We introduce smoothing parameter t'%EILflgz)(;titgnbii%xllph;? (g"ﬂ) [fﬁg’ J;)l ]i;llfet nE E(e ;h?:gﬁ )
denoted byp,,;, which is a non-negative real number anfi : 7= als ner -

corresponds to the minimum probability of obtaining ther "9 [17,23], we assume thatl (") = O in order to sim-

fractional score of a given instance. Wheg,, is con- plify the proof to be shown later. This assumption is similar
. wm

, . o . to the Bayes classifier assuming that there is no classditati
sidered, the sampling probability is the maximum value be- o . : T
tweenA(7, Var) and error for the classifier. Relaxing this assumption is lefaas
K Prmin future work.
3.3 Algorithm Our proposed algorithm for FSAL can be In order_to gwe_atlghttheorgtlcal bound on the error, we
. . . . . capture thalistributionof all fractional scores in the dataset
found in Algorithm[d. In this algorithm, we introduc : . o
. . . .~ by theMargin Assumptioti3Q] which is commonly adopted

variableS; for ¢ € [1, n] denoting the training dataset which . g iy X :

. . i : in the literature([19] 13, 28, 26]. Intuitively, this assunapt
contains all instances with fractional scores after we have L : ) .
States that it is not likely that a fractional score is nea%.to

seent mst.ances so far. Bes@es, for |n|t|aI|zat|0n,_We deﬂq_eetP(X) be the distribution on the random variablethat
three variables, namelg,, 7o(-) and Vag(-), which are

initialized to 0, 0.5 and k(-, ), respectively. During thethefeatures of the instances in the dataset follow.
process of the algorithm;, 7(-) and Vag(-) are updated pee)\irion 1. (MARGIN ASSUMPTION) For any  real

based oy, 7e—1(-) and Vag-.(-). Detailed steps can be,, \yper, where0 < w < 1, there exist two constants> 0
found in Algorithm(3. _ _ ande > Osuchthat

It is easy to verify that our proposed algorithm is
tractable because Gaussian Process Regression, the kgsij¢ Prypx)(12n(x) = 1] <w) < ¢+
component in our algorithm, is tractable, and other opera-
tions in our algorithm can also be done in linear time.

3.4 Theoretical Analysis Concepts and Notations: Both ¢ and~ are the parameters for describing the distribu-
Based on the function class, we define thenypothesis tion which the fractional scores in the dataset follow. The
space denoted byt{, to be{h : h = I;>05,7 € F}. Letd margin assumption can be explained as follows. Suppose



thatc and~ are known. Note tha(x) is in the range be- to the feature attributes for our problem. The normalized
tween 0 and 1. Ifv is near to O, then the inequality in thesalue of the target attribute of each instance originallgdis
assumption states that the probability thét) is close to% for regression, ranging from 0 to 1, corresponds to the
is very small. Ifw is near to 1, then the inequality means thatrobability that the instance belongs to class 1. For exampl
the probability that)(x) is close to either 0 or 1 is very largein dataset “wine-red”, the target attribute denotes thdiyua
As we described before,andy are used to describe theof the wine, ranging from 1 to 10, in the regression problem.
distribution of the fractional scores. d¢fis smaller, then it is In our problem, the normalized value corresponds to the
less likely that a fractional score is near%tolf ~ is smaller, probability that an instance (wine) has a good quality (\whic
thenw? will be larger (whenv € (0,1)). In this case, itis corresponds to class 1). Each dataset containing these
more likely that a fractional score is near %o(which can feature attributes and the probabilities corresponds ¢o th
be considered that there is more noise in the dataset). Thuebabilistic datasefs, without any noise. This can be
if ¢ is very small andy is very large, it is less likely that aregarded as the ground-truth dataset in our problem setting

fractional score is near té). However, as we described in Sectign 2, we are only given
Theoretical Results: In the following, we show our theoret-an “observed” version of the probabilistic dataset, sélys
ical result. Thus, we generaté; by adding a noise value randomly

_ picked from\/(0, o%) to each probability. Each added value
THEOREM3.1. (LABEL COMPLEXITY) Given a  con- correspondsto a fractional scoredp. Note that if the added
fidence parametes € (0,1) and an error parameter yalue is greater than 1, we re-set this value to 1. If it is

€ € (0,1), if the excess error of the classifier returned bymaller than 0, we re-set this value to 0. We set the maximum
Algorithm[1 is at most, then with probability at least — 4, budget for these four datasets be 100.
the expected number of instances whose fractional scores Besides, we employ a movie review dataset [20] as an

are obtained in Algorithni]1, denoted [, satisfies the example of the second type of real classification datasets.

following inequality. Each movie corresponds to an instance where its feature
0 n 0 " attributes are the vocabularies from the reviews provided b
T< T Ve 2 (A (Pmint)) ) the IMDb users, its fractional score is the average norredliz

user rating and its target attribute is the sentiment ptyrali
where 0 — 1928 . mM(/327)+Ing | 5 442 gnq of the movie reviews. This dataset was originally used
M(e/32, F) = O(1). pon for Movie Review Sentiment Classification. We picked
¢ 30000 movies each of which has over 20 thousands ratings
If v is smaller (i.e., there is more noise in the datasei!), IMDb.comfrom the original dataset for training, where
then e— =+ is larger (sincee € (0,1)). Thus, the label 7500 movies are labeled as “positive” and the remaining
complexity is larger. Ifc is smaller, then it is obvious thatare labeled as “negative”. = According to the concept of
the label complexity becomes larger. crowdsourcings, the average rating based on a large number
As we described before, our proposed algorithm cQhmovie fans is rather close to the probability that a person
address the two challenges mentioned in Sedflon 1. TR&F & positive impression on this movie. Thus, no noise
is, our proposed algorithm is tractable. Besides, its lafi@|@dded to the dataset because we consider that it is an

complexity is lower than the label complexity of the pesficcessible way to gather accurate fractional scores. We set

known tractable active learning algorithim [5]. the maximum budget for the dataset be 10000, which means
that we sample at most one-third of the movies from the
4 Experiments whole dataset.

. ) . We denote our proposed algorithm in Algorithin 1 based
Experimental Setup: We conducted experiments on 3n St by FSAL In this algorithm, we adopt the Radial Basis

workstation with 1.60GHz CPU and 3.06GB RAM. We corg .
. i : nction (RBF), one of the most commonly used kernels, as
sider two types of real datasets in our experiments. The f%rs%

type of real datasets are used for regression originalli hhe covariance function.

yP 9 9 PV e comparedrSALwith two other traditional tractable
the second type of real datasets are used for classn‘lcatl?n . : . .

originally. algorithms, namelyPassiveand Active We did not com-

The first type of real datasets comes from regressi%are the intractable algorithms (e.g., the passive leg {31

datasets. We used four regression datasets, namel ‘brevg\%? the best-known theoretical bound and the active learn-
. » o 9 ; y ing [19] with the best-known theoretical bound) since they

cancer”, “housing”, “wine-red” and “wine-white”, from the - . .
UCI repository[T5]. Note that each real datasetis assmtia?re not efficient. Note that since the two traditional trhtga

with feature attributes and a target attribute in the regioes algorithms are based on the determlmstlc datqsgt,_amrd|
: . ) ; to S,, we generate the corresponding deterministic dataset
problem. It is obvious that in our problem setting, th

feature attributes originally used for regression coresy gc by setting the target attribute value of each instance to 0/1
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Figure 2: The p-value of two paired t-test&JALvs Passivg and FSALvs Active
labels randomly according to the probabilitiesSp. Pas- . e T
sivecorresponds to a passive learning approach which finds a e or X
e . . g e o O
classifier based on the target attribute valuealbinstances ¢ .| >~ il
in S.. We set the sampling probability in our proposed al- * Qg oal X
gorithm FSAL to 1 for implementingassive Activecorre- o1 L ol e
.. R . B . ke FSAL %~ e s M
sponds to a traditional passive learning approach whiclsfind ~ ozemnee s en ez e e o ror o
a classifier based on the target attribute valuesoofiese-  (a) The average accuracy (b) The p-value of paired t-test

lected instances if.. We adopted the importance weighte
active learning algorithni [5] for this purpose becadstive
used a similar sampling algorithm BSALbut it is based on
S, instead ofS.

We set the noise parameter= 0.2 and the smoothing ca¢ely byt Passivechoose all instances. Besid&SALalso
parametep,.i, = 0.2 in the experiments. performs better thaActivein most circumstances since frac-

_ We performed a 10-foldross-validatiorfor each algo- jona) scores ins; used byFSALhave more informative in-
rithm. In particular, the training sef; was randomly parti- t,mation about probabilities compared with 0/1 label$jin
tioned into 10 pieces, each of which was held out for testifigeq hyactive Figure2 shows the result of the paired t-test,
in one of the ten folds, while the remaining nine pieces Wefignoted by ESALvs A”, for the experiments used for Fig-
collected for training. In the training phase, we did not tefire to compare the significance of the “difference” between
minate the algorithm until 100 fractional scores/labelsevey, o accuracy oF SALand the accuracy of another traditional

obtained. In the testing phase, we evaluated the perfonmag@orithmA where the p-value is a measurement in the t-
of a classifier in terms of its average accuracy on the hetd-QLkt  \when the p-value is close to 0, we say tRSALis

test set. We repeated the cross-validation four times ftl €@ (ter thand in a statistical significance. In the figure, we
algorithm, so each reported value was an average of 20 (& find thatFSALis much better thaRassivein all of our

sults when a certain number of fractional scores/labelswgg(perimems whilESALis better tharctivein most cases.
obtained. . _ Furthermore, FigureS 3(a) andl 3(b) shows our result
Experimental Results: Figure[1 shows our result on dif-5, the second-type dataset. The same notations mentioned
ferent regression training datasets when the number of frac o previous results are employed in the figures. As
tional scores/lables obtained changes. Itis obvious tf@t ¢ effect of active learning becomes less significant when
average accuracy &SALis much higher than that #assive he size of the training dataset increases, the advantage

because=SAL chooses some “informative” instancesli- ¢ Active compared withPassivebecomes less significant.

Eigure 3: Performance of different classifiers on the movie
review dataset



However, in Figuré3(a), we can see tR&ALstill performs ing a parametric model to describe the noise condition. Tsy-
better than bothlPassiveand Active Since as we describedbakov’s margin assumption [30] is one of the most prevalent
before, the fractional scores in the dataset are quite closgse conditions considered in passive learning, assuming
to the underlying conditional probabilities, it is reasblea that a data point has less chance to be generated around the
that FSAL remains its leading superiority when the siziecision boundary resulting in a large margin which helps
of the training dataset increases. The correspongingto accelerate the learning rate. Based on Tsybakov's mar-
values are presented in Figure 3(b). When the numbergird condition, [19] proved the rate of convergence, which is
fractional scores obtained increases, the p-values becdaster than that in passive learning. Other noise condition
smaller. When the number of fractional scores obtainedifgludebracketing entropyuniform noisgbenign noiseand
large (e.g., at least 1000), the p-values are smaller thHan €b on. In this paper, our work is based on the Tsybakov's
in most cases, which means tHeBALis much better than margin condition, but our results shows that a even faster ra

PassiveandActivein most cases. of convergence is possible based on the probabilistic eatas
Lastly, there are many practical active learning algo-
5 Related Work rithms [4,/9/ 29| 32, 33] in the literature. In [29], the autho

Selective sampling has been developed for a long time [19¢Signed three different query strategies based on the con-
but strict theoretical analysis on its superior performeang€Pt ofmargin which can be computed via SVMs. However,
over passive learning appears until recent years [13, iiteir work is based on a noise-free setting.[In [32] and [33],
8]. In general, we can divide the related studies intge authors formulated the active learning problem in terms
three categories. They afealizable Active Learning of transducti\(e exper?mental design, which can effecyivel
Noise-based Active LearnirapdAgnostic Active Learning epro_rgsl the mfprmauon_ of unlabeled.c_iatla. Since we focus
These three kinds of studies analyzed the asymptotic reQftutilizing the information of probabilistic labels, expi
on either the label complexity or the rate of convergentd the information of unlabeled data is not the major focus
in active learning according to different assumptions & our paper. In([9], the authors proposed an optimal exper-
data generation. Lastly, we describe some practical actiental design approach, which simultaneously considered
learning algorithms. the digcriminapt and_ th_e geometrical structures in the_epmc
The strongest result on the improvement of the samigactive learning. Similarly[[7] also discovered the dist
complexity in active learning comes from the realizabl8ant and geometrical structure together in the actlvenlear_
setting. In this setting, an intuitive algorithm developsd NG pProcess, whereas the algorithmlin [7] was performed in
[L1] only selects those instances which enable the hyptsthége manifold adaptive kernel space. Both studie$§ |9, 7] for-
space to be shrunk after their labels are observed. In fRglated active learning as an optimization problem, wherea
realizable setting, the label complexity factive learning they did not show any theoretical guarantee on the rate of
which is O(In(e~1)) is exponentially faster than that folconvergence in active learning. After mod|fy|ng the above
passive learning which ©(¢~1). algorlth_r_ns_ prop(_erly, we may apply these glgqnthms_ to the
Since the realizable setting is impractical in real life, Rrobabilistic setting studied in our work, which is consite
is interesting to know whether learning based on select® an interesting future work.
sampling is also strictly better than passive learning when .
an arbitrary noise is allowed to appear in the training ddta Conclusion
Agnostic active learning [4], a conservative labelingt&gy, In this paper, we consider the scenario that labels are prob-
shrinks the hypothesis space only after enough labels abdistic, and propose to learn a classifier from probaiiglis
observed. In particular, this algorithm removes a hypathewaining dataset, which is more informative than the tradi-
from the current space after knowing that this hypothesisnal one. We not only propose an supervised learning al-
is suboptimal with high confidence.[ [18] further gives gorithm with a selective sampling strategy, which seletyiv
strict proof on the sample complexity of the agnostic actiabtains the fractional scores of newly observed instances,
learning. [18] showed that the sample complexity criticalbut also prove the theoretical bound on the label complex-
depends on a quantity, called tdessagreement coefficientity, which is better than the traditional result. We empir-
When this term is bounded, an exponential reduction towaidally show that the algorithm outperforms both the tradi-
the label complexity can be achieved. tional passive learning algorithm and the traditional \ati
The realizable setting and the agnostic setting discus$sarning algorithm which learn from the traditional traigi
above are two extreme cases, where the forménaop- dataset. In short, our work associates the theoreticathspe
timistic and the latter igoo pessimistic. Therefore, someactive learning with a practical consideration, promotiag
researchers proposed to make an assumption on the ntvedearning to perform efficiently with a theoretical gaar
condition in the process of data generation. It is possiliée. In the future, a lot of potential novel works can be stud-
to bridge the gap between these two extreme cases byied-according to the framework of probabilistic labels. For



example, our framework can be further extended to transf&r] L. Gyorfi. A distribution-free theory of nonparametric regres-
learning, where the prior knowledge on the probabilistic in

formation collected from the other learning tasks conaddictél 8]

before can be partially applied for solving a new learning
task quickly. Moreover, in case that the label of each in-

stance is given by multiple labelers, the labelers’ experti[lg]

model can be considered.
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