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ABSTRACT

Finding shortest paths is a fundamental operator in spatial Enterprise

databases. Recently, terrain datasets have attractedfattgntion
from both industry and academia. There are some interéssongs
to be studied in terrain datasets which cannot be found iadi-tr
tional two-dimensional space. In this paper, we study onthef
issues called a slope constraint which exists in terraiasgas. In
this paper, we propose a problem of finding shortest pathstivit
slope constraint. Then, we show that this new problem is gene
eral than the traditional problem of finding shortest patlithout
considering the slope constraint. Since finding shortettspaith
the slope constraint is costly, we propose a new framewdl&dca
surface simplification so that we can compute shortest paiis
the slope constraint efficiently. Under this framework, shieface
is “simplified" such that the complexity of finding shortesttips
on this simplified surface is lower. We conducted experimé¢at
show that the surface simplification is very efficient anc:etifze
not only for the new problem with the slope constraint bub dle
traditional problem without the slope constraint.

Categories and Subject Descriptors

H.2.8 [Database Applicationg: Spatial databases and GIS; 1.3.5
[Computational Geometry and Object Modeling: Geometric
algorithms, languages, and systems

General Terms

Algorithms, Designs, Experimentation, Performance, Meas
ment

Keywords

shortest path, spatial databases, terrain, land surfadace sim-
plification, triangular irregular network (TIN) model

1. INTRODUCTION

Recently, terrain datasets have attracted a lot of atterfit@m
both industry and academia [27]. Inindustry, Microsoft &abgle
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launched tools to display maps with terrain in “Bing Maps for
" (previously called “Microsoft Virtual Earthtn Sept
2009 and “Google Earth” in 2005, respectively. In acaderttia,
database community [7, 6, 23, 27] has started to pay attetdio
studying how to perform some spatial queries over terratiasgds.
One example isurface kNN (skNN) querie§&iven a source point

s and a set) of pre-defined points on the surface, a surface kNN
query returns a sef)’ containingk objects which are nearest to
s. That is, for each poing; in Q" and each poing; in Q@ — Q’,
Is,q:| < |s,q;]. Note that, in the context of terraif, ¢| corre-
sponds to the length of the shortestrface pathbetweens andq
instead of thécuclidean distancketweens andq. Figure 1 shows

a terrain in Bearhead area in Washington State whexndt¢ are
two points on the surface. In this figurg, is a straight line be-
tweens andt whose length corresponds to the Euclidean distance
betweens andt, andp; corresponds to the shortesirface pattbe-
tweens andt. For clarity, in the following, when we writpaths(or
shortest paths we mearsurface pathgor shortest surface paths

There are some interesting issues to be studied in terrtasets
which cannot be found in a traditional two-dimensional gpain
this paper, we study one of the issues callediagpe constraint
which exists in terrain datasets. Consider Figure 2 wheaad
t are two points on the surface. Pathcorresponds to the shortest
path froms to t. Note thatp; involves asteeproute froms to the
top of the mountain and it is difficult for people to travel @ateep
route. However, pathp, and pathps are smoother and do not in-
volve any steep route. We say that these two paths satisBldpe
requirement. We defineslope paramete#,,, € [0, 7/2] to denote
whether a path is steep. Intuitively,df, is set to 0, then the path
must be flat without any inclination. #, is 7/2, then the path can
have any inclination. Different applications have differealues of
0. For example, the steepest road in UK (which is in Ffordd Pen-
llech, Harlech) has a slope of 0.331 (in radian) (i.e., 1pahd the
steepest non-rack railway in Portugal has a slope of 0. & ian)
(i.e., 7.69) [18]. Informally speaking, given a slope parameigr,

a pathp is said to satisfy the slope requirement if glepeof path
p is at mostd,,,. We will give a formal definition for the slope of
a path later in Section 3. We also call the path satisfyingstbpe
requirement thgentle path In Figure 2, pathp, and pathps are
gentle but pathp; is not.

In the following, we study the following problem. Given a sc&i
point s and a destination poirton the surface, we want to find the
shortest gentle path fromito ¢ on the surface. We call this problem
finding shortest gentle mths (FSGP)Note that problem FSGP is
more general than theaditional problemof finding shortest path
on the surface adopted in the literature [1, 7, 6, 23, 27] ¢ivldioes
not consider any slope requirement). This is because, @heis



Figure 1: Terrain illustrating a surface path

set tor/2, there is no slope requirement. Then, problem FSGP
becomes the traditional problem.

Problem FSGP is more challenging than the traditional jgmbl
Consider Figure 3 whergandt are two points on the surface and
A is an area on the surface. Pathis the traditional shortest path
from s to t. Pathp. is the shortest gentle path frosito ¢. Infor-
mally speaking, due to the slope requirement, a gentle Ebgs
through aread multiple times. However, a traditional path passes
through A once only. Obviously, the length of the gentle pathis
much larger than the length of the traditional path Thus, prob-
lem FSGP is at least as hard as the traditional problem.

Obviously, one can adapt some existing algorithms in tleedit
ture or design new algorithms (e.g., breadth-first seargbrithm)
for problem FSGP. However, it is expected that the compurtati
costs of these algorithms ahégh as illustrated in Figure 3. Let
the algorithm which finds the shortest gentle path freno ¢ on
a surfaceS be A(s,t|S). In our experiment on the real terrain
dataset of Bearhead area in Washington State, if wé,set 0.3,
we found that an algorithm for problem FSGP took about 3 days t
find the shortest gentle path of length about 0.5km-1.0knenkf/
we do not consider the slope requirement (i¢g,, = 7 /2), then
the best-known algorithm [1] for the (traditional) probleam for
about 3 days to find the shortest path of length about 7.0km.
many applications, time is a critical factor. One examplsdme
emergency situations (e.g., natural disaster). Quickuatans in
a natural disaster are needed as in the Australian fires ir2Ge®
and the Californian fires in Oct 2007. Besides, in a largdesca
natural disaster such as the earthquake in China in May 2068,
tributing relief supplies and rescuing are time-criticdbme other
applications are military planning and robot path planrifj.

Motivated by the above observation that the computatiohfoos
problem FSGP is high, instead of developing a new algoritbm f
problem FSGP, in this paper, we propose a new frameworkdalle
surface simplificatiorover a terrain. In the literature [7, 6, 23,
27], the surface of a terrain is usually represented by th@nTr
gular Irregular Network (TIN) model. The TIN model involveas
number of non-overlapping triangles which are arrangedimese-
dimensional space. Figure 4a shows an example of the térrain
Figure 3 represented by the TIN model. Note that for illustra
purpose, Figure 4a involveslianited number of triangles. If the
number of triangles used in the model is larger, then thexsardf
the terrain represented by this model becomes smootheerimel
surface simplificatiodiramework, given the original surfacg, we
simplify or approximateS (Figure 4a), and generate a simplified
surfaceS (Figure 4b) such that the number of triangles on the sim-
plified surfaceS is smaller than that on the original surfaseWe
run an algorithmA for problem FSGP to find the shortest gentle
pathp on this simplified surfacé, as shown in Figure 4b. Then,
we mapthis pathp on Stoa pathp on S as shown in Figure 4c.
We call this stegPath Mapping

Figure 2: Terrain illustrating gentle paths

Figure 3: Terrain showing the
challenge for problem FSGP

Surface simplification has its advantage to speed up the atamp
tion of finding shortest gentle paths. Intuitively, sinceninimizes
the number of triangles on the surface, the algorithm foblenm
FSGP can run in a shorter period of time. Although it can spged
the computation, there are the following two challenges.

Firstly, the mapped path on S may not satisfy the slope re-
quirement. For example, the mapped paih Figure 4c does not
meet the slope requirement. Consider the triarfgleThe pathp
in f1 is quite steep. In order to address this issue, in this paer,
study how to construct a mapped patbn S which can satisfy the
slope requirement given a gentle patfound on a given simplified
surfaceS.

Secondly, even though the mapped patn S satisfies the slope
requirementp may be extremely long compared with the shortest
gentle pathp, (or theoptimal path) found on the original surfac§.
Clearly, surface simplification loses some surface infdiomaand
thus the length of the mapped (gentle) pathSois larger than that
of the optimal path. This motivates us to introduce an aolii
requirement, thelistance requirementn addition to the slope re-
quirement. Letp| be the length of a path on S. The distance
requirement specifies that, givemlistance error parameter > 0,
the length of the (mapped) pathfound should be bounded ky
That is, |p| < (1 + €)|po| wherep, is the optimal path or$. In
this paper, we study how to simplify the surface such thaemi
any source points and any destination point on surfaceS, the
mapped (gentle) path fromto ¢ satisfies the distance requirement.

Surface simplification speeds up the computation with tise di
tance guarantee. If we set= 0.1 andf,, = 0.3, experiments
shows that the total time to find a gentle patbetween two ran-
domly chosen vertices under the surface simplification male
174 seconds. However, the time to find the shortest gentle pat
po On the original surface is 1482 seconds. Thus, the speedup in
execution time is about 8.5 times if we sacrifice the length Esc-
tor of at most 10% only. Surface simplification is very usefat
only for problem FSGP but also the traditional problem. If sg
0. = m/2, problem FSGP becomes the traditional problem. In
this case, if we set = 0.1, we have the speedup in execution time
by 138 times even if we sacrifice the length by a factor of attmos
10% only.

Our contributions are summarized as follows. (1) To the best
of our knowledge, we are the first to study how to find a shortest
path which satisfies both the slope requirement and thendistee-
quirement. (2) To the best of our knowledge, we are the first to
propose a novel idea to simplify the surface of a terrain ghah
the length of the path found is bounded (regardless of whétleee
is a slope requirement). The surface simplification hasdtaa-
tages to speed up the computation of finding shortest geattesp
because it minimizes the total number of triangles on théasar
(3) We present a systematic performance study using botlamea
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Figure 4: Surface simplification

synthetic datasets to verify the effectiveness and theiaffiy of
our surface simplification framework.

The rest of the paper is organized as follows. Section 2wnevie
the previous work. Section 3 formulates the problem FSG&: Se
tion 4 and Section 5 describe the proposed algorithms. @etti
evaluates the proposed techniques through extensiveimqrds
with real datasets. Section 8 concludes the paper.

2. RELATED WORK

We classify the related works into two categories, findingrsh
est paths and surface simplification.

2.1 Finding Shortest Paths

Finding shortest paths has been extensively studied in two-
dimensional spatial databases [8, 20]. Dijkstra’s alhonif8] is
the well-known algorithm for finding shortest paths. Sonteotl-
gorithms are the Bellman-Ford algorithm, the A* search atgm
and the Floyd-Warshall algorithm.

Finding shortest paths is a fundamental operator in a |qiatial
queries likek nearest neighbor searches. Some studies like [2, 17,
21] propose nearest neighbor searches in two-dimensipaaks.

Finding shortest paths on the surface of a terrain has alBso be
studied by [16, 1]. [16] extends the idea of Dijkstra’s aigfon
and solves the problem of finding shortest paths on the suifac
O(n?*logn) time wheren is the total number of triangles in the
TIN model. [1] discovers a spatial property callede-angle-one-
splitand makes use of this property to design an efficient algarith
which improves the running time 10(n?) time.

In the context of terrain, finding shortest paths is also lvet
in other spatial queries [5, 6, 23, 27]. One example is sarkad¢N
(skNN) queries which were first studied by [5, 6]. [5, 6] prepo
a filter and refinement strategy for this kind of queries. Hesre
as pointed out by [23], the results returned by this strafégy]
are not guaranteed to be correct. Motivated by this obserat
[23] proposes an approach based on the Voronoi diagram éor th
skNN queries and guarantees that the results returned aecto
Another example of spatial queries related to finding slsbpaths
is the continuous skNN queries which were proposed recéytly
[27]. [27] studies to find thé& nearest neighbors when the objects
on the surface are moving.

However, most of the existing works, including the studiésolr
propose to find shortest paths on the surface of a terrainotio n
consider thesloperequirement which appears in a terrain.

Some studies [13, 15, 11, 26] propaoseproximatealgorithms
for finding shortest paths. However, since they are origynde-
signed for the traditional problem of finding shortest pathd thus
do not meet the slope requirement, it is not easy to adaptphei
posed algorithms to our problem.

2.2 Surface Simplification

Surface simplification, a fundamental technique in theditgre
of computer graphics, is widely used in multi-resolutiondeling.
It was first proposed to accelerate the rendering speed obleam
3D models. In the multi-resolution model, an object can lmeae
sented in different levels of details (LOD). Surface sirfipdition

(b) Slope of a face

(a) Slope of a line
Figure 5: Slope

is a special case of multi-resolution modeling. There aversé
methods for surface simplification in the literature of drag. One
is vertex decimatioi22, 24]. Under vertex decimation, a vertex
is selected for removal as shown in Figure 6a. After thisereis
removed, all of its incident edges are removed and a new polyg
is formed as shown in Figure 6b. The resulting polygomiangu-
latedas shown in Figure 6¢ such that the polygon is partitionem int
a number of trianglesTriangulationis a process which partitions a
given polygon into a number of triangles. There are a lot afhme
ods for triangulation. In this paper, we adopt the methogpsed
by [9]. Other surface simplification methods incluetdge contrac-
tion [10], vertex clustering19] andsimplification envelopef8].
Note that the focus of this paper is different from the abdud-s
ies about surface simplification. Our focus is to simplifg gurface
such that the mapped path on the original surface satisftbs e
slope requirement and the distance requirement. Howenerfot
cus of the above studies is to simplify the surface of an alsjech
that the simplified surface “looks” similar to the originairtace.

3. PROBLEM DEFINITION

3.1 Notation

Each pointg in the three-dimensional space has an x-coordinate,
a y-coordinate and a z-coordinate, denoted by ¢.y andgq.z, re-
spectively.q.z corresponds to thelevationof pointq.

A terrainis the graph of a continuous function that assigns every
point on a horizontal plane to an elevation [4]. In the litara
[7, 6, 23, 27], the surface of a terrain is usually represkhiethe
Triangular Irregular Network (TIN) modetonsisting of a number
of disjointtriangles Each triangle is represented by three corners
calledverticesand three lines connecting these three corners called
edges In the literature, a triangle is also referred to da@e In the
following, we use term “triangle” and term “face” interclgeably.
Note that each vertex is also a point in a three-dimensiqedes
If an edge is located at the boundary of a terrain, avimedby only
one triangle. For example, in Figure 4c, edgeat the boundary
is owned by facefs only. Otherwise, it isharedby two triangles.
For example, in Figure 4c, fach and facef. share an edge;.
Figure 4a shows an example of the terrain in Figure 3 repteden
by the TIN model. LetS be the surface of the terrain represented
by the TIN model. LetH be a (virtual) horizontal plane located at
the sea level of the terrain. We define the z-coordinate df pamt
on planeH to be 0.

Consider Figure 7a showing a terrain with a horizontal pl&he
In the following, we follow the convention that the points thre
horizontal planed are denoted bgrosspoints and symbolized by
underlinedvariables while the points on the surface of a terrain are
denoted bydot points and symbolized byon-underlinedsariables.
For example, the cross poigtis on the plangd and the dot point
s is on surfaceS. Following the terrain model [4], we assume that
any vertical line must intersect with the surface at only pamt.

Given a source point and a destination poirton the surface, a
pathp from s to ¢ is defined to be a sequencelimfe segmentsn
the surface which starts frosmand ends at. Each line segment can
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also be regarded as a path. For example, in Figurg’7athe path
from point s to point¢ on the surface. Pathl is a sequence of 4
line segments, namely (1) the segment froto a, (2) the segment
from a to b, (3) the segment frorhto ¢ and (4) the segment from
tot. Thelengthof a line segmenp; from a pointa to another point

b, denoted byp;|, is defined to be the Euclidean distance between
a andb. Thelengthof pathp, denoted byp|, is defined to be the
sum of the lengths of all line segmentspof

Given a pointg on the surface, thehadowof ¢, denoted by, is
defined to be a point on the plafesuch thay.z = ¢.x, ¢.y = q.y
andg.z = 0. Given a pathp on the surface, thehadowof p,
denoted by, is defined to be the shortest path on pl&heovering
the shadow of any point along For example, in Figure 7a, point
s is the shadow of point and the line segment fromto a is the
shadow of the line segment frosto a. Given a facef, theshadow
of f is defined to be the minimal region on plahecovering the
shadow of any point on facg.

Consider a line segmept on the surface. We define teopeof
p; to be the acute angle (in radians) betwggand the shadow of
pi. Figure 5a shows that the slope of line segmeris equal tof.
Theslopeof a pathp is defined to be the greatest possible slope of a
line segment of a path. Thetopeof a facef;, denoted bys(f;), is
defined to be the angle (in radians) (or formally the dihedrajle)
between the plane covering fage and the horizontal planéi.
Figure 5b shows that the slope of fagids equal top( f;).

3.2 Finding Gentle Path

As described in Section 1, we propose #hepe requiremento
capture the steepness of a path by introducing a slope pwame
0 € [0,7/2]. For the sake of illustration, in the following, we
assume that,,, > 0. That is,f,, is not equal to 0. This assumption
avoids complicated and uninteresting discussions. Ifabgimp-
tion does not hold, we can st, to be a very small positive value
close to 0. With this parameter, we study problem FSGP. leeath
gorithm which finds the shortest gentle path freto ¢ on a surface
S for this problem beA(s, t|.S).

A natural question may be raised for problem FSBGBes there
exist a gentle path from a given source paind a given destination
point¢ on the surfaceFor the sake of clarity, we first assume that
there exists a gentle path from any source point to any dggiim
point. In Section 6, we will describe how we relax this asstiomp

In this paper, we propose a framework calgaface simplifica-
tion which simplifies the original surfacg (Figure 4a) to surfacé
(Figure 4b) such that the number of faces®is smaller than that
on S. Figure 8a shows an overview of the surface simplification.
In Section 5, we will study this process.

Figure 8b shows an overview to find the shortest gentle path fr
a source point to a destination point on surfaceS by using the
simplified surfaceS. We first construct a poir and another point
1 on the simplified surfacé by settings (Z) to be a point orf with
the same shadow agt). For example, in Figure 7a,andt are the

Figure 7: A terrain

source point and the destination point, respectively. Wistacts
and? on S with the same shadow asandt, respectively, as shown
in Figure 7b. Then, we run algorith(3, £|.5) to find the shortest
gentle pattp from 3'to ¢ on this simplified surfacé (Step ). Then,
we mapthis pathp on Stoa pathp on S (Step II) such that this
mapped path satisfies the slope requirement. In Section dillve
study how to perform this path mapping.

Since the mapped path may introduce errors, we consider the
distance requiremerin this paper by introducing a distance error
parametee > 0.

PROBLEM1 (SURFACESIMPLIFICATION). Given the origi-
nal surfaceS of a terrain, generate a new surfacesuch that (1)
the total number of faces ofiis minimized and (2) foany source
point s and any destination point on S, the mapped path on the
original surfaceS satisfies both the slope requirement and the dis-
tance requirement.

Note that Step | used in the step of finding shortest gentlespat
involves algorithmA. Our contribution is the proposal of surface
simplification over the terrain dataset with the guaranfémth the
slope requirement and the distance requirement. Any ahgorid
which finds the shortest gentle path (or the optimal pattg. (e
breadth-first search algorithm and a best-first searchittigoycan
also be used in our framework. In our experiment, we adopt the
breadth-first search strategy for algoritbdn A brief description of
this algorithm can be found in Section 7.

For the sake of illustration, we follow the notation convent
that all notations used in the simplified surface are syrabdlivith
~ which appears at the top of the notations (e.g., poamd pattp
on the simplified surfacs in Figure 7b) while all notations used in
the original surface are not (e.g., poinand pathp’ on the original
surfaceS in Figure 7a).

In the following, we first describe Step Il in Section 4. Than,
Section 5, we describe how we perform surface simplification

4. PATH MAPPING
4.1 Algorithm

Let p be the shortest gentle path on the simplified surface
found in Step | (See Figure 8b). In this section, we study Step
Il (i.e., how to mapp on Stoa pathp on S).

The major idea of path mapping is based ondbemon shadow
of the pathp found onS and the mapped path to be found on
S. Intuitively, after we findp on 5, we generate the shadow of
Then, we generate a temporary pathon the original surface
which has the same shadow @s We callp’ the pseudo pattof
p. Since pathp’ may violate the slope requirement, we perform an
additional step callegath adjustingo adjust pathy’ to pathp (on
surfaceS) such thaip satisfies the slope requirement.
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Specifically, we propose a three-step algorithm calledrétyn
Path Mappingto map a pattp found onS to a pathp on S. We
denote the relationship betwegandp by a path mapping function
PM such that

p=PM(p) @)

Step 1 (Shadowing):We find the shadow gb. For example, Fig-
ure 9 shows the shortest gentle patfrom 5 to ¢ on S which in-
volves (1) the line segment fromto band (2) the line segment
from b to #. The shadow op is p which involves (1) the line seg-

ment from3 to b and (2) the line segment frobrto . Note thath is
a point connecting two line segments of patan the surface. The
reason whyb appears in path is that pathp passes through edge

E via pointg. Thus, this leads to the existence osfhaadowpointE
on theshadowpathp.

Step 2 (Segmentation)We generate a pseudo pathon the orig-
inal surfaceS which has the same shadow as For instance,
shadowp’ shown in Figure 10 (forS) is the same as shadow

shown in Figure 9 (f0|§). Note that shadow’ involves (1) the
line segment frons to b and (2) the line segment fromto t. Path

p’ shown in Figure 10 is the pseudo path. Although the shadow
involves asingleline segment frons to b, we have to divide this
line into twosegmentsnamely (1) the segment frogto ¢ and (2)

the segment froma to b, due to the existence of eddge Thus, in
Step 2, in addition to creating pagh with the same shadow a8

we have to dividey’ into a number of line segments such that each
line segment does not pass across any edge on the origifedeur
After Step 2, we obtaip’ which involvesk line segments, namely
i, p5, ..., Pk FOr example, in Figure 10, we have 4 line segments
of p’ and thusk is equal to 4.

(b)
r proposed framework

Step 3 (Path Adjusting): After we obtain a pseudo pagf from
Step 2, we perform a step callpath adjustingand generate path
p such thaip satisfies the slope requirement. Assume that the final
pathp containsk continuous (sub-)paths:, p2, ..., pr. For each
line segmenyp);, of p’ (obtained in Step 2) with the source point
and the destination poibtwhere: € [1, k], if it satisfies the slope
requirement, we sai; to bep;. Otherwise, we execute algorithm
A(a, b|S) to find the shortest gentle path franto b on the original
surfaceS and assign it tp;. The combination of the resulting (sub-
)pathspi, pe, ..., pk is called theadjusted pattof pathp’, which is
the path in the output.

Intuitively, each line segment (or path) violating the doe-
quirement will be adjusted accordingly such that the fin@listéd
(sub-)path satisfies the slope requirement. Thus, we g&dalh
lowing theorem.

THEOREM1 (SLOPEREQUIREMENT). Letp be the shortest
gentle path on the simplified surfage The pathp on the original
surfaceS mapped fronp by algorithmPath Mappingsatisfies the
slope requirement.

4.2 Theoretical Analysis

In the following, we focus on analyzing the distance bound of
path segment instead of the distance bound of the whole Phif.
is because once the distance bound of a path segment is fixend,
distance bound of the whole path also holds.

4.2.1 Distance Analysis for a Particular Path Seg-
ment

Consider a patp from 5 to  on surfaceS returned byA(s, £|.5)
(in Step I).

In the previous section, we learned that we can perfBath
Mappingto map a patlp to a pseudo-path’ (by Step 1 and Step 2)
and then adjust’ to the final pathp (by Step 3). In our algorithm,
according to Step 3, we generdiesub-paths in the final patbh,
namelyps, ps, ..., pr. Inthe example shown in Figure 7ais equal
to 4. Let the correspondence pseudo-path line segments twn
i, P, ..., Pr. FOr example, in Figure 7a, the line framto b is an
example of a line segment of p’. In order to perform analysis
for the distance requirement, we also find the corresponiliirgy
segmenf; of p which has the same shadow as line segméiuf
p’ fori € [1, k]. For instance, in Figure 7b, the line fraito b is
an example of a line segmept of p which has the same shadow
asp;.

In the following, we want to analyze the ratio [pf;| to |p;| (i.e.,
|pi|/|p:|) for eachi € [1, k] when we map @ivengentle line seg-
mentp; to p;. We call this ratio themapping ratio of a particular
gentle pathp;.

Note thatp, is generated from; via a pseudo-path line segment
p;. Thus, in the following, we calculate the mapping ratio wiif.



Figure 11: lllustration of the proof of Lemma 2
Specifically, we have

. . !
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In the following, we will derive}:;

derive }5}} from Step 3.

Consider Step 1 and Step 2. After Step 2, we obtain a pseudo-

;} from Step 1 and Step 2, and

the line segment from to b (as shown in Figure 11), such that the
slopes of both segments are equal,tp Let the Euclidean distance
between a point and another poirfi bed(a, b). Note that each of
these two line segments can be regarded as a sub-path whgte le
(equal tod(a, ¢) +d(b, ¢)) is at least the length of the adjusted path
pi because the adjusted pathis the optimal gentle path fromto

b. Thus, we have

pil < d(a,c) +d(b,c) 4)

Without loss of generality, we assume thas on the plangd such
that H crosses facg into two parts. Consider the upper part of
face f. Letl; be the line segment from to c. We construct a
virtual pointe by prolonging line segmerit starting atc such that
d(c,e) = d(b,c). Thus, we construct a virtual line connecting
ande. Since we prolond; whose slope i9,,, the slope of this
virtual line is also equal té,,, . It is easy to verify that the trapezoid
with pointsbd, b, ¢ andc is equivalent to the trapezoid with points
e, e,candc. Thus, we havé(b, b) = d(e, e). Consider the triangle
with pointsa, b andb. We have

pathp’ on S which has already been segmented. Consider a line Consider the triangle with points e ande. We have the following

segmenp; of p’.

Supposep), is on facef andp; is on facef. Sincep) andp;
have the same shadow, we derive that f@cend facef have an
overlappingshadowX .

Let the slope op; and the slope ap; be?; andé;, respectively.
Define the relationship betweer) and 0; by function AM such
that

0; = AM(6;) 3)
We have the following lemma.

LEMMA 1 (DISTANCEBOUND). Letp; be a line segment of
pathp. Letp; be a line segment of the pseudo pattpofLet 0;
and@; be the slope of; and the slope of;, respectively. We have

‘P;‘ _ coséi
il ~ coso]"

Proof: Since line segment; is a line, the shadow qf; is also a
line. Consider Figure 5a whepeis settop!. Itis easy to verify that
the length of the shadow gf; is |p;| cos 6;. Similarly, the length

of the shadow ofp; is |p;| cos6;. Sincep; andp; has the same

shadow, we have the following equatiolp?;| cos 6] = |p:| cos 6;.

By changing the subject t p/} ,we havelZil — cos0; O

194 cos 0

Consider Step 3. For each line segmghtwe perform a path
adjusting step and create a (sub-)patifwhich satisfies the slope
requirement). We have the following lemma.

LEMMA 2 (DISTANCE BOUND). Letp be a line segment of
the pseudo path. Let; be the adjusted path of,. Letd; be the

/ pil sin(max{0},0m})
slope ofp]. We havdm < simedtliind),

Proof: Consider two case€ase 1:0; < 0,,. According to Step
3 (Path Adjusting), since; satisfies the slope requiremenpt, is

equal top!. Thus,|p:| = |p}| and% =1 < Snlmextb 0m))

sin 0,

Case 2:0; > 0.,,. Consider a line segment from a to b on
face f as shown in Figure 11. Sinég > 6,,,, according to Step 3,
we need to execute algoriths to find the shortest gentle pagh
from a to b. Consider two sub-case€ase (a): There exists two
line segments on facg, namely the line segment fromto ¢, and

e = 323 =2 .
equation:sin 6., = 3523 Sinced(e, e) = d(b,b) andd(a,e) =

d(a,c) +d(c,e) andd(c, e) = d(b, c), we re-write the equation as
follows.

: _ d(b,b)

sinbm = g ovano

By Equation (4) and Equation (5), we have the following iredgu
ity: sin 0, < "’}%’fe By changing the subject t#ﬁ we have

sin(max{6},0m })
sin Oy,

Case (b): There does not exist two line segments on fgce
namely the line segment fromto ¢, and the line segment from
to b (as shown in Figure 11), such that the slopes of both segments
are equal td,, .

We know that Case (b) should not happen (and thus Case (a) hap-

pen) if facef has arextremely largarea (with respect to a pseudo-
pathp; with a short length). Case (b) occurs when fgchas a
limited area (with respect to a pseudo-pathwith a long length).

In Case (b), we can transform Case (b) to Case (a) easily jy-cho
ping line segmenp; into a number of sub-paths ,,p; o, ..., pi,
(with shorter lengths) such that, for egeh; wherej € [1,1], there
exists two line segments fgr, ; on facef such that the slopes of
both segments are equal €p,. For eachp;; wherej € [1,1],
we can find the correspondence mapped pagh(by using sim-
ilar derivations from Case (a)). Thus, it is easy to verifatth

lpg|  sin(max{6;,0m})

[P}l = sin Oy, O

By Lemma 1 and Lemma 2, we re-write Equation (2) as follows.

|ps] < sin(max{0;,0m}) o cos6;

|pi| — sin 6,,

cos ]

Note thatp; is on facef andp; is on facef. The right hand
side of the above inequality corresponds to the upper bofititeo
mapping_atio of a _sngle gentle path segment. We denote it by

MRS(< pi, f >,< Pi, f >). Thatis,

sin(max{0.,0,})  cosb;

sin 6,,

MRS(< pi, f >,<ﬁi7f~l>): (6)

cos ]

wherep; is a mapped path qf;.



4.2.2 Distance Analysis for an Arbitrary Path Seg- is a mapped path. In order to satisfy the distance requirgnen

ment
Note thatX is a region on plané/. LetGP(f, X) be a set of all
possible gentle paths on fa¢~eNhich shadows are insid&. Note
that, from Equation (1), we haye = PM (p;). The greatest pos-
sible mapping_atio of anarbitrary gentle path (segment), denoted

by MR(f, f), is equal to

max MRS(< pi, f >, < i [ >)
Vpi € GP(f,X)

wherep; = PM (p;)

@)

The above termM R(f, f) can be regarded as the greatest pos-

sible mapping ratio of an arbitrary gentle p@ihwhen we map a
gentle path (segmeng); on asimplifiedface f to a pathp; on an

original face f. This above term can be in fact expressed in terms

of the coordinates of all the vertices ¢fand f Details can be
found in [14].

In general, the above term can generalizedas follows. Con-
sider two different surfaceS and.S’ each of which represents the
same terrain (in the above derivatighjs the original surface and
S’ is the simplified surface). Given a fageon S and another face
f/ on S’ with an overlapping shadow, M R(f, f') can be re-
garded as the greatest possible mapping ratio of an asbgeartle
pathp’ when we map a gentle path (segmenitdn facef’ to a path
p on facef. With this reasoning, in addition td/ R(f, f), we can
also defineMR(f, f) similarly (i.e., the greatest possible ratio of
an arbitrary gentle path; when we map a gentle path (segment)
on anoriginal face f to a pathp; on asimplifiedfacef).

With the above definition oM R(f, f'), we have the following
lemma.

LEMMA 3 (DIST. BOUND FORARBITRARY PATH SEGMENT).

Let S and S’ be two different surfaces each of which represents

the same terrain. Lef be a face onS and f’ be another facef’
on S’ such thatf and ' have an overlapping shado¥. Suppose
that p’ is the shortest gentle path (segment) fin If algorithm
Path Mappingnapsp’ on facef’ to a sub-pathp on facef, then

we have% < MR(f, ).

5. SURFACE SIMPLIFIER

In this section, we present an algorithm calfagtface Simplifier
to simplify surfaceS to surfaceS such thatany mapped patfp
found by algorithnPath Mappingsatisfies the distance requirement
(in addition to the slope requirement).

Let p be the mapped path on surfae(obtained in Step Il in

Figure 8b). Letp, be the optimal path (i.e., the shortest gentle
path) on surface. The distance requirement specifies that, given

a distance error parameter> 0, we have|p| < (1 + €)|po| or

% < 1+ €. We define thelistance error ratioof pathp, denoted

by ER(p), to be%. Note thatE R(p) > 1 since|p| > |po|. If p
is the optimal path, theW R(p) = 1.

Obviously, if surfaces is exactly the same as the original sur-
face S, then any mapped pathfound must be optimal and thus
ER(p) = 1. This is because the mapped patbn S is exactly the
same as the paghfound onS which is considered as the shortest
gentle path orf.

However, if surfaceS is different from the original surfac§,
then it is likely that a mapped paghfound is not optimal and thus
ER(p) > 1. Besides, intuitively, if the “difference” betweehand

S is greater, then it is more likely thd@ R(p) is greater wherg

want that the “difference” betweefiand.S should not be too large.

The “difference” betweers and S is denoted byA (S, S). In
Section 5.1, we will describe an exact formula (S, S) such
that the following property holds.

PROPERTY1 (SURFACEBOUND). LetS be the original sur-
face andS be the simplified surface. (5, S) < 1 + ¢, then for
any mapped path, ER(p) < 1 +e.

5.1 Formulafor A(s,s)
LetCS(S, §) be a set of all possible paig, f) wheref is aface

on S and f is a face onS such thatf and f have an overlapping
shadow. We defina and )\’ as follows.

A =max; 5 cescs, s MRS, f) 8)

N =max; 5 cess.5 MRS, f) 9)

With the notations\ and\’, we define/\ (S, S) as follows.

DEFINITION 1. A(S,S) = A x X

With this definition, we have the following lemma for the cor-
rectness of Property 1.

LEMMA 4. LetS be the original surface and be the simpli-
fied surface. IIA(S,S) < 1 + ¢, then for any mapped path,
ER(p) <1+e

Proof: Letp be a path found in Step | andbe a path found in Step

Il. Since p is returned byA(3, ]5), 7 is the shortest gentle path
from3to¢ onS. We have the following inequality. For any gentle
pathg fromstoZ on S,

g1 = [Pl (10

We adopt the notations used in Section 4.2.1 here. Spebifical
in algorithm Path Mapping according to Step 3, we generdie
sub-paths in the final path, namelyp,, p2, ..., px. Let the corre-
spondence pseudo-path line segments te ', p5, ..., pk. All of
these line segments form a pseudo-péthBesides, lep; be the
correspondence line segmentofvhich has the same shadow as
line segmenp; of p’ for i € [1, k].

Consider a sub-path; and a line segmeni; wherei € [1, k].
Suppose thap; is on facef andp; is on facef. By Lemma 3, we
have

12 < MR(f, f)

Since each line segmept of p has the above inequality with the
sub-pattp; of p wherei € [1, k], by some simple derivations, it is
easy to verify the following.

% < max s 5eess,s) MRS, f)

With Equation (8), we have

(11

(12)

Letp, be the optimal path of (i.e., the shortest gentle path Si).
Consider that we apply algorithPath Mappingto mapp, on the
original surfaceS to generate a pafh, on the simplified surfacs.
Similar to the derivation for Inequality (11), by Lemma 3, tvave

\221 <max ;5 cess,s ME(S, f)




Thus, with Equation (9), we have

|Pol
[pol

<N

(13)

Note thatp, on S generated by algorithfath Mappings agentle
path onS (by Theorem 1). Thus, from Inequality (10), we have the
following inequality: |p,| > [p]. With this inequality, we re-write
Inequality (12) as:“ﬁio“ < . With Inequality (13), we re-write this
|

inequality as:% < A x ). SinceER(p) o

we have

ER(p) < Ax X (14)

Note that, from the condition of Property 1, we hatg.S, 5) <
1 + €. By Definition 1, we derive thah x X' < 1 + €. Thus,
Inequality (14) can be re-written a&R(p) < 1 + . O

5.2 Algorithm Simplifier

In this section, we describe an algorithm calearface Simpli-
fier which adopts one of the methods for surface simplificatien di
cussed in Section 2.2. Any existing methods about surfanplsi
fication reducing the number of faces in the literature opbies
can also be adopted in our algorithm provided that the sfiagli
surfacesS is generated such that (1).(S, §) < 14+ eand (2)
the shadow of the boundary 6fis the same as the shadow of the
boundary ofS.

In this paper, we use the techniques described in [22, 24]Gr
face simplification. Specifically, in [22, 24], surface siifipation
involves a number of iterations. Initially, we create a newface
S which is equal to the original surface It is being updated over
iterations and finally represents the simplified surface w&etwior
each iteration, we select a vertex to be removed fiSee Fig-
ure 6a) such thab will be updated after vertex decimation (See
Figure 6¢) and the distance requirement is satisfied fouihisted
S. We continue the above step until we cannot find any vertex to
be removed such that the distance requirement is satisfied.

Itis easy to verify the following theorem.

_ THEOREM 2. élgorithm Surface Simplifier generates surface
S such thatA(S,5) < 1+e.

In our implementation, we design an efficient method for dur a
gorithm Surface Simplifiewhich takesO(|V'|log |V]) time where
|V is the total number of vertices on the original surface. Fer t
sake of space, we give this method in [14].

6. DISCUSSION

In Section 3, we assume that there exists a gentle path frgm an
source point to any destination point. In this section, waxhis
assumption. We will introduce a terreachablefor a pointq to
describe whetheg is reachable or not. In this section, we will
show that if both the source poiatand the destination pointare
reachable, then there exists a gentle path fedmt.

6.1 Reachability

Given two distinct pointg; andq’ on a surfacegq is said to be
reachable fromy’ if and only if there exists a gentle path frayhto
g. q is said to baunreachable frong’ if ¢ is not reachable frony’.

Given a pointg on a surfaceg is said to bereachableif and
only if there exists another point on the surface such thatis
reachable frony’. ¢ is said to bainreachabléf ¢ is not reachable.

Given a vertey, a facef is said to beadjacentto g if one of the
corners off isq.

LEMMA 5 (UNREACHABILITY). A point ¢ on a surface is
unreachable if and only if is a vertex and; is unreachable from
any point on all of the faces adjacentgo

Proof: Firstly, we want to prove that, if is a vertex and is un-
reachable from any point on all of the faces adjacent, theng is
unreachable. We prove by contradiction. Supposehstreach-
able. That is, there exists another pajhbn the surface such that
q is reachable frong’. Consider two case€ase 1:¢’ is on one of
the faces adjacent tp This leads to a contradiction.

Case 2: ¢’ is not on all of the faces adjacent 4o Sinceq is
reachable frony’, there exists a gentle path froghto ¢. Let F' be
the set of all faces adjacent o We know that pattlp must pass
through one of the faces i, saysf. Letq”’ be a point along path
p on facef. Thus,q is reachable frong” (which is on one of the
faces adjacent tg). This leads to a contradiction.

Secondly, we want to prove that, 4fis unreachable, theaq is
a vertex andy is unreachable from any point on all of the faces
adjacent tog. We prove by contradiction. Consider two cases.
Case 1:q is a vertex and there exists another pajhbn one of
the faces adjacent tpsuch thaiy is reachable frong’. Thus,q is
reachable, which leads to a contradicti@ase 2:q is not a vertex.
That is, ¢ is a non-vertex point on a facé There exists another
pointq’ on f such thaty’.z = q.z. Thus,q is reachable frong. So,

q is reachable, which leads to a contradiction. O

The above lemma suggests that all unreachable points come fr
vertices on the surface. Thus, we just need to check whetiodr e
vertex(instead of all possible points on the surface) is unredehab
or not. How to check whether a vertex is unreachable or not effi
ciently will be discussed in Section 6.2.

LEMMA 6 (SOURCEDESTINATION REACHABILITY). If a
source points and a destination point are reachable, then is
reachable froms.

Proof: From the proof of Lemma 5, it is easy to verify that, if a
vertexq on facef is reachable, for any poigt on f, g is reachable
from ¢’. For the sake of space, we omit the proof here. There exists
a sequence of adjacent faces, namglyfs, ..., fi, such thak is on
facefi, tis on facef; and, for each € [1,1—1], facef; is adjacent
to facef;+1. Lete; be the edge shared by fageand facef; for

i € [1,1 — 1]. By the first claim in this proof, we know that there
exists a non-vertex point; on edgee; such thatt; is reachable
from s. Similarly, we know that there exists a non-vertex paint
on edgee: such that is reachable from;. In general, there exists
a non-vertex point; on edgee; such that; is reachable from;_1
fori € [2,1 — 1]. Atthe final step, similarly, we know thatis
reachable front;_; (by the first claim in the proof). Sinca is
reachable frons, ¢; is reachable from;_; wherei € [2,1 — 1],
andt is reachable from;_;, we conclude that is reachable from

S. D

6.2 Algorithm

In this general setting, algorithrBurface Simplifierwill be
changed as follows. The basic idea of the change is baseceon th
following two properties Property 1: For each vertex o$ which
is unreachable, the algorithm still keeps the originaleserton S.
Property 2: Whenever the algorithm genera@sjt makes sure that
it does not introduce any new vertex which is unreachable.

Intuitively, if all vertices are unreachable, then we cansin-
plify the surface. If there are only rare unreachable vesti¢hen
we can simplify the surface aggressively.



Since algorithmSurface Simplifiermaintains Property 1 and  each point belongs to four mountains with different elewadi we

Property 2, it is easy to verify that there exists a gengdﬂ joat.S take the greatest elevation among the four distributiortbegnal
if and only if there exists a corresponding gentle pathSorThus, elevation of the point. The datasets generated contair0600,
algorithmPath Mappingis kept intact in this problem setting. 1,000,000 faces. The default valuestif, e, the total number of

faces on the surface andare 0.3, 0.1, 600,000 and 0.1, respec-
tively.

All programs were written in C/C++ and executed on CentOS
linux platform on a 2xQuad Core 3GHz server with 32GB RAM.
Our proposed algorithm returns a path denoteg thich satisfies
the distance requirement and the slope requirement. Weeimpl
mented a simple breadth-first algorith#nfor finding shortest gen-
tle paths (FSGP) on a given terrain, whose basic idea is asvil

LEMMA 7 (REACHABILITY). Consider a vertex and a sur- Note that there may be multiple shortest gentle paths (Sﬁsmjsi
face S. LetV be a set of vertices of. LetY = N(v,V). v problem. We proved that one of them must pass througlhn_@le
is reachable if one of the following conditions hold€ondition face sequence face sequencis a sequence of faces whilesin-

(1): there exists two vertices ilf, namelyv; and v;, such that ple face sequenas a face sequence whlch contains no duplicate

vi.z > v.z andv;.z < v.z, or Condition (2):there exists an edge faces. So, starting from the face that contains sosees generate

e with an endpoint equal to such that the slope afis at mos®,,,. all possible simple face sequences in a breadth-first mamtér
destinationt is reached. In order to speed up, those unnecessary

face sequences that are impossible to be used for finding 85P a

Proof: Consider the first condition. Since there exists two ver- Pruned. In each simple face sequence, the length of the S@Gieca
ticesv; andv; such thaw;.z > v.z andv;.z < v.z, we deduce represented by functionof the coordinates of, ¢ and all the ver-

Efficiency: In algorithm Surface Simplifierwe have to check
whether a vertex is unreachable or not. The following lemelah
us to perform this checking step efficiently.

Let V be a set of vertices on a surfaSe Consider thav is in
V. LetN(v,V) be a set of vertices it /{v} each of which shares
an edge withv. For example, in Figure 6ay (v, V) is equal to
{v1,v2,v3,v4, V5 }.

that there exists a facg adjacent tov such thatf has two cor- tices of the triangles in this face sequence. We can alsdfggeset
ners/vertices, namely, andv,, wherev,, z > v.z anduvy.z < v.z. of slope constraintalong all faces in the face sequence in a similar
Thus, there exists a poigton facef whereg.z = v.z such thaw way by using the coordinates of these vertices @nd Then, we

is reachable frony. took the advantage of any existing optimization tool sucMas-

Consider the second condition. Since the edge has its stope a LAB, ALGLIB, OOL and IOptLib to find the minimum value of

mosté,.., there exists a point on this edge such thatis reachable  this function subject to the constraints. For each unprigiegble
from q. O face sequence, we obtain the corresponding SGP. Finallgng@m

all SGP’s obtained from all unpruned face sequences, wetsbake

With the above lemma, if one of the two conditions is satisfied shortest one as the final SGP. The detailed description afltjue
we are sure that a vertexiisachable Otherwise, it can be either  rithm can be found in [14]. Besides, we compared our proposed

reachable or unreachable. In our implementation, we camvem  algorithm with the baseline algorithm that finds the shargesitle

any vertex which falls in the former case (i.e., it is foundbe path denoted by, on the original surfacé.
reachable by this lemma). But, we keep each vertex which fall Note that one may think out an algorithm based on the short-
the latter case. This implementation does not violate Rtgpieand est traditional path ot as follows. Specifically, this algorithm
Property 2. We found that only 0.22% of vertices fall in thit#da  finds the shortest traditional path ¢ (without considering the
case in our experiment whe#g, is set to 0.3. slope constraint) and perform a path adjusting step (dwetrin

The efficiency of checking whether a vertex is reachable @n b Section 4) such that the final adjusted path satisfies the step
improved by using this lemma. For each verigxwe check Con-  quirement. However, it is possible that the final adjustetth paes
dition (1) and Condition (2) in the lemma. If one of the coiwtis not satisfy the distance requirement. We denote the finalstetj
holds, therw is reachable. It is easy to see that performing the path byp..
checking step with Condition (1) can be done(i(|Y'|) time and All experiments were conducted 100 times by randomly gener-
performing the checking step with Condition (2) can be dame i ating 100 queries where each query involves a random sooige p
O(|Y) time. and a random destination point. We took the average for thétee

For real datasets, we study the performance of algorithrtis wi

7. EMPIRICAL STUDY the following two parameters, namely (@), and (2)e.

We evaluate our algorithms in terms of five measurements. (1)
Preprocessing timePreprocessing time corresponds to the execu-
tion time to run algorithnBurface Simplifier(2)Number of faces:
We measured the number of faces on the original surface &nd th
number of faces (remained) on the simplified surface. M8&m-
ory consumption:Memory consumption corresponds to the stor-
age size to store all faces on a surface (which can be deniged f
the number of faces measured above). Rdth finding time:Path
finding time of our proposed algorithm under surface singaHi
tion which finds pathp corresponds to the execution time to run
Step | and Step Il. Path finding time of each of the baseline al-
gorithms corresponds to the execution time of the corredpoce
whole algorithm. (5Path length:The length o, p, andp.. are all
measured.

In this paper, we used two real terrain datasets adopted in
previous studies [7, 6, 23, 27]. (Bagle Peak (EP) area in
Wyoming StateThis dataset covers an area around 10.%kakm
which contains about 3,200,000 faces, and B&arhead (BH)
area in Washington StateThis dataset covers an area around
9.7kmx 13.7km which contains about 2,600,000 faces. Both
datasets can be downloaded from http://data.geocomm.ddm.
also created synthetic datasets as follows. Each synttiatiset
contains a terrain bounded by a 10kiA0km square horizontal
plane. On this horizontal plane, we randomly pick four ppad the
centers of the mountains. Then, the elevation of all poirith re-
spect to the center of each mountain is modeled by a 2-dimealsi
Gaussian distribution denoted by meanand standard derivation
o. The meann of each distribution (corresponding to the eleva-
tion of the center of the mountain) is randomly generatethftb
to 10000. The standard derivationis an input parameter. Since 7.1 Real Datasets



o —+H—
¥
=
©

The length of p -——%-—
The length of p,

Worst-case bound

The length of p,

9 2
8 ¥ 8 & & &
&

(w) ybus| yred

+%D
[£2
2o
E5E
[EEE
sS85
598
o 2o
EEE
="
s 9 9 g g9 9 g o
88888 8 8
38388 8 8
8 8 &8 8 8
(s) Buipuy yred oy swi
(aw) abeiols
3 38 38 3 g
8 3888 8 8
R 88 % 8 8 S o
~
S
ao
k- w
=g o
we
59
o
o8 s
85
=]
° -
m (=]
°

3500
3000
2500
2000
1500
1000

00

)
S
S
<

5

PHV S89%} JO JaquinN

/

/

02 03 04 05 06 07 08

0.1

=

o

© % N o
S S a3

@mv awn Buissadsoidaid

® © ¥ ~ o

01 02 03 04 05 06 07 08

01 02 03 04 05 06 07 08

0

0

em
@

)

b
Figure 12: Effect of 6,,, (Eagle Peak where:

(

Exact algorithm

Approximation algorithm —+— 2%

O © o ® ¥ o
B

Am@d Wi} paje|NwWwnody

0.1)

Approximation ‘algomhm —

Exact algorithm -—
e

o © o o «
& 4«

nw@av awi) paje|nwinady

XK

Exact algorithm --
0K

200X

Approximation ‘algomhm —

o0k

0

N oY OowQ
RIRSERNER =]

nw@av awi) pare|nwinady

Exact algorithm -

Approximation algorithm —+—

N © < o
B

nw@av awi) paje|nwinady

48 56

40

24
Number of queries

16

8 16 24 32 40 48 56 64 72 80

0

12 16 20 24 28 32 36 40

8

4

o

8 10 12 14 16 18 20

6

Number of queries

Number of queries

Number of queries

m = 0.7

(d) 6

m = 0.5

(c)o

=03

m —

(b) 0

m = 0.1

@6
Figure 13: Comparison between the exact algorithm and the ggroximation algorithm (Eagle Peak wheree = 0.1)

Q
| e}
*0o
! P
8
L2
5953 e
hmhb <
€53 :
2289 s
-9
5258 .
0203
Fy =N} Q
FFE s o
E
¥
&
°
s o = 3 3
2 ¢ 8 8 8
g 3 § 8§
(w) ybus| yred
! -
X0
ca o @
pgp (=}
525 L
S5E
=
EEE <
585 S
P
220
EEE
[ <
13
N
3
P
g
g

(s) Buipuy yred Joy swi L

(aw) abeiois

2 2 2 29 2 g g
8 8 8 8 8 8 8
R 83 83 % 8 & 3 o

Figure 14: Effect of ¢ (Eagle Peak whered

No. of faces in orig. surface ———
No. of faces remained s
005 01 025 05 075

0

4000
3500
2500
2000
1500
1000
500
0

S
8
8
)

am S89€} JO JaquinN

1

|/
|/
|/
[

[

([

[

025 05 075

0.05 0.1

0

9 v 9o 1w o ®»
® & & &4 =

@mv awn Buissasoidald

(d)

(b)

@

(©

0.3)

m —

o 1
@«
: 3
i Q
* 0
! ©
o b
£28
523
E= =
589 3
528
s 8
2L {
SE2
EFS X ~
2 \ S
o
°
s o 2 2 8 =
g2 8 8 8 8 8
2 8 8 8 8 8
2 8 & |§ 8 8
(w) ybus) yred
. -
*
o ©
&
52 S
£S5 r
£2
SE
s ©
5e S
»
o
gE | ¢
EF
=
3
T o~
3
°

o9 909 99 99 9 o
&S8R 8B IS A

(sQT) Bupuy yred 1oy swiL

(aw) abeiois

s s 988 38
8888888
S 88 §88% ¢S o
:— )
©
P :
8 S
sE
£5
o g w0
59 S
59
2
o
sg I
bt o
85
s o
52 (=]
S
g
°

2
3
B

4000
3500
2500
2000
1500
1000

S
8
8
)

am S89€} JO JaquinN

9 v 9 1w 9o »w o
® & & &4 =

@mv awn Buissasoidald

(b)

Figure 15: Effect of ¢ (Eagle Peak
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We conducted experiments on two real datasets, Eagle Pdak an
Bearhead. The results for Eagle Peak can be found in Figyre 12
Figure 13, Figure 14 and Figure 15.

Effect ofd,,,: In Figure 12a, whef,, increases, the preprocessing
time increases. This is because, wlignis larger, intuitively, the
slope requirement is weaker and thus we can remove moree®rti
in algorithmSurface Simplifierlf there are more vertices removed,
then the time to simplify the surface (in the preprocessteg)sis
larger. In Figure 12b, the number of vertices remained (anod t
the memory consumption of the surface) decreases wWhem-
creases. In Figure 12c, whép, increases, the time for finding
decreases. Singg, is larger, the total number of faces remained
is smaller. Thus, the time for finding is shorter. Besides, the
time for findingp, is much longer than the time for finding In
particular, ife = 0.1 andé,,, = 0.3, on average, our proposed al-
gorithm which findgp takes 174s but the optimal algorithm which
find p, needs 1482s. Thus, the speedup is 8.5 times,,Ifs set
to 0.1, the speedup is 1.6 times. The time for findinds shorter
than the time for finding, and the time for finding. Note that

1200 -
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Figure 18: Effect of dataset size (Synthetic datasets)
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the surface. In Figure 14b, the number of faces removedasese
with €. In Figure 14c, the time to find path decreases whea
increases. This is because the total number of faces reth@ne
smaller if e is larger. For example, when = 0.1, the time to
find pathp is 60s but the time to find path, is about 505s. The
speedup of finding path (compared with finding path,) is about
8.42 times. Whem = 1.0, the speedup is nearly to 31,562.5 times.
We conclude that wheaincreases, the speedup increases. In Fig-

pathp. does not have any guarantee on the distance requirementyre 14d, similarly, the length of is smaller than the worst-case

(which will be described later). Besides, whp is set to 0.3, we
analyzed that the proportion of path segments (obtained sfg-
mentation) which undergo the process of path adjusting 5926
This suggests that it is not quite frequent to execute pajilsd
ing in Step Il. In Figure 12d, we denote an additional curyéeda
“Worst-case bound" to denote the greatest theoretical boond
according to the length gf,. This value is equal t¢1 + €)|p,|. In
this figure, the length gb, decreases wheh,, increases. Besides,
the length ofp is smaller than the worst-case bound but the length
of p. is larger than the worst-case bound. In particulat,# 0.1
andé,, = 0.3, the ratio of the length op to the length ofp, is
1.099 but the ratio of the length pf to the length ob, is 2.45.

In our proposed framework, we need to simplify a surface as a
preprocessing step. In order to study how this preprocgssip
benefits our algorithm for finding a gentle path over the sifiegl
surface, we did the following experiments. In this expenineve
compare two algorithms, namely approximation algorithmand
an exact algorithm The approximation algorithncorresponds to
the algorithm for findingy while theexact algorithmcorresponds
to the algorithm finding,. We define theaccumulated timef an
algorithm as follows. Consider a query worklog@dcontainingx
queries wherer is a non-negative integer. The accumulated time
of an approximation algorithm is defined to be the sum of thee pr
processing time and the total time of finding all (approxie)afen-
tle paths among all queries @ by the approximation algorithm.
The accumulated time of an exact algorithm is defined to be the
total time of finding all (exact) gentle paths among all gegfin
Q by the exact algorithm. Figure 13a shows that the accunuailate
times of the two algorithms increase with the number of aqseri
in Q whenf,, = 0.1 ande = 0.1. WhenQ contains fewer than
3 queries, the accumulated time of the exact algorithm idlema
than that of the approximation algorithm. However, whemerae
more than 3 queries i, the accumulated time of the exact algo-
rithm is greater than that of the approximation algorithmother
words, the approximation algorithm needs only 3 queriesota-c
pensate the preprocessing cost. We conducted other exqagsim
whend,,, = 0.3,0.5 and 0.7, which can be found in Figure 13b,
Figure 13c and Figure 13d, respectively. We find that 23 gseri
50 queries and 46 queries are needed to compensate theqagpro
ing cost wherd,,, = 0.3,0.5 and 0.7, respectively.

bound. Note that the worst-case bound increases lineatttyevut

the length ofp does not increase linearly with Instead, the dif-
ference between the lengthpfind the worst-case bound becomes
larger where increases. For instance, the distance error is still kept
at most 10% whea increases from 0.1 to 1.0.

Effect for Traditional Problem:We studied our proposed frame-
work, surface simplification, for the traditional problerhieh does
not consider any slope constraint (Figure 15). In this erpent,

we adopt the implementation of Chen and Han’s algorithm [12]
(which is originally designed for the traditional problefoy algo-
rithm A in our proposed framework. The original implementation
of [12] needs to find all the shortest paths from a given sopoiet

s to all the other vertices. We modified the implementation such
that once the path togivendestination point is found, the algo-
rithm terminates immediately. The results are also sintdafig-

ure 14 but the preprocessing time and the time for fingifyg,) are
shorter. In particular, our proposed algorithm to find patfakes
489s with 10% distance error guarantee. However, the optima
gorithm takes more than 67,527 seconds to find The speedup

is 138 times. In addition, interestingly, when= 0, the time for
finding p is smaller than the time for finding, becauseSurface
Simplifier merges some adjacent faces with the same slope which
speeds up the computation.

Effect on Surface SimplificationFigure 16 shows the results of
our surface simplification on the real dataset, Bearheadsravh
0. = 0.3. For the sake of illustration, we only focus on a por-
tion of this dataset with dimension 420m x 420m, which is show
in Figure 16a. Figures 16b, ¢ and d show the simplified surface
when we set to 0.1, 0.25 and 0.5, respectively. The number of
triangles on the simplified surfaces decreases wheareases.

We also did the experiments for Bearhead to study Agwand
e affect the performance of the algorithms and study how tlee pr
posed algorithm works well for the traditional problem. Thsults
are also similar to those obtained from Eagle Peak. For tke
space, we just show the results for paramétein Figure 17.

7.2 Synthetic Datasets

We also conducted experiments with synthetic datasetsddi a
tion to the two parameters studied in real datasets ¢.e ande),

Effect ofe: Figure 14a shows that the preprocessing time increasesdataset sizés also used to study the performance of the proposed
with e. This is because the number of faces removed increases withalgorithm over synthetic datasets where dataset sizespmmnels to

e and thus algorithnSurface Simplifieneeds more time to simplify

the total number of faces on the surface.
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Effect of Dataset Sizetn Figure 18a, the preprocessing time in-
creases with the dataset size. Figure 18b shows that, when th

dataset size increases, the number of remaining faces keapy
unchanged. This is because when the dataset size is laggarin

ber of vertices on a given fixed surface will be larger. Howeve

since the surface generated by the synthetic data generatarly
the same when the dataset size is larger, after surfaceifaaipbn,
it is likely that the given surface contains nearly the samelper
of faces (when the dataset size increases).

Effect off,,, ande: Figures 19 and 20 shows the results when we

vary 0,,, ande, respectively. The trends for the effecttof ande on
the synthetic datasets are similar to the trends on the ataseits.

Conclusion: Our proposed algorithm runs efficiently if we sacri-

fice the length of the path a little bit. The larger, (¢) is, the
faster our algorithm runs. In particular,df= 0.1 andé,, = 0.3,

Storage (MB)

Storage (MB)

our proposed algorithm runs 8.5 times faster than the optiira

gorithm which finds the optimal path ofi if the path found by

our algorithm is at most 10% longer than the optimal path. éf w
set,, = w/2, our proposed problem becomes the traditional prob-

lem. Our proposed algorithm runs 138 times faster than ttienap
algorithm with 10% distance guarantee.

8. CONCLUSION

We study a fundamental operator in spatial databases, dindin

shortest paths on the surface of a terrain. In this probleencon-
sider the slope requirement such that the path is not top.s&ece
solving this problem is more challenging than solving thedir

tional problem, we propose a new framework called surfage si
plification. Under this framework, we can compute shortest-g

tle paths efficiently. We conducted the experiments to shwat
our proposed framework is very efficient and effective ndy dor
problem FSGP but also for the traditional problem.

There are a lot of promising research directions. Firsthg in-
teresting to consider other popular spatial queries suémnasrest

t

neighbors queries and range queries on the surface witHdpe s

constraint. Secondly, another interesting direction isttaly the

real time spatial queries such as continuéusearest neighbors in

our problem setting, which have been studied extensivelgniy.
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