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ABSTRACT 1. INTRODUCTION

Recently, spatial keyword queries become a hot topic initbeat With the proliferation of spatial-textual data such as tama
ture. One example of these queries is¢hbective spatial keyword ~ based services and geo-tagged websitpatial keyword queries
query (CoSKQ) which is to find a set of objects in the database have been studied extensively recently [11, 8, 23, 3]. Gaset
such that ittoversa set of given keywords collectively and has the of spatial-textual objects and a query constituted by atiosand
smallestcost Unfortunately, existing exact algorithms have severe a set of keywords, a typical spatial keyword query finds theab

scalability problems and existing approximate algoriththeugh
scalable, cannot guarantee near-to-optimal solutionthismpaper,
we study the CoSKQ problem and address the above issues.
Firstly, we consider the CoSKQ problem using an existing cos
measurement called timeaximum sum cosThis problem is called

that bestmatches the arguments in the query. One example is to
find the object closest to the query location among all objéuat
cover all the keywords specified in the query [23].

In some applications, users’ needs (expressed as keywanels)
satisfied by multiple objectsollectivelyinstead of asingle ob-

MaxSum-CoSKQ and is known to be NP-hard. We observe that the ject [4]. For instance, a tourist wants to have site-seestgp-

maximum sum cost of a set of objects is dominated by at those¢
objects which we call thdistance ownersf the set. Motivated by
this, we propose a distance owner-driven approach whiahies
two algorithms: one is an exact algorithm which runs fadtant
the best-known existing algorithm by several orders of nitage
and the other is an approximate algorithm which improvebds-
known constant approximation factor from 2 to 1.375.

Secondly, we propose a new cost measurement cdidedeter
costand CoSKQ with this measurement is called Dia-CoSKQ. We
prove that Dia-CoSKQ is NP-hard. With the same distance owne
driven approach, we design two algorithms for Dia-CoSK@ n
an exact algorithm which is efficient and scalable and therath
an approximate algorithm which gives,&-factor approximation.

We conducted extensive experiments on real datasets waieh v
ified that the proposed exact algorithms are scalable angrtie
posed approximate algorithms return near-to-optimaltgnia.

Categories and Subject Descriptors
H.2.8 [Database Applicationg: Spatial databases and GIS
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ping and dining which could only be satisfied twultiple objects,
e.g., tourist attractions, shopping malls and restauraAtsther
example is that a user would like to set up a project consartiu
of partners within a certain region that combine to offer thpa-
bilities required for the successful execution of the whmleject.
Finding multiple objects collectively to satisfy users’eas can be
addressed bgollective Spatial Keyword Que(CoSKQ) [4].

Specifically, CoSKQ is described as follows. l®tbe a set of
objects. Each objeat € O is associated with a spatial location,
denoted byo.\, and a set of keywords, denoted by). Given a
queryq with a locationg. A and a set of keywordg ), CoSKQ is to
find a setS of objects such that coversq.y, i.e.,q.v) C Uses0.7,
and thecostof S, denoted by:ost(S), is minimized.

There are different cost functions fawst(S). One cost
function is called themaximum sum cost functipmenoted by
cost Mazsum(S), and was studied in [4]. It is the linear combi-
nation of twvomaxcomponents: the maximum distance betwegen
and an object it and the maximum distance between two objects
within S. CoSKQ adopting this cost function is call&tbxSum-
CoSKQ The other cost function is called tlitameter cost func-
tion, denoted bycostpia(S). It is defined to be theliameter
of S U {q¢}. In fact, diameter-related cost functions have been
commonly adopted in graph databases [1, 13, 2, 15] and kpatia
databases [25, 26, 27]. To the best of our knowledge, we are th
first to study this cost function for CoSKQ. CoSKQ adopting th
cost function is calle®ia-CoSKQ

Given a queryg, an objecto is said to berelevant(to q) if o
contains at least one keyword ). We denote byD, the set of
all relevant objects tq. It is sufficient to focus orQO, only for a
specific queryy. Given a sefS of objects,S is said to befeasible
if S coversqg.ip. Thus, the optimal solution of CoSKQ is a feasible
set with the smallest cost.

Although MaxSum-CoSKQ (which is proved to be NP-hard) has
been studied by Cao et al. [4], the best-known exact algurith
which we call Cao-Exact is not scalable to large datasetstizend
two existing approximate algorithms which we call Cao-Agdpr



and Cao-Appro2 do not have a very good theoretical guarantee
Specifically, Cao-Exact is a best-first search method basetie
feasible set space whose sized$|0,|!*¥!). Though equipped
with some pruning techniques, Cao-Exact is prohibitivetpen-
sive when the dataset is large. For example, in our expetanen
Cao-Exact took more than 10 days for a query containing 6 key-
words on a dataset with 8M objects.

In this paper, we propose two algorithms for MaxSum-CoSKQ,
MaxSum-Exacand MaxSum-Appro MaxSum-Exact is an exact
algorithm and MaxSum-Appro is a 1.375-approximate algamit

MaxSum-Exact is more scalable compared with the best-known
algorithm, Cao-Exact. A key observation which is used by
MaxSum-Exact is that the number of distirtstsof all possible
feasible sets isubic (in terms of|O,|) although the number of all
possiblefeasible setis exponentialin terms of|¢.¢|). Given a fea-
sible setS, the maximum sum cost function 6fis dominated (or
determined) by at moshreeobjects inS, namely the object with
the greatest distance frognand the two objects with the greatest
pairwise distance withi§. We say that these three objects form the
distance owner groupf S. Thus, the number of distinct costs of all
possible feasible sets is bounded by the total number obaliple
distance owner groups (which is bounded ®Y|0,|*)). Moti-
vated by this, we propose a distance-owner driven appraaltddc
MaxSum-Exact for MaxSum-CoSK. MaxSum-Exact is a search
algorithm based on the search space containing all posdible
tance owner groups. Besides, itincorporates some seaatbges
which can prune the search space effectively. Usuafigdistance
owner group corresponds toanyfeasible sets. This is verified by
our experiments where MaxSum-Exact ran faster than CactExa
by 1-3 orders of magnitude.

MaxSum-Appro, the proposed approximate algorithm, imgesov
the best-known constant approximation factor from 2 to 3 \8ith-
out incurring a higher worst-case time complexity.

Furthermore, we consider Dia-CoSKQ which has not been stud-
ied in the literature. In this paper, we prove that Dia-CoSKQ
NP-hard. We also adapt Cao-Exact, Cao-Approl and Cao-Rppro
for Dia-CoSKQ. However, these adapted algorithms suffenfthe
same drawbacks in MaxSum-CoSKQ.

Motivated by this, we propose two algorithms, namé&lia-
ExactandDia-Appro. Dia-Exact is an exact algorithm which is also
a search algorithm based on the search space containingsalt p
ble distance owner groupand thus it is scalable to large datasets.
Dia-Appro gives a/3-factor approximation for Dia-CoSKQ.

We summarize our main contributions as follows.

e Firstly, for MaxSum-CoSKQ, we design two algorithms,
MaxSum-Exact and MaxSum-Appro. MaxSum-Exact is
more scalable than the best-known exact algorithm, Cao-
Exact. MaxSum-Appro improves the best-known constant
approximation factor fron2 to 1.375 without incurring a
higher worst-case time complexity.

Secondly, for Dia-CoSKQ, which is new, we prove its NP-
hardness and develop two algorithms, Dia-Exact and Dia-
Appro. Dia-Exact significantly outperforms the adaptatdn
Cao-Exact, and Dia-Appro gives\é3-factor approximation.

Thirdly, we conducted extensive experiments on both real
and synthetic datasets, which verified our theoreticalltesu
and the efficiency of our algorithms.

The rest of this paper is organized as follows. Section 2sgive
the definition of the CoSKQ problem and its existing solusion
Section 3 and Section 4 study MaxSum-CoSKQ and Dia-CoSKQ,
respectively. Section 5 gives the empirical study and Sedire-
views the related work. Section 7 concludes the paper.

2. BACKGROUND

2.1 Problem Definition

Let O be a set of objects. Each object O is associated with
a location denoted by.\ and a set of keywords denoted by).
Given two objects ando’, we denote byi(o, 0’) the Euclidean
distance between.\ ando’.\. Given a query; which consists of
a locationg.\ and a set of keywordg.1), we denote by), the set
of relevant objects each of which contains at least one keyword
in ¢.7, and say that a set of objectsfiasibleif it covers q.1.
Besides, we introduce a fictitious objegt in O with o,. A = ¢.A
andog.1p = (0. For simplicity, we shall also refer to objegt asg.

Problem Definition [4]. Given a query; = (g.A, ¢.¢), theCollec-
tive Spatial Keyword Quer§CoSKQ) problem is to find a sét of
objects inO such thatS coversq.1) and thecostof S is minimized.

In this paper, we consider two cost functions, thaximum sum
costand thediameter cost

Given a setS of objects, thenaximum sum cosdf S, denoted
by cost rrazsum(S), is equal to the linear combination of the max-
imum distance betweeq and an object inS and the maximum
distance between two objects$h That is,

cost Mazsum(S) = o - maxd(o,q) + (1 — a) - max d(o1,02)
o€eS 01,00€S

@
wherea € [0,1] is a user parameter. Same as [4], for ease of
exposition, we consider the case where- 0.5 only. In this case,
we can safely assume that

@)

In fact, the applicability of all of our algorithms does nety on
the setting ofa. The only part that is affected is the approxi-
mation factor of our approximate algorithm whichdeundedby
(2 —V2/2 - a) (e.g., whena = 0.5, the approximation fac-
tor of our approximate algorithm is 1.375 which is bounded by
(2 —v2/2 - a) ~ 1.65). More details could be found in [16].
The CoSKQ problem using this cost is calldldxSum-CoSKQ

As could be noticed, parameter in the maximum sum cost
function is used to balance the twaax components, namely
maxecs d(0,q) andmax,, o,es d(01,02). Sometimes, however,
people may not have a concrete idea of how to speeififo ease
this situation, we define an alternative cost function cidi@meter
coston a setS of objects, denoted byost pia (S), which is defined
to be the larger of these twonaxcomponents. That is,

d(017 02)

cost MazSum(S) = magg d(o,q) + maxs d(o1,02)
oc

01,02€

max

costpia(S) =
01,00€SU{o4}

®)

The CoSKQ problem using this cost is callBih-CoSKQ

Intractability. It has been proved in [4] that MaxSum-CoSKQ is
NP-hard. In this paper, we prove that Dia-CoSKQ is also NRkha

LEMMA 1. Dia-CoSKQ is NP-hard. O

PROOF. For interest of space, our proof can be found in the full
version of this paper [16]. We can show this by transforming a
existing NP-complete problem, 3-SAT, to Dia-CoSKQ.]

2.2 Existing Solutions for MaxSum-CoSKQ

Cao et el. [4] proposed one exact algorithm, Cao-Exact, and
two approximate algorithms, Cao-Approl and Cao-Appro2, fo
MaxSum-CoSKQ.

Cao-Exact. Cao-Exact is a best-first search method using an index
calledIR-tree[8]. An IR-tree is an R-tree in which each node is
augmented with aimverted File(IF). Consider a leaf nod#&’. For



each keyword, we construct amverted listwhich is a list of all
objects in nodeV containingt. All inverted lists in this leaf nodé&/
form the IF of N. Consider a non-leaf nod¥’. For each keyword
t, we construct ainverted listwhich is a list of all child nodes in
N’ coveringt. Given a keyword, a nodeN" is said to covet if
there exists an object in the subtree rooted4tcontainingt. All
inverted lists in this non-leaf nod®’ form the IF of N’.

Cao-Exact is basically an exhaustive search on the objecesp
with some pruning strategies in the IR-tree. The worst-tase
complexity of Cao-Exact i€)(|O|!%*!), which corresponds to the
size of the set containing all possible feasible sets.

Cao-Approl. Cao-Approl gives a 3-factor approximation for
MaxSum-CoSKQ. Specifically, Cao-Approl finds for eache
q.v, q's nearest neighbor (NN) i containingt and returns the
set containing all these NNs as the approximate solutiomceSi
Cao-Approl issues NN queries at m@gt)| times and each NN
query takesO(log |O]) time [6, 10, 18], the time complexity of
Cao-Approl i0(|g.¢| - log |O)).

Cao-Appro2.  Cao-Appro2 gives a 2-factor approximation
for MaxSum-CoSKQ. Specifically, Cao-Appro2 enhances Cao-
Approl as follows. First, Cao-Appro2 invokes Cao-Approd an
obtains an approximate solution denoteddyy Let o be the far-
thest object fromy in S1 andt; be a keyword contained by
but not contained by any othefoser object fromg in ©O. Then,
for each objecb in O containingty, it finds for each keyword

in ¢.1, o's nearest object that containsn O and obtains a corre-
sponding approximate solution containing all these NNs.oAm
all these approximate solutions as well¥sit returns the one with
the smallest cost. Thus, the approximate solution retubye@ao-
Appro2 is no worse than that returned by Cao-Approl. Sinereth
are at mostO,| objects containing; and the cost for each such
object is simplyO(|q.¢| - log |O|), the worst-case time complexity
of Cao-Appro2 i0(|0q| - |g-9| - log |O)).

3. ALGORITHMS FOR MAXSUM-COSKQ

In this section, we propose two algorithms, MaxSum-Exaet{S
tion 3.1) and MaxSum-Appro (Section 3.2), for MaxSum-CoSKQ
For clarity, we simply writecost amrazsum (+) ascost(+) if the con-
text of the cost function is clear.

Given a query; and a non-negative real numbemve denote the
circle or thedisk centered ag.\ with radiusr by D(q, r). Given a
disk D, we denote the radius dp by radius(D). Given a query
q, a disk centered at.\ is called ag-disk Given ag-disk D and
an objecto in D, o is said to be thdoundary objecof D if there
does not exist other objects in D such thatd(o’, q) > d(o, g).
Note that in some cases, a boundary object of a disk is along th
boundary of a disk and in some other cases, it is inside thHe dis
without touching the boundary of the disk.

3.1 Finding Optimal Solution

In this section, we propose an exact algorithm calMakSum-
Exact The key to the efficiency of MaxSum-Exact is based on the
splitting property of the maximum sum cost function.

3.1.1 Splitting Property

Let S’ be a feasible set. The maximum sum cost $f
can be split into two parts, namely thguery distance cost
which is max,¢ s/ d(0,q) and thepairwise distance costvhich
IS max,, o,cs’ d(o1,02). We define thequery distance owner
of S’ to be o whereo = argmax,cs d(o,q). We also de-
fine thepairwise distance ownersof S’ to be o; and o where
(01702) = argmax(o! oh)es’ xS’ d(0l1>0l2)'

Disk(q, d(q, 0,))
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Figure 1: An example

Consider Figure 1 containing a query locatignand 5 ob-
jects, namelyo1, 02, 03,04 andos. The set of keywords associ-
ated with each object can be found in the figure. Suppose that
g = {t1,t2,t3}. We know that a se$’ = {o1, 02, 03} is feasi-
ble. The query distance owner §f is 0; and the pairwise distance
owners ofS’ areo, andos.

According to the above splitting property, the cost of a Set
can be dominated (or determined) by exactly three objecin
namely the query distance owner$f(i.e.,o) and the two pairwise
distance owners of’ (i.e., o1 andoz). In other words, we can
simply write the cost of’ as follows.

cost(S") = d(o, q) + d(o1, 02)

whereo is the distance owner of’, ando; ando» are the two
pairwise distance owners &. We say thab, o; ando» forms a
distance owner group Any feasible set with its query distance
owner as and its pairwise distance owners@sandos is said to
be (o, 01, 02)-owner consistent Note that each feasible set that is
(0,01, 02)-owner consistent has the same cost equal(toq) +
d(o1,02).

3.1.2 Distance Owner-Driven Approach

Based on the splitting property, we proposeistance owner-
driven approachas follows. This approach maintains a variable
S storing the best feasible set found so far. Initiallyjs set to a
feasible set (We will describe how we find this feasible stdr)a
Then, it has four major steps.

e Step 1 (Query Distance Owner Findingjelect one object
in O, to take the role of the query distance owner of a%et
to be found

e Step 2 (Pairwise Distance Owner Findingpelect two ob-
jects,01 andos, in O, to take the roles of the pairwise dis-
tance owners of the sét’ (to be found). Note that, o; and
o2 form a distance owner group.

e Step 3 (Sub-Optimal Feasible Set Findingind the setS’
which is (o, o1, 02)-owner consistent (if any), and update
with S’ if cost(S’) < cost(S).

e Step 4 (lterative StepRepeat Step 1 and Step 2 which find
anotherdistance owner groumnd continue with Step 3 until
all distance owner groups are traversed.

The above approach gives a search strategy based on the set of
all possible distance owner groups. However, a straightiod im-
plementation of this approach would enumeraté@}|® distance
owner groups, which is prohibitively expensive in practidéus,
we need a careful design in order to prune the search spaae eff
tively. In the following, we elaborate the pruning featuesgoyed
by this distance owner-driven approach, which cannot badan
the best-known algorithm, Cao-Exact.

Firstly, some objects i, need not be considered in Step 2 after
we select an object in Step 1. To illustrate this, considgufé 1.
Suppose that we pic as the query distance owner in Step 1. We
do not need to consider, as objects in Step 2. This is because
d(o4,q) is larger thand(o1, ¢), which violates the property that



o1 takes the role of the query distance owner of theSeto be
found if S’ containso; andos. We formalize this pruning feature
as follows.

PROPERTY1 (PRUNING). LetS’ be a feasible set. i is the
query distance owner &, then the two pairwise distance owners
of S" are insideD(q, d(o, q)). 0

PROOF Any objecto’ € S’ hasd(o’,q) < d(o,q) and thuso’
isinsideD(q,d(o,q)). O

Secondly, most of the objects i, need not be considered to
form a setS’ to be found in Step 3. To illustrate this, consider Fig-
ure 1 again. Suppose that we pigk as the query distance owner
in Step 1, and- andos as the pairwise distance owners in Step 2.
Similarly, we still do not need to consides as one of the objects
to form the setS’ since includingo4 violates the query distance
owner property. Besides, we do not need to consigéo form the
setS’ to be found. This is becaus&oz,05) > d(o2,03) which
violates the property that, andos take the roles of the pairwise
distance owners. Similarly, we formalize this pruning teatas
follows.

PROPERTY2 (PRUNING). Let S’ be a feasible set. 16 is
the query distance owner &f, and o; and o, are two pairwise
distance owners of’, then all objects inS’ are insideR where
R = D(q,d(o,q)) N D(01,d(01,02)) N D(02,d(01,02)). 0

PROOF. For eacho’ € S, we haved(o’,q) < d(o,q) which
implies thato’ is inside D(q,d(o,q)). For eacho ¢ S,
we haved(o’,01) < d(o1,02) which implies thato’ is inside
D(o01,d(01,02)), andd(o’, 02) < d(o1, 02) which implies that'’
isinsideD(o2,d(01,02)). O

The above pruning features look promising for improving the
efficiency of the proposed approach. Moreover, since objesr
to ¢ usually form the optimal set, we propose to consider theatbje
in Step 1 iteratively, taking the role of the query distaneser of
the set to be found, in ascending order of their distancegito
order to further improve the efficiency of the proposed appho

Usually, the NN ofg in Oy is not the query distance owner of
the setS’ to be found. In Figure 1, consider the queryvith its
keyword set to bgt1,t2,t3}. The NN ofq is 02. Suppose that
o2 is the query distance owner 6f. According to Property 2, all
objects inS’ fall in D(q,d(o2,q)) and they together cover.t.
But, in the figure, no object itD(q, d(o2, q)) containstz, which
implies that we cannot find a feasible s&twith o» as its query
distance owner.

Based on this observation, we propose to findctbeest possible
query distance ownersay o, of the setS’ to be found such that
there exists a feasible set in thedisk D(q, d(o, ¢)). In addition,
we do not want to pick any object which is far away frgmThus,
we also propose to find tHarthest possible query distance owner
of S’ to be found that we need to consider.

3.1.3 Closest/Farthest Possible Query Dist. Owner

The following two lemmas show how to find the closest and far-
thest possible query distance owners.

Before we present the first lemma about the closest possible

query distance owner, we introduce some notations. Givareayq
g and a keyword, thet-keyword nearest neighborof ¢, denoted
by NN(q,t), is defined to be the NN aof containing keyword.
We have a similar definition ofV N (o, t) for an objecto. We de-
fine thenearest neighbor sebf ¢, denoted byN (¢), to be the set
containingq’'s t-keyword nearest neighbor for eathe ¢.%, i.e.,
N(q) isUeq.p NN (g, t). Note thatV (g) is a feasible set.

LEMMA 2 (CLOSESTPOSS QUERY DIST. OWNER). Let
Tmin = MaXee N(q) d(0, q). There exists a feasible set imadisk
D ifand only ifradius(D) > rmin. 0O

PROOF The proof for the “if” part is trivial since for any-disk
D with radius(D) > rmin, N(q) is a feasible set idD. We prove
the “only if” part by contradiction. Assumeadius(D) < Tmin
and there exists a feasible setn D. Let oy be the farthest object
from g in N(q), i.e., rmin = d(q,05). There exists a keyword
ty € oy.9b N q.y such that is not contained by any object that is
closer tog thanoy since otherwise; ¢ N(q). SinceS is feasible,
there exists an object € S that contains keyword;. As a result,
we haved(o, q) < radius(D) < Tmin = d(q,05), Which leads to
a contradiction. []

The above lemma suggests that there is no feasible setin a
disk D if radius(D) < rmn. Thus, the disk with its radius equal
to rmin IS the “smallest” disk we need to consider. The boundary
object of this disk is the closest possible query distanageowNote
that this object is along the boundary of this disk.

The following lemma gives the “largest” disk we need to con-
sider. Besides, the boundary object of this disk correspondhe
farthest possible query distance owner. Note that thiscbljéght
or might not be along the boundary of this disk.

LEMMA 3 (FARTHESTPOSS QUERY DIST. OWNER). Let
S be a feasible set ant... = cost(S). Let D be ag-disk with
radius(D) > rmasz. Then, for any feasible s&t’ containing at
least one object outsidB, cost(S") > cost(S). O

PROOF. cost(9")
Tmaz = cost(S). [

> maz,esrd(o,q) > radius(D) >

The above lemma suggests that when we have known a feasible
setS, there is no need to consider the objects outd{e, rmaz)
whererma. = cost(S).

The above two lemmas suggest the “smallest” disk and the
“largest” disk we need to consider. Specifically, the objeathich
takes the role of the query distance owneiSofto be found must
be in thering which is roughly equal to the “largest” disk mi-
nus the “smallest” disk. Leb be a feasible set. Letni, =
mMaX,e N(q) (0, q) ANdTmaz = cost(S). We define thaing for
S, denoted byR(S), to be D(q, T"maxz) — D(q, Tmin — ), Where
0 is a very small positive real number near to 0.

LEMMA 4 (RING CANDIDATE). Let S be a feasible set and
S, be the optimal set for the MaxSum-CoSKQ problem. The query
distance owner of, is insideR(S). O

PROOF Leto be the query distance owner 8§. First, accord-
ing to Lemma 3 cannot be outsid®(q, maz) Since otherwise
cost(S,) > cost(S) which leads to a contradiction. Second, ac-
cording to Lemma 2, there exist no feasible setBi, rmin — 9).
Thus, o is not insideD(q, rmin — &) Since otherwiseS, which is
feasible is insideD(q, rmin — ) Which also leads to a contradic-
tion. Thereforep is insideR(S). O

It is easy to verify that the region occupied IB(S) becomes
smaller wherrost(S) is smaller since the radius of the outer disk
of R(S) is equal tocost(S).

3.1.4 The MaxSum-Exact Algorithm

Based on the discussion in the previous subsection, werdesig
MaxSum-Exacts shown in Algorithm 1. Specifically, we main-
tain S for storing the best-known solution found so far, which is



Algorithm 1 Algorithm MaxSum-Exact

Input: queryq and a set) of objects

1: S~ N(q)

2: while there is an “un-processed” relevant objedh R(S) do
3. /I Step 1 (Query Distance Owner Finding)

4: o < the nearest “un-processed” relevant objecRifb)

5. |/ Step 2 (Pairwise Distance Owner Finding)
6: D « theg-disk with its radius equal td(o, q)
7
8
9

P — aset of all pairgo:, 02) whereo; ando; are inD
/I Step 3 (Sub-optimal Feasible Set Finding)
: for each(o1,02) € P inascending order af(o1, 02) do
10:

if there exists a feasible st in D which is (o, 01, 02)-
owner consisterthen

11: if cost(S") < cost(S) then

12: S «— S’; break

13: /] Step 4 (Iterative Process)
14:  marko as “processed”
15: return S

initialized to N (¢q). Then, we perform an iterative process as fol-
lows. Consider an iteration. We want to check whether theistse

a relevant object iR(.S) that has not been processed. If yes, we

pick the nearest relevant objecfrom R(S) that has not been pro-
cessed to take the role of the query distance owner of thé’set
to be found (Step 1). This object is said to be thery distance
ownerfor this iteration. We process it as follows. Firstly, werfor
the g-disk D with its radius equal tal(o, ¢) and find a sefP of
all pairs (01, 02) whereo; ando2 are in D for taking the roles
of the pairwise distance owners (Step 2). Secondly, for @adh
(01,02) in P which is processed in ascending orderd@®:, o),
we check whether there exists a feasible®eathich is(o, o1, 02)-
owner consistent. Case 1: yes. We do the following. Firstly,
cost(S") < cost(S), then we updateS by S’. Secondly, we ter-
minate to search the remaining pairsinsince the cost of a final
set whose pairwise distance owners corresponds to one oéthe
maining pairs must be at least the cost of the currenfsethose
pairwise distance owners afe:, o2), the current processed pair.
Case 2: no. We continue to consider the next paiPiantil Case

computation strateggnd thecross-iteration computation strategy
to execute this algorithm efficiently. The self-iteratiammgputation
strategy is to speed up the operations within an iteratiahtha
cross-iteration computation strategy is to speed up theatipas
across different iterations.

Self-Iteration Computation Strategy. Consider an iteration in the
algorithm whose query distance ownerois Step 1 (lines 3-4) is
straightforward. In Step 2 (lines 5-7), there is a step ofifigch
set P of all pairs (o1, 02) whereoi andos are inD. There is no
need to keep all pair&:,02) in P and some pairs can be pruned.
The following two lemmas give some hints for pruning. Thetfirs
lemma (Lemma 5) is based on the triangle inequality and tbe se
ond lemma (Lemma 6) is based on the best-knowrSseund so
far.

LEMMA 5 (TRIANGLE INEQUALITY). Let S’ be a feasible
solution whose query distance owner d¢s and pairwise dis-
tance owners areo; and oz. Then, d(o1,02) > d(o,q) —
min{d(o1, q),d(02,q)}. 0O

PrRoOOF Note thatd(o1,02) > d(o1,0) and d(o1,02) >
d(o02,0). By the triangle inequality, we know(o1,0) > d(o,q) —
d(o1,q) and d(o2,0) > d(o,q) — d(o2,q). Thus, we have
d(o1,02) > d(0,q) — min{d(01,q),d(02,q)}. O

The above lemma suggests that the fdair, 02) in P can be
pruned ifd(o1,02) < d(o,q) — min{d(o1,q),d(02,q)}. Let
dmin = d(o0,q) — min{d(o1,q),d(o2,q)}. Thus, dm:n corre-
sponds to the smallest distance threshold for a (eairoz).

LEMMA 6 (BESTKNOWN SET). Let S’ be a feasible solu-
tion whose query distance ownerdsand pairwise distance own-
ers areo; ando,. LetS be another feasible solutiomost(S’) <
cost(S) ifand only ifd(o1, 02) < cost(S) — d(o, q). O

<

PROOF. cost(S") < cost(S) deducesd(o, q) + d(o1,02)

cost(,S) which is exactlyd(o, q) < cost(S) — d(o1,02). O

Let S be the feasible set found so far in the algorithm. The
above lemma suggests that the pair, o2) in P can be pruned
if d(o1,02) > cost(S) — d(o,q). Letdmaz = cost(S) — d(o, q).

1is reached or all the pairs it have been processed. We continue
the above iteration with the next relevant object fré&t5) that has
not been processed until all objects&{S) have been processed
(Step 4).

We verify the correctness of MaxSum-Exact via Theorem 1.

Thus,dmae is the largest distance threshold for a pair, o2).
According to Lemma 5 and Lemma 6, we only need to maintain
those pairs with their distances betwegh;,, anddq. in P.
Consider Step 3 (lines 8-12). Here, we need to process each
pair (o1, 02) in P. The most time-consuming operation is to check

. . whether there exists a feasible s&twhich is (o, 01, 02)-owner
THEOREM 1. MaxSum-Exact returns a feasible set with the (0, 01, 02)

smallest cost for MaxSum-CoSKQ. O

PrROOF Let S, be one of the feasible sets with the smallest cost

for MaxSum-CoSKQ. Suppose thais the query distance owner
of S,, ando; ando. are two pairwise distance owners 8. Ac-
cording to Lemma 4o is inside R(S), where S is the solution
maintained in MaxSum-Exact. Thusmust have been processed
in MaxSum-Exact (Step 1). Whem is processed, paifo:,02)
is included inP (Step 2) since; ando. are insideD(q, d(o, q))
(Property 1). As aresult, any feasible set whictviso:, 02 )-owner
consistent is retrieved (Step 3) and used to upddtaere must ex-
ist some since, is (o, 01, 02)-owner consistent). The resultirfgy
will not be updated anymore since it has the same costd$S.,)
which is the smallest, and thusis the final output. [

Algorithm 1 looks straightforward but how to execute this al

gorithm efficiently needs more careful design. We propose two

computation strategies in the algorithm, namely sk#-iteration

consistent. Algorithm 2 presents an algorithm for this talkit
succeeds, it outputs’; otherwise, it output$). First, it checks
whetherd(o1, 02) < max{d(o1,0),d(02,0)}. If yes, we conclude
that there exist no feasible set that(is o1, 02)-owner consistent
since it violates the condition that and o, are the pairwise dis-
tance owners (i.ed(o1,02) > max{d(o1,0),d(02,0)}). If no,

it initializes S’ to be {0, 01,02}. It also maintains a variable,
denoting the set of keywords not covered $yyet, which is ini-
tialized asg.v) — (0.9 U 01.9 U 02.9). If i = 0, it returnsS’ im-
mediately. Otherwise, it proceeds to augmshtith some other
objects. According to Property 2, we can safely focus on ¢e r
gion R = D(o,d(o,q)) N D(o1,d(o1,02)) N D(o2,d(o1,02)).
Therefore, it retrieves the sé’ of all relevant objects iR. If O’
does not covet), it returns). Otherwise, it enumerates each pos-
sible subses” of O’ that coversy (by utilizing theinverted lists
maintained for each keyword i), augmentS’ by S” (thus S’
becomes feasible) and checks wheitfieis (o, 01, 02)-owner con-
sistent which is equivalent to checking whetherando, are still



Algorithm 2 Algorithm for checking whether there exists a feasible
setS’ which is(o, 01, 02)-owner consistent

Input: three object®, 01 ando:
Output: a feasible set which i€, o1, 02)-owner consistent if any
and( otherwise
: if d(01,02) < max{d(o1,0),d(02,0)} then return (
: 8" — {o,01,02}
P — qp — (O’l/) Uor.yp U 02.1/1)
if » = 0 then return S’
R «— D(q,d(0,q)) N D(o1,d(01,02)) N D(0z,d(01,02))
O’ «— aset of all relevant objects iR
. if O’ does not covety then return ()
. for each subse$” of O’ that covers) do
S —S'us”
if S”is (o, 01, 02)-owner consisterthen return S’
Sl — S/ _ S”
return

COXNDURWNEL

11:
12:

the pairwise distance owners f. If yes, it outputsS’. Otherwise,
it restoresS’ and checks the next subset®f. When all subsets
of O’ that covery) have been traversed and still no feasible&et
which is (o, 01, 02)-owner consistent has been found, it retuns

Cross-Iteration Computation Strategy. We reuse the information
computed in the previous iterations for the current iterati

Consider an iteration where the query distance owner far thi
iteration iso. With respect tow, we create a-disk D and also
construct seP (line 7 in Algorithm 1). Consider the next iteration
where the query distance owner for this iteration'is Although
we can construct sét’ with respect t@’ from scratch by applying
the procedure of generating sBt a much better approach is to
construct seP’ by using the current content #f because® C P'.
Specifically, when we consider the next iteration, we firststouct
another sef) to be the set of additional pairs it compared with
P (i.e.,Q = {(0",0")|0" € D(q,d(g,0))}) and then seP’ to be
PuUQ. Note thatP N Q = (.

The pruning inP mentioned in the self-iteration computation
strategy is still valid even when we construgf in the above
way. Specifically, the pairs pruned previously i still do not
need to be considered iR’ at the next iteration. This is be-
causedi» IS monotonically increasin@nd d,,., iS monotoni-
cally decreasingwith more iterations. To illustrate, consider a
pair (o1,02) in P at the previous iteration. Note thdf..,, =
d(o,q) — min{d(o1,q), d(02,q)} anddmaz = cost(S) — d(o, q).

At the next iterationp will becomeo’, which is at least as far as
from ¢ (i.e.,d(0’, q) > d(o,q)). Thus, at the next iteratiow,;,

will remain the same or will increase. In addition, the cdsthe
solution .S maintained at the next iteration is at most the cost of
that maintained at the previous iteration. Thus, at the ibewdtion,
dmaz Will remain the same or will decrease.

3.1.5 Implementation and Time Complexity

We adopt the IR-tree built o to support both the NN query
(line 1 of Algorithm 1) and the range query (line 7 of Algorthl
and line 6 of Algorithm 2). For the NN query, we adopt the best-
first search method [12] and for the range query, we perforima s
ple breadth-first traversal with the constraint of the rafi@gesides,
given a queryy, since we only focus on the set of relevant objects,
when performing NN queries and range queries, we can uthiee
IF information maintained in the IR-tree for pruning.

Since the pairs inP are processed in ascending order of their
distances an@® is maintained dynamically (because of the Cross-

Iteration Computation Strategy), we adopiaary search tredor
maintainingP, which allows efficient sorting and update.

Letn be the number of iterations (lines 2-14) in MaxSum-Exact
(Algorithm 1). Note thatn; << |O4| sincen: corresponds to
the number of relevant objects we processhifiS) and the area
occupied byR(S) is typically small. Let| P| be the size of the set
P we use in the algorithm. Similarly, we know tha| << |0,]|?.
Let 3 be the cost of Algorithm 2. It is easy to verify that the time
complexity of MaxSum-Exact i©(n, - |P| - 3).

Next, we analyze3. The cost of lines 1-4 (Algorithm 2) is
dominated by those of other parts in the algorithm. The cbst o
lines 5-6 is simplyO(log |O] 4 |O4]) since we can issue three
range queries and then perform an intersection on the qeery r
sults. The cost of line 7 i©(|y| - |O4|). The cost of lines 8-11
is O(|O'|I¥!'. |4|?) since it enumerates at mos(|©’|¥!) sub-
setsS” that covery) and each subset incurs a checking operation
(line 10) whose cost i©(|w|?) (since|S”| = O(J+4|) and we can
try all pairwise distances withit$” to do the checking). Thus,
Bis O(log |O| + |Og| + |9 - |Oq] + |O|'! - |1]?). Note that
|0’ << |Oq4] (since®’ corresponds to a set of relevant objects in
a small region)|O0,| < |O] and|y| < |g.9| — 1.

In conclusion, the time complexity of MaxSum-ExacQ$n; -
|P| - (log |O] +|Og| + 3] - |Og| + [O'|¥ - 9]2)).

3.2 Finding Approximate Solution

In this section, we propose a 1.375-factor approximaterilgo
calledMaxSum-Appravhich is better than the best-known 2-factor
approximate algorithm, Cao-Appro2.

Before we present MaxSum-Appro, we introduce the concept
of “o-neighborhood feasible set”. Given a querand an object
o € O, theo-neighborhood feasible sets defined to be the set
containingo and all other objects each of which is thé&eyword
nearest neighbor o in D(q,d(o,q)) for eacht € g4 — 0.4.
For example, consider Figure 1. Suppose that the queabyis
{t1,t2,t3}. Then, theo;-neighborhood feasible set{®:, 02, 03}
sinceq.vp — 01.¢p = {t1,t3}, o1's t1-keyword nearest neigh-
bor in D(q, d(01,q)) is 02 ando1’s t3-keyword nearest neighbor
in D(q,d(o1,q)) is o3. It could be easily verified that the-
neighborhood feasible set exists iffis outside D(q, 7min — 9)
since arp-neighborhood feasible set is a feasible set.

In MaxSum-Appro, we only consider theneighborhood fea-
sible sets for those objectsthat are insideR(S) where S is a
feasible set, and thus they always exist.

We present MaxSum-Appro in Algorithm 3. MaxSum-Appro is
exactly Algorithm 1 by replacing Step 2 and Step 3 which ake re
atively expensive with the new efficient operation of findiihg
o-neighborhood feasible set which could be finished by igsuin
|g.4» — o0.¢p| NN queries.

Theoretical Analysis. Although the setS returned by the
MaxSum-Appro algorithm might have a larger cost than the op-
timal setS,, the difference is bounded.

THEOREM 2. MaxSum-Appro gives a 1.375-factor approxima-
tion for the MaxSum-CoSKQ problem. O

PROOF Let S, be the optimal solution and be the solution
returned by MaxSum-Appro. Let be the query distance owner
of S,. By Lemma 4, we know thad is in R(S). Besides, we
can safely assume thatis a relevant object. Thus, there exists an
iteration in MaxSum-Appro such that we procedtine 3) and thus
we find itso-neighborhood feasible set denoted$fy

Since S is the final solution returned by MaxSum-Appro, we
know thatcost(S) < cost(S"). The remaining part of the proof
shows thatost(S") < 1.375 - cost(S,).



Algorithm 3 Algorithm MaxSum-Appro
Input: queryq and a set) of objects

1: S~ N(q)

2: while there is an “un-processed” relevant objedh R(S) do
/] Step 1 (Query Distance Owner Finding)
o < the nearest “un-processed” relevant objecRift)
/] Step 2 6-Neighborhood Feasible Set Finding)
S’ — theo-neighborhood feasible set
if cost(S") < cost(S) then

S5

/I Step 3 (lterative Process)

marko as “processed”
s return S

@ «@ b

(@71 < V2r

FoooNo o s w

(b)r1 > V2ro

Figure 2: lllustration of the proof of Theorem 2

Let oy be the object inS’ that is the farthest from» andr, =
d(os,0). Then, all objects i’ fall in D(o,r1). Letra = d(o, q).
Sinceo is the query distance owner ¢, we know that all ob-
jects inS’ fall in D(g,72). In summary, all objects %’ fall in
D(o,r1) N D(q,72).

Consider cost(S,). It could be verified by using a simi-
lar method for proving Lemma 2 thahax,, o,es, d(o1,02) >
d(o,0y). Thus, we haveost(S,) > r2 + 1.

In the following, we consider two cases on according to
whether there exists a line segment linking two points abthend-
ary of D(q, r2) such that it has its length equal 20, (i.e., the di-
ameter ofD(q, r2)) and falls inD(o, 1) N D(gq, r2). Note that the
boundary case happens when= +/2r, and there existexactly
one such segment.

Case 1:r1 < +/2rp. We denote the intersection points be-
tween the boundaries dD(o,71) and D(q,r2) by a and b, as
shown in Figure 2(a). Let be the intersection point between seg-
mentgo and segmentb. Letz = d(a,c) = d(b,c) andy =
d(c,q). SinceA,c» and A4, are right-angled triangles, we know
%+ (r2 —y)? = r7 andy® + z? = r3 by thehypothesis theorem
By solving these two equations, we obtain= /r? — r} /4r2
and thusd(a,b) = 2z = 24/r? — r#/4r2. In this case, it can be
verified thatmax,, o,cs’ d(01,02) < d(a,b) (since all objects in
S"areinD(o,71) N D(g,72), as shown in the shaded area of Fig-
ure 2(a)) and hencevst(S’) < rz + 24/r? — r$/4r3. Therefore,

cost(S") <12 +2¢/ri —ri/4rs 14+ 24/1—1r2/4r2 — 1

cost(S,) — r2+r1 B r2/r1+1
Letz = 71 /r2. Thuszjjf((;:)) <1+ 27%. Sincer; <
V2r2, we haver € (0,+/2] . We definef(z) = 1+ 27%

on{z|z € (0,v/2]}. It could be verified thaff(z) is monotoni-
cally increasing or(0, 0.875) and is monotonically decreasing on

The interval (0, v/2] does not include the boundary case where
z =0 (i.e.,r1 = 0). In this case, we havest(S’)/cost(S,) = 1.

(0.875,/2]. Thus,f(z) < f(0.875) < 1.375. Therefore,
cost(S")

sost(5 S f(z) < 1.375

Case 2:r; > +/2r2. Letab be any segment linking two points
at the boundary oD (g, r2) which has its length equal t&r; and
falls in D(o, r1) N D(q, r2). For illustration, consider Figure 2(b).
That is,d(a,b) = 2r2. Similar to Case 1, it could be verified
thatmax,, ,,es’ d(01,02) < d(a,b) = 2r2. Thus,cost(S’) <
ra2 + 2ra. Therefore,

cost(S') _ro4+2ra 142 142
cost(So) = et l4ri/ra T 1442

Thus, by combining Case 1 and Case 2, we haxg(S’) <
1.375 - cost(S,), which completes the proof.[]

< 1.25

Implementation and Time Complexity. We also adopt the IR-tree
built on O to support the NN query and the range query.

Letn, be the number of iterations in MaxSum-Appro (lines 2-10
in Algorithm 3) andy be the cost of executing an iteration. Then,
the time complexity of MaxSum-Appro i©(n; - v). Note that
~ is dominated by the step of finding tlkeneighborhood feasible
set (line 6) whose cost is bounded ®Y|q.7)| - log |O]) (it issues at
most|q.1) —o0.1p| NN queries each of which takéx(log |O|) time).
Thus,y = O(]q.¢| - log |O]). Therefore, the time complexity of
MaxSum-Appro i (n1 -|q.1|-log |O]) wheren; << |O4|. Note
that the worst-case time complexity of MaxSum-AppraigO,| -
lg-¥| - log |O]), which is the same as that of Cao-Appro2.

4. ALGORITHMS FOR DIA-COSKQ

In this section, we propose two algorithms, Dia-Exact and-Di
Appro, for Dia-CoSKQ. Similarly, in this section, for clayj we
simply write costpia(+) ascost(-) if the context of the cost func-
tion is clear.

4.1 Finding Optimal Solution

Interestingly, we can adopt the same MaxSum-Exact alguarith
(Algorithm 1) by replacing the cost measurement from theimax
mum sum cost to the diameter cost. We call this algoribia-
Exact The reason is that we can still use the query distance owner
and the pairwise distance owners of aSeto be found to find the
optimal solution for Dia-CoSKQ. Next, we explain the reason
detail.

Consider the diameter cost. Given a §étof objects inO, we
have cost(S") = max, ,resiufo,} d(0',0"). Clearly, the (di-
ameter) cost of a sef’ can be dominated (or determined) by two
pairwise distance owners 8f U{o, } (not.S” used in the maximum
sum cost), which form a distance owner group (for Dia-CoSKQ)
It is similar to the maximum sum cost of a s&t which is domi-
nated by the query distance ownerSjfand two pairwise distance
owners ofS’. But, there are two differences. The first difference is
that the diameter cost is dominated by the pairwise distange
ers only (without the query distance owner). The seconewiffce
is that the pairwise distance owners used for the diamettrare
based on the s&’ U {04} instead ofS’.

Based on the above observations, directly adapt the distance
owner-driven approach as follows. This approach maintaivesi-
ablesS storing the best feasible set found so far. Initiaflyis set to
a feasible set. This involves three major steps.

e Step 1 (Pairwise Distance Owner Finding®elect two ob-
jects,o’ ando”, in O,U{o,} to take the roles of the pairwise
distance owners of the s&tU {o,} whereS’ is to be found.
Note thato’ ando” form a distance owner group.



e Step 2 (Sub-Optimal Feasible Set Findindjind a setS’
of objects inO, such that the pairwise distance owners of
S" U {o,} areo’ ando” (if any), and updates with S’ if
cost(S8") < cost(S).

e Step 3 (lterative Step)Repeat Step 1 which finds another
distance group, and continue with Step 2 until all distance
owner groups have been traversed.

Interestingly, Step 1 whicbriginally finds two objects to take
the roles of the two pairwise distance ownbesed onS’ U {o,}
can berefinedto a number of sub-steps of finding two objects to
take the roles of the two pairwise distance owrirsed ons’ sim-
ply (notS’U{o,}) and finding an object to take the role of the query
distance ownebased onS’. This refinement can be explained by
the following observation.

OBSERVATION 1. Let S’ be the feasible set. The pairwise dis-
tance owners of’ U {0, } are either (1)o, and the query distance
owner ofS’ or (2) the pairwise distance owners 6f. 0

Suppose that takes the role of the query distance ownef6fo
be found, and; ando- take the roles of the two pairwise distance
owners ofS’.

Observation 1 involves two cases. In Case (1) of Observdtion
we know that the pairwise distance ownersIfuU {o,} are oq
and the query distance owneof S’. In this case, we deduce that
d(o1,02) < d(0,q)(= d(0,0)).

In Case (2) of Observation 1, we know that the pairwise destan
owners ofS” U {o4} are the pairwise distance ownersif sayo,
andos. In this cased(o, q) < d(o01, 02).

In conclusion, if we know that (o1, 02) < d(o, ¢), theno, and
o are the pairwise distance owners%fU {o, }. Otherwisep; and
o- are the pairwise distance owners$fu {o, }.

Thus, Step 1 can be refined with the following three sub-steps

e Step 1(a) (Query Distance Owner Findingelect an object
o in Oq to take the role of the query distance owner of a set
S’ to be found.

e Step 1(b) (Pairwise Distance Owner FindingBelect two
objectso; andoz in D(q,d(o,q)) to take the roles of the
pairwise distance owner the setS’ to be found.

e Step 1(c) (Pairwise Distance Owner Determination)f
d(o,q) > d(o1, 02), assign tw ando, the roles of pairwise
distance owners o’ U {0, }; otherwise, assign the roles to
01 and02.

With this refinement, the distance owner-driven approagh st
has its similar pruning features under the diameter coseci8p
cally, Property 1 and Property 2 used for MaxSum-CoSKQ have
their counterparts used for Dia-CoSKQ as Property 3 and-Prop
erty 4, respectively.

PROPERTY3 (PRUNING). LetS’ be a feasible set. i is the
query distance owner &', then the two pairwise distance owners
of S” U {04} are insideD(q, d(o, q)). 0

PROPERTY4 (PRUNING). Let S’ be a feasible setp be the
query distance owner of’, and o; and o> be the two pairwise
distance owners of’ U {o,}. Then all objects inS’ fall in
D(q, d(0,q)) N D(o1,d(01,02)) N D(02,d(01,02)). O

Similar to the maximum sum cost, when the diameter cost is
used, the object to be found in Step 1(a) is fetched basedeon th
proximity to the query poing. The proximity is also related to the
closest possible query distance owner (Lemma 2) and theefsrt

Algorithm 4 Algorithm Dia-Exact

Input: queryq and a set) of objects
1: S~ N(q)
2: while there is an “un-processed” relevant objedh R(S) do
3. /I Step 1(a) (Query Distance Owner Finding)

4: o < the nearest “un-processed” relevant objecRifb)
5. // Step 1(b) (Pairwise Distance Owner Finding)
6: D « theg-disk with its radius equal td(o, q)
7. P« asetofall pair§o1, 02) whereo; ando; are inD
8: for each(o1,02) € P in ascending order af(o1, 02) do
9: I/ Step 1(c) (Pairwise Distance Owner Determination)
10: if d(o,q) > d(o1,02) theno’ « 0;0" «— o4
11: elseo’ < 01;0"” «— 0y
12: /] Step 2 (Sub-Optimal Feasible Set Finding)
13: if there exists a feasible s&t in D which is (o, o', 0")-
owner consisterthen
14: if cost(S") < cost(S) then
15: S — S’; break
16: /I Step 3 (Iterative Process)
17:  marko as “processed”
18: return S

possible query distance owner (Lemma 3). It is easy to veéhify
Lemma 2 and Lemma 3 still hold when the cost measurement is
changed from the maximum sum cost to the diameter cost. Thus,
Lemma 4, which states that thisg is the region containing the
query distance owners to be considered, still holds.

In summary, we present the algorithm for finding the optimal
solution of Dia-CoSKQ in Algorithm 4 (which is quite similéo
Algorithm 1) except that we need to determine the pairwise di
tance owner of5” U {o,} (in Step 1(c)) which cannot be found in
MaxSum-CoSKQ.

THEOREM 3. Dia-Exact returns a feasible set with the smallest
cost for the Dia-CoSKQ problem. O

PROOF Let S, be one of the feasible set with the smallest cost.
Let o be the query distance owner 6%, and leto; and o2 be
the two pairwise distance owners 8f. First, o is inside R(S)
(Lemma 4). Thus, there exists an iteration whetis processed.
Wheno is processed, paifo1,02) must be included inP (Prop-
erty 3). There are two cases. Casedlo,q) > d(o1,02). In
this case, any feasible sét that is (o, 0, o4 )-owner consistent is
retrieved and used to updafe (there must exist some sincg,
is (0,0, 04)-owner consistent). Thus, the resultiSghas its cost
equal tod(o,q) = cost(S,). Case 2:d(o,q) < d(o1,02). In
this case, any feasible s&t that is (o, 01, 02)-owner consistent
is retrieved and used to updaie(there must exist some sinég
is (0, 01, 02)-owner consistent). Thus, the resultifchas its cost
equal tod(o1,02) = cost(S,). In either caseS will not be up-
dated anymore since it has the smallest cost (®st(S,)) and
thus it is the final output. [

Same as Section 3.1.4, in Dia-Exact, we have the self-ioerat
computation strategy and the cross-iteration computaticiegy.

Self-Iteration Computation Strategy: Consider an iteration
where the query distance owner for this iteratiornis We can
use the same mechanism described in Section 3.1.4 &fter
andd,.. are updated frord(o, g) — min{d(o1, q), d(o2,¢)} and
cost(S) —d(o, q) tod(o, q) andcost(S), respectively. All pruning
properties still hold.

Note that dm:n (Which is originally set to d(o,q) —
min{d(o1, q), d(o2, q)} in MaxSum-CoSKQ) is based on the tri-
angle inequality (Lemma 5), which means that it can be used fo



pruning in both MaxSum-CoSKQ and Dia-CoSKQ. However, in
Dia-CoSKQdmin Can be updated to a tighter valueds, q) since

all pairs with their pairwise distances smaller th&w, q) cannot
take the roles of the pairwise distance ownersof) {o,}.

Cross-Iteration Computation Strategy: We use the same infor-
mation reuse techniques as in Section 3.1.4 for Dia-Exaceghe
updatedi,» (i.e.,d(o, q)) is monotonically increasing and the up-
dateddmaz (i-€., cost(S)) is monotonically decreasing with more
iterations. Thus, the pairs pruned Ih at the previous iterations
need not be considered in the later iterations.

Time Complexity. It could be verified that the time complexity of
Dia-Exact is the same as that of MaxSum-Exact.

4.2 Finding Approximate Solution

In this section, we propose #3-factor approximate algorithm
which is exactly the same as Algorithm 3 but the cost measemém
used is the diameter cost. This algorithm is called-Appra

Theoretical Analysis. Although the setS returned byDia-Appro
may have a larger cost than the optimal Sgt it has an approxi-
mate factor of/3.

THEOREM 4. Dia-Appro gives a/3-factor approximation for
the Dia-CoSKQ problem. 0O

PROOF We use the same notations as defined in the proof of
Theorem 2.

Considercost(S,). Similar to the proof of Theorem 2, we
have max,; e, d(o1,05) > d(o,0r) = 7. Recall that
max,cs, d(0, q) d(o, q) re.  As a result, we have
cost(S,) = max{max, s, d(0',q), maxy; o cs, d(01,02)} >
max{ra,r1}.

According to the Dia-Appro algorithm, we ha\t@st(S) <
cost(S’). The remaining part of the proof shows thatt(S’) <
V3 - cost(S,) which further impliescost(S) < v/3 - cost(S,).

Same as the proof of Theorem 2, we consider two cases of

Case 1:r1 < +/2rp. This case corresponds to Figure 2(a).
It can be verified thatmax,; ., cs/ d(01,05) < d(a,b)

r? — ri/4rZ (since all Ob]ECtS irs’ fallin D(o,71) N D(gq,72)
as shown by the shaded area). Regalk, s’ d(0,q) = r2. Asa
result, we haveost(S’) < max{ra,2/7? — r}/4r3}.

/

2./r? — ri/4r3. Therefore,
2\/ - 7“1 1/4r2

cost(S")
cost(S’ )

Case 2: 1 > \/§r2.

=4—(r1/r2)2< V3

This case corresponds to Figure 2

(b). In this cased(a,b) = 2r,. Similar to Case 1, we have
MaX,, o,cs’ d(01,02) < d(a,b) = 2r2. Therefore,
cost(S") < max{ry, 2ra} _ 2r2 < 2ry _ V3
cost(So,) = max{ri,ra2} T /2

In view of above discussion, we know thaist (.S
v/3, which completes the proof.[]

")/ cost(S,) <

Time Complexity. Since Dia-Appro is identical to MaxSum-
Appro except that Dia-Appro adopts a different cost measerg,
Dia-Appro has the same complexity as MaxSum-Appro.

4.3 Adaptions of Existing Solutions

In this section, we adapt the existing solutions in [4], whice
originally designed for MaxSum-CoSKQ, for Dia-CoSKQ.

Cao-Exact. Cao-Exact is a best-first search method based on the
object space and thus its applicability is independent efdbst
measurement used in the CoSKQ problem. Therefore, Cac-Exac
can be directly applied to Dia-CoSKQ by replacing the cosame
surement with the diameter cost. However, due to its pratéy
huge search space, Cao-Exact is not scalable to large tfatase

Cao-Approl & Cao-Appro2. We can directly adopt Cao-Approl
and Cao-Appro2 for Dia-CoSKQ by replacing the maximum sum
cost with the diameter cost.

According to [4], the approximation factors of Cao-Appraida
Cao-Appro2 are 3 and 2, respectively, for MaxSum-CoSKQhén t
following, we prove that both Cao-Approl and Cao-Appro2egiv
2-factor approximations for Dia-CoSKQ.

LEMMA 7. Cao-Approl and Cao-Appro2 give 2-factor approx-
imations for Dia-CoSKQ. O

PROOF. First, we prove that the approximation ratio of Cao-
Approlis 2.

We further consider three sub-cases under Case 1 based on the Let.S be the set returned by Cao-Approl afig be the opti-

relationship amongi, r» and2y/r? — ri/4r2.

Case 1(a)r1 < V2 —+/3r2. Inthis case, we have > r; and
T2 > 24/7% — ri/4r2. Thus,cost(S,) > max{rs,m1} = r2 and
cost(S") < max{ra,2/r3 — ri /47’2} = r Therefore,

cost(S")
cost(So) —

Case 1(b):v/2 —v3ros < r1 < ro. In this case, we have
ro > rl and?2 r1 —r}/4r3 > ra. Thus,cost(S,) > re and

T2
= =1
T2

cost(S') < 24/72 — r}/4r2. Therefore,
cost(S") 2y/ri —ri/4rs 1., T,
cost(So) 79 = /4 7"2) (7‘2) )
Note that functionf(z) = v/422 — z* is monotonically increasing
on (V2 —+/3,1]. Sincel € (V2 - v/3,1], Thus, we have
COSt(S,) \/? N
cost(S,) AP - =vs

Case 1(c) re < r1 < v/2rs. In this case, we have, < r;
and2./r? — r}/4r2 > ra. Thus,cost(S,) > 1 andcost(S’) <

mal set. Leto; be the object inS that is the farthest fromg, i.e.,
d(oy,q) = maxecs d(o,q). First, we havewost(S,) > d(oy, q).
Second, for any two objects ando: in S, we haved(o1,02) <
d(o1,q)+d(o2,q) < 2-d(oy, q) by thetriangle inequality There-
fore, cost(S) < max{d(oy,q),2-d(os,q)} =2-d(os,q). Asa
result, we knoweost(.S) /cost(S,) < 2.

Since the solution returned by Cao-Appro2 is no worse thah th
returned by Cao-Approl, the approximation ratio of Cao-#2p
is also bounded by 2.

Furthermore, we show that Cao-Appro2 cannot provide better
error guarantees by constructing a problem instance wheref-
proximation ratio of Cao-Appro2 is infinitely close to 2. Dt®
page limit, we refer the reader to [16] for the problem ins&an ]

Thus, among all known approximate algorithms for Dia-CoSKQ
our Dia-Appro provides the best constant-factor approkiona

5. EMPIRICAL STUDIES
5.1 Experimental Set-up

Datasets. We used the real datasets adopted in [4], namely Ho-
tel, Web and GN. Dataset Hotel corresponds to a set of hatels i



| Statistics I GN | Web | Hotel |

Number of objects 1,868,821 579,727 20,790
Number of unique words| 222,409 2,899,175 602

Number of words 18,374,228| 249,132,883| 80,845

Table 1: Real datasets

the U.S. (www.allstays.com), each of which is associatati its
location and a set of words that describe the hotel (e.gtawes
rant and pool). Dataset Web was created from two real dataset
The first one, named WEBSPAMUKZOb?corresponds to a set

of web documents. The second one is a set of spatial objects,

named TigerCensusBlotkwhich corresponds to a set of census
blocks in lowa, Kansas, Missouri and Nebraska. Specificelgb
consists of the spatial objects in TigerCensusBlock, edgrhach

is associated with a document randomly selected from WEBSPA
MUK2007. Dataset GN was collected from the U.S. Board on Ge-
ographic Names (geonames.usgs.gov). Each object in GNDs a 2
location which is associated with a set of keywords desugili
(e.g., a geographic name like valley).

Query Generation. Given a datasaP and a positive integet, we
generated a query with the size of its keyword set equal koas

in [4]. For theg.)\ part, we randomly picked a location from the
data space af. For theq.y part, we first sorted all the keywords
that are associated with the object€lin descending order of their
frequencies and then randomly pickiedeywords among all key-
words each of which has ifgercentile rankwithin range[10, 40]
by default. Note that in this way, each of the keywordg it has

a relatively high frequency.

Algorithms.  For MaxSum-CoSKQ, we consider 2 exact algo-
rithms, namely MaxSum-Exact and Cao-Exact, and 3 approxi-
mate algorithms, namely MaxSum-Appro, Cao-Approl and Cao-
Appro2. For Dia-CoSKQ, we consider 2 exact algorithms, dgme
Dia-Exact and Cao-Exact (the adaption), and 3 approximgte a
rithms, namely Dia-Appro, Cao-Approl and Cao-Appro2. Adl a
gorithms were implemented in C/C++.

Our experiments were conducted on a Linux platform with a
2.66GHz machine and 4GB RAM.

5.2 Experimental Results

which, the approximation ratio of MaxSum-Appro is exactlfot
most queries (e.g., more than 45). As aresult, the appraiximea-
tio of MaxSum-Appro in the figures is always near to 1. Cowesist
to our theoretical results, the approximation ratios of @aprol
and Cao-Appro?2 are larger than that of MaxSum-Appro.

We have similar results on Web (Figure 4) and Hotel (Figure 5)
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Effect of average|o.y)|. Our experiments were based on dataset

We consider 2 measurements, the running time and the approx-Hotel whose average size of a keyword set of an objgct)()

imation ratio (for approximate algorithms only). For eae of
settings, we generated 50 queries, ran the algorithms aith ef
these 50 queries, and averaged the experimental measusemen

5.2.1 Experiments for MaxSum-CoSKQ

Effect of |¢.%)|. We generated 5 types of queries with different
values of|g.¢)|. The values we used are 3, 6, 9, 12 and 15.

The results on the dataset GN are shown in Figure 3. Accord-

ing to Figure 3(a), our MaxSum-Exact is faster than Cao-Exac
by 1-3 orders of magnitude. When.1| increases, the running

time gap between MaxSum-Exact and Cao-Exact increases. Be-

sides, MaxSum-Appro and Cao-Appro2 have comparable rgnnin
time, which verified our theoretical analysis that MaxSuppfo

and Cao-Appro2 have the same worst-case time complexity- Ca
Approl runs the fastest due to its simplicity. According ig-F
ure 3(b), the approximation ratio of our MaxSum-Appro aition

is near to 1, which shows that the accuracy of MaxSum-Appro is
extremely high in practical. We note here that the approtionaa-

tio in the figure corresponds to the average over 50 quetiesng

2http://barcelona.research.yahoo.net/webspam/datak2007
3http://www.rtreeportal.org

is nearly 4 (i.e., 80,845/20,790). We generated a set ofrakeve
datasets based on dataset Hotel such that the averageisizes (
averagelo.i|’s) are equal tot - ¢ for some integers. To gener-
ate a dataset with its averaggey| equal to4 - ¢, we proceed with

i — 1 rounds. At each round, for each objedh dataset Hotel, we
randomly pick another objeef and update.:) to beo.yp U o’ .1).

It could be verified that the average | of the resulting dataset
is nearly4 - 7. In our experiments, we variby choosing one of
the values in{1,2,4,6,8,10}. Note thati = 1 means that the
resulting dataset is exactly dataset Hotel.

The results are shown in Figure 6. According to Figure 6t@, t
running times of all algorithms increase when the avetag# in-
creases. The reason is that when the avefage increases, the
number of relevant object§®,|) in the dataset would probably in-
crease, which further affects the running times of the dhgas.
Since all algorithms except for Cao-Approl have their timene
plexities involving|O,|. Cao-Approl, though has its time com-
plexity independent ofO,|, has its NN queries affected bg, |:
the larger|Oy| is, the more expensive the NN query would prob-
ably be. Besides, it is worth mentioning that when the awerag
lo.y| increases, the increase rate of the running time of CaotExac
is significantly larger than those of the other algorithmduding



MaxSum-Exact. This is because Cao-Exact is based on thehsear e
space of the set of all possible feasible sets whose sizedses 10000 Loos - 2T
rapidly with |0, (|O,|'**!). Thus, Cao-Exact is not scalable on ) '
datasets with a large averagey|. According to Figure 6(b), the

averag€o.y| has no obvious trend on the approximation ratios of
the approximate algorithms. Besides, MaxSum-Appro wilaji- : ‘ T
proximation ratio near to 1 always keeps its accuracy sapsri o 12 15 3 6 9 12 15
over other approximate algorithms. ") Running time (5) Appro. ratio

Figure 8: Effect of |¢.2)| (GN, Dia-CoSKQ)
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T 100 s é 125 ﬂ CoSKQ, we generated a set of datasgts py varying their ayerag
E / Il lo.y| values. The results are shown in Figure 9. According to
g e g 11y Figure 9(a), when the average| increases, the running time of
g ool R S S S — Cao-Exact increases significantly while the running timfestoer
o otmorts perobt L oo algorithms are only slightly affected. This is similar teetbase
(a) Running time (b) Appro. ratio for MaxSum-CoSKQ and the explanation for MaxSum-CoSKQ as
Figure 6: Effect of average|o.1)| (MaxSum-CoSKQ) we discussed previously could be applied here for Dia-CoSKRQ

cording to Figure 9(b), the average | value has no obvious trend
Scalability Test. We conducted a scalability test on the algorithms on the accuracy of the approximate algorithms.
with 5 synthetic datasets with their sizes varying from 2M.@/.
The synthetic datasets were generated from a smaller td&bke Dia-Exact ~#-  Dia-Appro ——  Cao-Exact -0~ Cao-Approl ~&~ Cao-Appro2 ~v-
To generate a datasét with its size equal to:, we first inserted B B v
all the objects from dataset GN int® and then repeatedly created
objects inO such thatO has a similar spatial distribution as dataset

1e+06 - g

1000 t/

Running time (milliseconds)
Approximation ratio

GN until |O] = n. For each newly created objeatin O, we §
randomly pick a document from WEBSPAMUK?2007 and use it as Hoy
O.w. 010014 8 16 24 32 40 14 8 16 24 32 40
The results are shown in Figure 7(a), where we do not show No °'(”g’)"’§”§;1‘;;‘;;°é time ”°'E’;)“)”°,’§;‘;§;gfﬁ“;ﬁo
the running time of the algorithm if it runs more than 10 days o
out of memory. According to these results, both our exacb-alg Figure 9: Effect of average|o.y| (Dia-CoSKQ)
rithm (MaxSum-Exact) and our approximate algorithm (MaxBu  gscalability Test. We conducted a scalability test on the algorithms
Appro) are scalable to large datasets with millions of disie€or  for Dia-CoskQ with the same synthetic datasets used in thiasc

example, in a dataset with size equal to 10M, MaxSum-Exatt ra pjlity test for MaxSum-CoSKQ.
less than 100s and MaxSum-Appro ran in real-time. In coptras  The results are shown in Figure 7(b), where we do not show the

Cao-Exact is not scalable. In particular, in our experirse@0-  rynning time of the algorithm if it runs more than 10 days or afu
Exact tOOk more than 1 day ona dataset W|th sSize equal to 6M and memory. According to these resu“:S, both our exact alwmia_
it took more than 10 days on a dataset with size equal to 8M. Exact) and our approximate algorithm (Dia-Appro) are suialéo
large datasets with millions of objects. In contrast, Cxadt is
MaxSum-Exact (Dia-Exact) -@- Cao-Exact -© Cao-Appro2 - nOt Scalable to Iarge datasets
MaxSum-Appro (Dia-Appro) -4 Cao-Approl -4 i i
10000 L O 10000 = Conclusion: MaxSum-Exact (Dia-Exact) runs faster than Cao-

Exact by several orders of magnitude for MaxSum-CoSKQ (Dia-
CoSKQ). Besides, MaxSum-Exact (Dia-Exact) is scalabletims

of |O| as well as the averagle.y| but Cao-Exact is not. Our
MaxSum-Appro (Dia-Appro) has a better accuracy while hgvin
comparable running time as those existing approximateighgas.
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(a) MaxSum-CoSKQ (b) Dia-CoSKQ 6. RELATED WORK

Figure 7: Scalability Test Many types of spatial keyword query have been proposed in the
literature. Most of them are different from CoSKQ studiedhis

5.2.2 Experiments for Dia-CoSKQ paper since they use a single object to cover all keywordsifig:
Effect of |g.¢)|. The results on dataset GN is shown in Figure 8. in the query but CoSKQ uses multiple objects collectivelytfe
According to Figure 8(a), our Dia-Exact is faster than Caadt same purpose. We review these spatial keyword querieslas ol
by 1-4 orders of magnitude. When.y| increases, the running A spatial keyword topge query[8] finds top+ objects where the

time gap between Dia-Exact and Cao-Exact increases. Bgside ranking function takes both the spatial proximity and theel
Dia-Appro and Cao-Appro2 have comparable running times. Ac relevance of the objects into consideration. This brancludes
cording to Figure 8(b), similar to MaxSum-Appro (for MaxSum  [8, 19, 14] (Euclidean space), [20] (road networks), [21(t&jec-
CoSkQ), the approximation ratio of Dia-Appro is near to 1Ir(fo tory databases), and [24] (moving objects). A common tegkai
Dia-CoSKQ), which is better than those of Cao-Approl and-Cao shared by these studies is to design a hybrid indexing steict
Appro2. which captures both the spatial proximity and the textufdrima-

The results on datasets Web and Hotel are similar and thys the tion of the objects. The IR-tree adopted by us for NN queria$ a
are omitted here due to the page limit. range queries was proposed in [8].



A spatial keywordk-NN query[11] finds thek-NNs from the
query location, each of which contains the set of keywordsisp
fied in the query. That is, unlike the keywords in the spatey-k
word top# queries, which are used assaft constraint, the key-
words in the spatial keywork-NN queries are used ashard con-
straint. This branch includes [11, 5, 23].

A spatial keyword range querp2, 28, 7] takes a region and a
set of keywords as input and finds the objects each of whité fal
in the region and contains the set of keywords. Same as thialspa

keywordk-NN queries, the keywords are used as a hard constraint.

Usually, they combine a spatial index (e.g., R-tree and Spélt
ing Curve (SFC)) and a textual index (e.qg., inverted file)doery
processing.

A spatial keyword reverse top-query[17] finds the set of ob-
jects whose spatial keyword tdpeuery results include the query.
Note that in this case, an object which consists of a locatitha
set of keywords could be regarded as a query which also ¢ensis
of a location and a set of keywords and vice versa.

An mCK query[25, 26] is a spatial keyword query that is very
similar to CoSKQ. AnmCK query takesn keywords as input and
finds m objects with the smallestiameterthat cover then key-
words specified in the query. Though both &K query and
CoSKQ use a set of objects for covering a set of keywords col-
lectively, they are different. In the context of anCK query, it is
assumed that each object is associated with a single keymiate
in the context of CoSKQ, each object is associated with a et o
multiple keywords. Besides, amCK query only takes a set of
keywords as input while our CoSKQ query takes not only a set of
keywords but also a query location as an input.

CoSKQ was first studied in [4]. Under the maximum sum cost
function, as we described, [4] proposed an exact algorithdntao
approximate algorithms. However, the exact algorithm issoal-
able to large datasets and the two approximate algorithmsota
guarantee near-to-optimal solutions. In this paper, w@gse an
efficient exact algorithm and an approximate algorithm voigitter
approximate factor for MaxSum-CoSKQ. Besides, in this pape
we also propose another cost function called the diametetifin
which is new and has not been studied in [4].

7. CONCLUSION

In this paper, we studied two types of the CoSKQ problem,
namely MaxSum-CoSKQ and Dia-CoSKQ. MaxSum-CoSKQ is
a CoSKQ problem using the existing maximum sum cost, which
is NP-hard. We designed two algorithms for MaxSum-CoSKQ,
MaxSum-Exact and MaxSum-Appro. MaxSum-Exact is an exact
algorithm which significantly outperforms its existing cpetitor
in terms of both efficiency and scalability and MaxSum-Apjgo
an approximate algorithm which improves the best-knowrstaont
approximation factor from 2 to 1.375. We also proposed a new
cost function and the CoSKQ problem using this function ia-Di
CoSKQ. We designed two algorithms for Dia-CoSKQ, Dia-Exact
and Dia-Appro. Dia-Exact is an exact algorithm while Diaphp
is a+/3-factor approximate algorithm. Extensive experimentsaver
conducted which verified our theoretical findings and athaons.

There are several interesting future research directiome di-
rection is to find the feasible set with the smallegst per object
Another direction is to define the cost function based on kuets
est route that traverse all objects in the set. It is alsaésting to
to study CoSKQ when the query point is moving.
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