
k-Hit Query: Top-k Query with Probabilistic Utility Function

Peng PENG
Hong Kong University of Science and

Technology
Clear Water Bay, Kowloon, Hong Kong

ppeng@cse.ust.hk

Raymond Chi-Wing WONG
Hong Kong University of Science and

Technology
Clear Water Bay, Kowloon, Hong Kong

raywong@cse.ust.hk

ABSTRACT
Multi-criteria decision making problem has been well stud-
ied for many years. One popular query for multi-criteria
decision making is top-k queries which require each user to
specify an exact utility function. In many cases, the utility
function of a user is probabilistic and finding the distribution
on the utility functions has been widely explored in the ma-
chine learning areas, such as user’s recommender systems,
Bayesian learning models and user’s preference elicitation,
for improving user’s experience. Motivated by this, we pro-
pose a new type of queries called k-hit queries, which has not
been studied before. Given a set D of tuples in the database,
the distribution Θ on utility functions and a positive integer
k, we would like to select a set of k tuples from D in order
to maximize the probability that at least one of tuples in
the selection set is the favorite of a user. All applications
for top-k queries can naturally be used in k-hit queries. In
this paper, we present various interesting properties of k-hit
queries. Besides, based on these properties, we propose a
novel algorithm called k-hit Alg for k-hit queries. Finally,
we conducted comprehensive experiments to show that the
performance of our proposed method, k-hit Alg, is superior
compared with other existing algorithms which were origi-
nally used to answer other existing queries.

1. INTRODUCTION
Multi-criteria decision making problem has been well

studied for many years. Over the last few decades, there
were many different types of queries proposed in the liter-
ature for multi-criteria decision making. Two representa-
tive queries considered in the literature are top-k queries

[27, 12, 17, 35, 10, 24] and skyline queries [3, 12, 17, 6,
18, 19, 29]. Top-k queries are used when the exact pref-
erence/utility function of a user is known. This is because
when the exact utility function of a user is known, each top-
k query returns a set of k tuples from the database which
are the k favorites of the user. Here, the favorite of the user
is the tuple in the database which has the highest utility

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this workowned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’15,May 31–June 4, 2015, Melbourne, Victoria, Australia.
Copyright© 2015 ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2723735.

computed based on the utility function of the user. How-
ever, in many cases, the exact utility function is unknown.
Skyline queries, another kind of representative queries, are
used when the utility function of a user is unknown. This is
because when the utility function of a user is unknown, each
skyline query returns a set of all possible candidate tuples
which include the most favorite of the user. However, as
found by many existing studies [18, 29, 35], there may be a
vast number of all possible candidate tuples to be returned
by a skyline query. Thus, it is difficult for the user to select
his/her favorite among all the possible candidate tuples.

1.1 Probabilistic Utility Function
In many cases, it is difficult for companies to obtain the

exact utility function of a user because the user may not
give his/her utility function to companies or the user may
hardly give an exact utility function to companies. Instead,
it is much easier for companies to obtain a distribution Θ on
utility functions based on the histories of the user. How to
obtain the distribution on utility functions has been widely
explored in the machine learning area, such as user’s rec-
ommender systems [4, 25], Bayesian learning models [8, 15]
and user’s preference elicitations [2, 7]. In these applica-
tions, people consider a direct way or an indirect way to
analyze a utility function. Instead of asking or finding the
utility function directly, a statistical model can be built for
recovering the distribution of the utility function via observ-
ing data recording user’s activities (e.g., search log). Since
collecting statistics from the user is used to improve his/her
experience on using the recommender system in the future,
nowadays, many companies have a lot of statistics from a
collection of users.

It is worth mentioning that the distribution on utility
functions can be applied over not only a single user but
also a group of users. When the distribution Θ on utility
functions are applied over a group of users, companies can
obtain the proportion of users with a certain utility function
based on the distribution Θ. This can help companies a lot
for decision-making, because companies can have an over-
all picture of utility functions from a lot of users, and can
promote effective campaigns to a particular group of users.

1.2 k-Hit Query
In this paper, we study the following query called the k-

hit query which has not been studied before. Given a set D
of tuples in the database and the distribution Θ on utility
functions, we would like to select a set S of k tuples from
D in order to maximize the probability that at least one of

tuples in the selection set is the favorite of a user where k
is a positive integer and a user parameter. In this paper,
we show that the top-k query is a special case of our k-hit
query when k is set to 1 and there is only one exact utility
function considered in the distribution Θ. We also show that
all tuples in the optimal selection set of our k-hit query come
from the set of all tuples returned by the skyline query when
the utility functions considered is linear, a common utility
function form adopted in the literature, regardless of the
distribution on utility functions.

Our k-hit query is very useful when the company does
not know the exact utility function of a user. Firstly, when
a company knows some information about the utility func-
tion of a user via some channels like the histories of the
user, the company can learn the distribution on utility func-
tions for this user and could use our k-hit query to return
k tuples which are interesting to the user with the greatest
probability. Secondly, when a company does not know any
information about the utility function of a user, our k-hit
query can also help the company increase the chance of re-
turning tuples that the user is interested in. This is because
with the distribution on utility functions over a group of
users, the probability that this user is interested in one of
the k tuples returned by our k-hit query is the greatest.

Furthermore, our k-regret query can be regarded as
an “improved” version of many existing “k-representative”
queries in the literature of database [29, 21, 20] with the help
of additional information about the distribution on utility
functions. Some existing k-representative queries [29] find k
tuples such that the distance between any two tuples among
these k tuples in the Cartesian space is maximized. Oth-
ers [21, 20] select k tuples such that each of these k tuples
has the greatest score computed based the dataset and the
other selected tuples. However, these existing studies do not
consider the distribution on utility functions, the important
user information from real-life applications, which can help
companies return k tuples which are interesting to a user
with a higher chance. This is because the distribution on
utility functions can “represent” a big picture of utility func-
tions of users and thus the k tuples are “representative”.

Unfortunately, to the best of our knowledge, there are
no existing studies for our k-hit query. The closely related
work is [36] considering the distribution on utility functions
similar to us. But, the objective of [36] is different from ours.
Specifically, [36] studied the problem called the order-based

representative skyline problem. Given a set D of tuples in
the database and the distribution Θ on utility functions, the
order-based representative skyline problem is to select a set
of k tuples from D such that (1) the probability that each
tuple in the selection set is the favorite of a user is at least
a given user parameter α ∈ [0, 1], and (2) the “similarity”
between the selection set S and D is maximized. Here, the
“similarity” introduced in [36] is defined based on a function
SIMm(·, ·) which comes with another user parameter m
which is a positive integer. Specifically, given a tuple t in S
and another tuple t′ in D, SIMm(t, t′) is defined to be the
probability that t′ is in the set of the top-m tuples based
on the utility function which ranks t as the top-1 tuple.
Roughly speaking, if t has the highest utility based on a
utility function, then t′ also has its high utility similar to
t (though not as high as t). Given a selection set S and a
tuple t′ in D, the representative value of t′ in S is defined to
be maxt∈S SIMm(t, t′). Given a selection set S and D, the

“similarity” between S and D is defined to be the average
representative value of a tuple in D.

It is easy to see that the order-based representative sky-
line problem is different from our k-hit query. Firstly, the
objective function of the order-based representative skyline
problem, which is the “similarity” between the selection set
andD, is different from ours, which is the probability that at
least one of tuples in the selection set is the favorite of a user.
Secondly, the user parameter m introduced in the order-
based representative skyline problem could not be found in
our k-hit query, and it is difficult to know how to set this
parameter properly.

1.3 Contributions & Organization
Our major contributions can be summarized as follows.

Firstly, we are the first to study the k-hit query, which has
a wide range of applications since all applications for top-
k queries and skyline queries can naturally be used in our
k-hit query. Secondly, since there are a lot of existing stud-
ies [36, 5, 7, 20, 3, 6, 27, 12, 17, 35] considering that the
utility functions are in the linear form, we study our k-hit
query when the functions are in this form and present its
relevance to a geometry concept called “solid angle” [13, 26]
and some existing database queries, namely top-k queries
[27, 12, 17, 35, 10, 24], skyline queries [3, 12, 17, 6, 18, 19,
29], k-regret queries [20, 22] and k-representative skyline
queries [29]. Besides, if the distribution Θ on (linear) utility
functions is uniform, we find an interesting geometry prop-
erty based on “solid angle” and develop a novel algorithm
called k-Hit Alg based on this property. If the distribution
Θ is non-uniform, we also generalize k-Hit Alg for our k-
hit query. Thirdly, we extend k-Hit Alg when the form of
the utility functions are non-linear, regardless of whether
the distribution Θ on utility functions is uniform or not.
Lastly, we conducted comprehensive experiments for the k-
hit query, empirically verifying the superior performance of
our proposed algorithm, k-Hit Alg, compared with other ex-
isting algorithms which were originally used to answer other
queries.

The rest of the paper is organized as follows. Section 2 for-
mally defines our k-hit query. Section 3 gives some interest-
ing theoretical properties of our query when the utility func-
tions considered are linear. Section 4 shows our proposed
algorithm, k-Hit Alg. Section 5 gives the related work. Sec-
tion 6 presents our experimental results. Lastly, Section 7
presents the concluding remarks and the future work.

2. PROBLEM DEFINITION
We are given a set D of n tuples each represented in the

form of a d-dimensional non-negative real vector. For each
tuple p ∈ D, we denote the i-th dimensional value of p by
p[i] for i ∈ [1, d]. Each dimensional value ranges from 0 to 1.
For each dimension, a larger value is more preferable. For
the sake of illustration, we assume that for each i ∈ [1, d],
there exists a tuple p ∈ D such that p[i] = 1. Since a tuple
represented in the form of a d-dimensional vector can be
regarded as a d-dimensional point, in the following, we use
the terms “tuples” and “points” interchangeably since they
correspond to the same concept.

Given a tuple p represented in the form of a d-dimensional
non-negative real vector, a utility function f(·) is defined to
be a mapping function which maps p to a non-negative real

number. In the following, for clarity, if the context is clear,
we simply write f(·) as f .

Let F be the set of all possible utility functions. In this
paper, following the existing studies about top-k queries [27,
12, 17, 35, 10, 24], we assume that F contains an infinite
number of functions and is thus uncountable. In case that
F is countable, the problem we are studying can be easily
solved. For the sake of space, we include this discussion in
Appendix A.

We denote Θ to be the distribution on these utility func-
tions in F . Specifically, for each function f ∈ F , we define
η(f) to denote the “importance” of f based on the distribu-
tion Θ. η(f) has different meanings in different scenarios.
η(f) can denote the proportion of users with the utility func-
tion as f for a whole group of users. η(f) can also denote
the probability that f is the utility function for a particular

user. In the following, we assume that η(f) has the former
meaning for the ease of discussion.

Note that η(f) is a probability density function and∫
f∈F

η(f)df = 1.

Given a tuple p ∈ D and a function f ∈ F , p is said
to achieve the highest utility with respect to f if for each
q ∈ D, f(p) ≥ f(q). If a user has this utility function f ,
then p will be selected by this user. Given a tuple p ∈ D,
we define F (p) to be the set of all functions in F such that
p achieves the highest utility with respect to each of these
functions. In some cases, there exists a utility function f ∈
F such that multiple distinct tuples in D achieve the highest
utility with respect to f . For the sake of discussion, in the
following, we simply break the ties by regarding that only
one of these tuples achieves the highest utility. Under this
strategy, we want to make sure that each user finally selects
one tuple (instead of multiple tuples) in order to simplify
our discussion.

Consider a user in the whole group of users. We do not
know any information about the exact utility function of
this user. We can determine the probability that a tuple
p ∈ D is selected by the user according to the distribution
Θ, called the standalone hit probability. Given a tuple p ∈ D,
the standalone hit probability of p (in short, standalone HP),
denoted by HP (p), is defined to be the probability that p is
selected by a user. For clarity, in the paper, we simply write
“standalone HP” as “HP’ if the context is clear. Since in the
distribution Θ, we know the proportion of users with each
utility function in F , we have the following.

HP (p) =
∫
f∈F (p)

η(f)df

We just defined the standalone hitting probability of a
tuple. Next, we define the collective hitting probability of
a set of tuples. Given a set S of tuples, the collective hit

probability of S (in short, collective HP), denoted byHP (S),
is defined to be the probability that one of the tuples in S
is selected by a user. Similarly, for clarity, in the paper, we
simply write “collective HP” as “HP” if the context is clear.
Since we know that each user selects only one tuple finally,
we have the following.

HP (S) =
∑

p∈S HP (p) (1)

In this paper, we study a new query called the k-hit query.

Problem 1 (k-Hit Query). Given a positive integer

k, we want to find a subset S of D containing k tuples such

that HP (S) is the greatest.

The following lemma shows that the top-k query is a spe-
cial case of our k-hit query where k = 1.

Lemma 1. When F contains only one utility function,

our k-hit query becomes the top-k query where k = 1.

The following shows the lower bound of the optimal hit
probability of a k-hit query.

Lemma 2. Let M be the number of tuples in D which

achieve the highest utility with respect to at least one utility

function in F. Let S be the optimal solution of a k-hit query.
HP (S) ≥ min{ k

M
, 1}.

According to this lemma, we know that if k is larger and
M is smaller, the lower bound of the hit probability of the
optimal solution of a k-hit query will be larger.

Next, we consider two types of the function class for our
k-hit query. The first type of the function class is the linear

utility function class. The reason why we study this function
class is that there are a lot of existing studies [36, 5, 7, 20,
3, 6, 27, 12, 17, 35] considering that the utility functions are
in the linear form. The second type is the non-linear utility

function class which is more general.
Next, in Section 3, we give some theoretical properties

when the linear utility function class is considered. In Sec-
tion 4, we present our proposed algorithm called k-hit Alg
when the utility function class is either linear or not.

3. PROPERTIES OF LINEAR UTILITY
FUNCTIONS

The linear function class, denoted by L, is defined to be
the set of all possible linear functions. Given a tuple p ∈ D,
a linear function f(p) is represented in the form of f(p) =∑d

i=1 ωi·p[i] where ωi is a non-negative real number denoting
the importance of the i-th dimension in the function for each
i ∈ [1, d]. For each i ∈ [1, d], ωi is called the weight of the
i-th dimension in the function. Thus, each linear function is
associated with a d-dimensional weight vector.

In general, there exists two distinct utility functions in L
returning the same ranking result based on a set of tuples
(or points) in the d-dimensional space. For example, when
d = 2, the vector ω = (0.3, 0.7) and the vector ω′ = (3, 7)
can be regarded as the same utility function in terms of the
ranking result. So, we would like not to include both ω and
ω′ simultaneously in L at the end.

Based on the above observation, we introduce one more
constraint such that L is concise and complete. A func-
tion class L′ ⊆ L is said to be concise with respect to L if
and only if any two different utility functions in L′ do not re-
turn the same ranking result on any set of the d-dimensional
points. L′ is said to be complete with respect to L if and
only if for each utility function f ∈ L, there exists f ′ ∈ L′

such that f and f ′ return the same ranking result on any
set of the d-dimensional points. Interestingly, the following
lemma shows that the function class containing all possible
linear functions whose weight vectors have their norm equal
to 1 is concise and complete with respect to L.

Lemma 3. Let L′ the function class containing all pos-

sible linear functions whose weight vectors have their norm

equal to 1. L′ is concise and complete with respect to L.

In the following, for clarity, we just focus on the function
class containing all possible linear functions whose weight
vectors have their norm equal to 1 and we refer this function
class simply as L.

In the following, we first present the geometry properties
of our problem in Section 3.1, describing how it is relevant to
a concept called “solid angle” [13, 26] in the literature of ge-
ometry. In Section 3.2, we describe the relationship between
the k-hit query and each of the existing database problems:
(1) top-k queries [27, 12, 17, 35, 10, 24], (2) skyline queries
[3, 12, 17, 6, 18, 19, 29], (3) k-regret queries [20] and (4)
k-representative skyline queries [29].

3.1 Geometric Properties
In this section, we present some theoretical properties

based on the concept of “solid angle”used in the literature of
geometry. Then, we introduce a new concept called “hitting
solid angle” based on “solid angle” for our k-hit query. This
new concept will be used in our algorithm.

3.1.1 Fundamental Concepts & Properties
Before we present some theoretical properties, we first in-

troduce some fundamental concepts.
For each i ∈ [1, d], we define the boundary point for the

i-th dimension, denoted by BPi, to be a d-dimensional point
where its i-th dimension is equal to 1 and each of its other
dimensions is equal to 0. Let B = ∪d

i=1BPi.
We denote Conv(D) to be the convex hull of D ∪

{(0, 0, ..., 0)} ∪ B where (0, 0, ..., 0) is the origin of the d-
dimensional space. For example, Figure 1 shows a dataset D
containing 7 tuples, namely p1, p2, ..., p7, in a 2-dimensional
space. The two dimensions are X1 and X2. In this dataset,
the X2 value of p1 is 1 and the X1 value of p6 is 1 Besides,
since p1 has its X1 value equal to 0 and its X2 value equal to
1, p1 is exactly the boundary point for the second dimension
(i.e., BP2). However, although p6 has its X1 value equal to
1, p6 is not the boundary point of the first dimension be-
cause p6 has its X2 value equal to non-zero. In the figure,
O denotes the origin. Figure 2 shows Conv(D). Conv(D)
contains the face/line containing O and p1, the line contain-
ing O and point BP1, the line containing pi and pi+1 for
each i ∈ [1, 5], and the line containing p6 and BP1. Note
that the line containing p6 and BP1 is a vertical line since
both p6 and BP1 have their X1 value equal to 1. Given a
face of a convex hull, the face is said to be boundary if it
contains the origin. For example, the face/line containing
O and p1 is boundary but the line containing p1 and p2 is
non-boundary. If a point is on one of the faces of Conv(D),
we say that this point is on the surface of Conv(D).

A point p on the surface of Conv(D) is said to be redun-

dant if p is a non-boundary point and the surface of Conv(D)
(i.e., the set of all faces of Conv(D)) is equal to the surface
of Conv(D \ {p}) (i.e., the set of all faces of Conv(D \ {p}).
For example, in our running example, since p1 is a boundary
point, it is not redundant. Since p2 is a not-boundary point
and the surface of Conv(D) is not equal to the surface of
Conv(D \ {p2}), it is not redundant. Given a convex hull
CH , we denote Surf(CH) to be the set of points on the sur-
face of CH which are not redundant. For example, p1 and
p2 are on the surface of Conv(D) and thus Surf(Conv(D))
contains p1 and p2. In the following, for clarity, when we
write that “a point on the surface of a convex hull CH”, we

mean that“a point on the surface of a convex hull CH which
is not redundant”.

We have the following properties based on Conv(D).

Lemma 4. Let p be a tuple in D which is inside Conv(D)
but is not on the surface of Conv(D). Then, HP (p) = 0.

In Figure 2, p7 is a tuple in D which is inside Conv(D) but
is not on the surface of Conv(D). By Lemma 4, HP (p7) = 0.

Lemma 5. Let Y = Surf(Conv(D)). Then, for any set

S ⊆ D such that Y ⊆ S, HP (S) = 1.

In Figure 2, p1, p2, p3, p4, p5 and p6 are all the tuples which
are on the surface of Conv(D). If S = {p1, p2, p3, p4, p5, p6},
then by Lemma 5, we have HP (S) = 1.

Note that both Lemma 4 and Lemma 5 are independent of
Θ (i.e., the distribution for the utility function). These two
lemmas suggest that it is sufficient to consider the tuples on
the surface of Conv(D) for the solution of a k-hit query. Let
Y = Surf(Conv(D)). If Y contains at most k tuples, the
final solution S of a k-hit query must contain all tuples in Y .
In this case, HP (S) = 1 no matter what tuples other than
the tuples in Y are included in S. If Y contains more than
k tuples, the final solution S of a k-hit query must contain
k tuples from Y .

Besides, based on Lemma 2, we derive the following corol-
lary when the function class is the linear function class L.

Corollary 1. Let M = |Surf(Conv(D))|. Let S be

the optimal solution of a k-hit query. Then, HP (S) ≥
min{ k

M
, 1}.

In the following two subsections, we present concepts of
“solid angle” and “hitting solid angle” which will be used in
our algorithm when Θ is a uniform distribution on the linear
utility function class L. In the following, we assume that Θ
is a uniform distribution on L.

3.1.2 Solid Angle
Next, we introduce a concept called “cone”and then define

“solid angle”.
Let V be a set of d′ vectors from the origin O in the d-

dimensional space where d′ ≥ d. We denote Cone(V) to
be an unbounded d-dimensional convex cone such that its
apex is centered at the origin O, the surface of this cone is
a combination of multiple unbounded faces, each of which is
enclosed by two vectors in V and the height of this cone is
infinite. For example, Figure 4 shows two vectors v1 and v2
in a 2-dimensional space. Let V = {v1, v2}. Cone(V) is a
2-dimensional object such that it contains two lines, namely
the line starting from O with the direction of vector v1 and
the other line starting from O with the direction of vector
v2. Since this object is unbounded (which means that the
convex cone has no base), the lengths of these 2 lines are
infinity. The space enclosed by these 2 lines corresponds to
Cone(V).

Given a convex cone C, we denote the cone vector set of
C, denoted by ConeV ector(C), to be the set V of all vectors
used to construct C such that Cone(V) = C. For example,
Figure 4 shows the shaded region denoting a convex cone C.
ConeV ector(C) = {v1, v2}.

Let Bd be a closed d-dimensional hypersphere/ball cen-
tered at the origin with radius equal to 1 in a d-dimensional

p1

O

p2

p3

p4

p5

p6

p7

X1

X2

Figure 1: A running example

p1

O

p2

p3

p4

p5

p6

p7

X1

X2

l12 l23

BP1

BP2

Figure 2: The convex hull of D
(Conv(D))

p1

v1 v2

O

p2

p3

p4

p5

p6

p7

X1

X2

vector for p1

l12 l23

BP1

BP2

Figure 3: Vectors perpendicular to two
faces of Conv(D)

v1 v2

O
X1

X2

Cone({ , })v v1 2

B2

1

1

Figure 4: Unbounded Convex Cone in a
2-dimensional Space

O
X1

X2

cone of p1

cone of p2

cone of p3

cone of p4

cone of p5

cone of p6

Figure 5: Partitions in a 2-
dimensional Space

p1

v1 v2

O

p2

p3

p4

p5

p6

p7

X1

X2

BP1

BP2

l12 l23

h2

ip1 ip2

Figure 6: An Illustration of In-
dexing Method

space. Given an object Z in a d-dimensional space, the
volume of Z is denoted by V old(Z). Given Bd and an un-
bounded d-dimensional convex cone C with its apex cen-
tered at the origin O, the volume of C with respect to Bd is

defined to be V old(C∩Bd)
V old(Bd)

.

Definition 1 (Solid Angle). Given a set V of d′

vectors in a d-dimensional space where d′ ≥ d, the solid
angle for V , denoted by SA(V), is defined to be the volume

of Cone(V) with respect to Bd.

For example, Figure 4 shows B2 in a two-dimensional
space. Let C be the unbounded convex cone enclosed by
the two lines for v1 and v2 passing through the origin. We
know that the volume of C with respect to B2 is the shaded
area inside B2 divided by the area of B2.

We have just described the concept of “solid angle”. Now,
we are ready to define “hitting solid angle” for our k-hit
query as follows.

Given a tuple p ∈ Surf(Conv(D)), we denote Face(p) to
be the set of all non-boundary faces of Conv(D) containing
p. In Figure 2, since p2 ∈ Surf(Conv(D)), Face(p2) con-
tains two faces/lines only. The first one is the line l12 with
two end-points equal to p1 and p2, and the second one is
the line l23 with two end-points equal to p2 and p3. That is,
Face(p1) = {l12, l23}. Similarly, Face(p1) = {l12}.

Given a tuple p ∈ Surf(Conv(D)), we denote
FaceV ector(p) to be the set of the unit vectors per-
pendicular to all faces in Face(p). That is, FaceV ector(p) =
{v|v is a unit vector perpendicular to f where f ∈ Face(p)}.
For example, in Figure 3, FaceV ector(p2) = {v1, v2} and
FaceV ector(p1) = {v1}.

Given a tuple p ∈ Surf(Conv(D)), we define the hit vec-

tor set of p, denoted by HitV ector(p), to be FaceV ector(p)
if p is a non-boundary point, and FaceV ector(p)∪ {p} oth-
erwise. Note that the point p itself can be regarded as a

vector from the origin to point p. We simply write p to de-
note the vector from the origin to point p if the context is
in terms of vectors instead of points. For example, consider
p2. Since p2 is a non-boundary point, HitV ector(p2) =
FaceV ector(p2) = {v1, v2}. Consider p1. Since p1 is a
boundary point, HitV ector(p1) = FaceV ector(p1)∪{p1} =
{v1, p1}. Note that p1 in HitV ector(p1) is a vector from the
origin to point p1 (denoted as the“vector for p1” in Figure 3).

Lemma 6. We are given a tuple p ∈ Surf(Conv(D)).
Then, HP (p) = 2d · SA(HitV ector(p)).

In Figure 3, consider p2. Face(p2) = {l12, l23} and
FaceV ector(p2) = {v1, v2}. By Lemma 6, HP (p2) =
22 · SA(FaceV ector(p2)).

3.1.3 Hitting Solid Angle
Next, we define “hitting solid angle” and re-define “cone”

in our context of the k-hit query.
Given a tuple p ∈ Surf(Conv(D)), the hitting solid

angle for p is defined to be SA(HitV ector(p)). Besides,
given a tuple p ∈ Surf(Conv(D)), we define the cone of
p to be Cone(HitV ector(p)). For example, consider our
running example as shown in Figure 3. in Figure 4, the
shaded region is the cone of p2 (i.e., Cone(HitV ector(p2))(=
Cone({v1, v2}))). Figure 5 shows the cone of pi for each
i ∈ [1, 6] in our running example.

Let S be the d-dimensional non-negative real space.

Observation 1. Let R = |Surf(Conv(D))|. S is divided

into R partitions where each partition is the cone of a tuple

in Surf(Conv(D)).

Consider our running example. Figure 5 shows an exam-
ple that the space S is divided into 6 partitions where each
partition is the cone of tuple pi for i ∈ [1, 6].

3.2 Relevance to Existing Database Queries
We know that a traditional top-k query is a special case

of our k-hit query where k = 1 as described in Lemma 1.
The following lemma shows that the hit probability of the
set of skyline tuples is equal to 1 and the optimal set of a
k-hit query is a subset of the set of skyline tuples.

Lemma 7. Let S be the set of skyline tuples and So be the

optimal set of a k-hit query. Then, HP (S) = 1. Besides, if

|Surf(Conv(D))| ≥ k, then So ⊆ S.

The following two lemmas suggest that a k-regret
query [20] and a k-representative skyline query [29], two ex-
isting queries returning k tuples recently proposed in the
literature, do not give accurate solutions for our k-hit query.

Lemma 8. There exists a dataset such that S is the solu-

tion of a k-regret query and HP (S) = 0.

Lemma 9. There exists a dataset such that S is the solu-

tion of a k-representative skyline query and HP (S) = 0.

4. ALGORITHM
In this section, firstly, we give a general framework of

our proposed algorithm k-hit Alg for the k-hit query in
Section 4.1. Secondly, due to some interesting properties
of the linear utility function class described in Section 3,
in Section 4.2, we present our algorithm k-hit Alg using
these properties when the utility functions used are linear.
Thirdly, in Section 4.3, we give k-hit Alg when the utility
functions considered are non-linear.

4.1 Overview
A k-hit query is to find a set S containing k tuples in D

such that HP (S) is the greatest. According to Equation (1),
we know that HP (S) is the sum of the standalone hit prob-
abilities of all tuples in S. Thus, we present an overview
framework of our proposed algorithm k-hit Alg for the k-hit
query as follows.

• Step 1 (Standalone HP Computation): For each
tuple p in D, we compute the standalone hit probabil-
ity of p (i.e., HP (p)) based on Θ.

• Step 2 (Output): We find a set S of k tuples in D
with the greatest standalone hit probabilities

It is easy to verify the correctness of k-hit Alg.

Theorem 1. The general framework of k-hit Alg returns

the optimal solution of a k-hit query.

This overview framework looks straightforward. However,
there are two major issues. The first issue is how to compute
the standalone hit probability of each tuple (used in Step
1). The second issue is how to use the interesting properties
described in Section 3 when the utility functions used are
linear. In the following two sub-sections, we present the
detailed description of this overview framework.

4.2 Linear Utility Function Class
In this section, we present our detailed algorithm k-hit Alg

for the k-hit query when the utility functions considered are
linear.

Algorithm 1 Our Detailed Algorithm k-Hit Alg (for Uni-
form Distribution Θ on Linear Utility Function Class)

Input: A set of n d-dimensional points D = {p1, p2, ..., pn}, a posi-
tive integer k

Output: A subset S of D of size k
1: // Step 1 (Convex Hull Construction)
2: Compute Conv(D)
3: Find Surf(Conv(D))
4: // Step 2 (Standalone HP Computation)
5: for each point p ∈ Surf(Conv(D)) do

6: Compute the hitting solid angle for p (i.e., SA(HitV ector(p)))

7: Compute HP (p) which is equal to 2d · SA(HitV ector(p))
8: // Step 3 (Output)
9: S ← the set of the k tuples in Surf(Conv(D)) with the greatest

standalone hit probabilities
10: return S

When the utility functions considered are linear, due to
the properties described in Section 3, the detailed algorithm
k-hit Alg to be described in this section has the following
two differences. The first difference is that in the detailed
algorithm, at the beginning, we introduce an additional step
of finding a small set of candidate tuples for the optimal
solution of a k-hit query. In Section 3, based on Lemma 4
and Lemma 5, we know that all tuples in Surf(Conv(D))
are candidate tuples for a k-hit query. Thus, in our detailed
algorithm, we consider all tuples in Surf(Conv(D)) only
instead of the whole dataset D considered in the overview
framework.

Specifically, our detailed algorithm k-Hit Alg with the
first difference has the following three steps.

• Step 1 (Convex Hull Construction): We find
Surf(Conv(D)) from D (because the tuples in
Surf(Conv(D)) are candidates for the optimal solu-
tion for a k-hit query as described before).

• Step 2 (Standalone HP Computation): For each
p ∈ Surf(Conv(D)), we compute the standalone hit
probabilities of p based on Θ.

• Step 3 (Output): We find a set S of the k tuples
in Surf(Conv(D)) with the greatest standalone hit
probabilities

The second difference is related to how to compute the
standalone hit probabilities of tuples based on the concept
of “hitting solid angle”. We consider two cases.

• Case 1 (Θ is a Uniform Distribution on L)

• Case 2 (Θ is not a Uniform Distribution on L)

The concept of “hitting solid angle” can be used in Case 1
(due to the simplest uniform distribution) but it cannot be
used in Case 2.

Case 1 (Θ is a Uniform Distribution on L): In this
case, based on Lemma 6, we determine the standalone hit
probability of a tuple by computing the hitting solid angle
for this tuple. Thus, the implementation of Step 2 is de-
scribed as follows. For each p ∈ Surf(Conv(D)), we com-
pute the hitting solid angle for p, SA(HitV ector(p)), (i.e.,
the solid angle for the hit vector set HitV ector(p)) and then
determine the standalone hit probability of p (i.e., HP (p))
which is equal to 2d · SA(HitV ector(p)) (by Lemma 6).

Algorithm 1 shows the pseudo-code of our detailed algo-
rithm k-Hit Alg in this case.

Based on Lemma 6 and Equation (1), it is easy to verify
the correctness of the algorithm.

Theorem 2. Algorithm 1 returns the optimal solution of

a k-hit query.

In Algorithm 1, we know that we have to compute the hit-
ting solid angle for each tuple p in Surf(Conv(D)), which
involves the computation of the solid angle for a set of vec-
tors in HitV ector(p). Since it is known that computing the
solid angle for a set of d-dimensional vectors is costly [13,
26] and many existing techniques finding the solid angle are
sampling-based methods [31, 33, 13], in this paper, we also
adopt a sampling-based method for computing the solid an-
gle for a set of vectors (i.e., the hitting solid angle for a
tuple).

Before we present this sampling-based method, we give
the following lemma which will be used in the method.

Lemma 10. Let V be a set of N randomly sampled d-
dimensional non-negative real vectors of unit length. Let

V (p) be the set of sampled vectors in V which are inside the

cone of p. Then, when N approaches ∞, for each tuple p in

D, the hitting solid angle for p is
|V (p)|

N
· 1

2d
and HP (p) =

|V (p)|
N

.

Lemma 10 suggests that we can compute the standalone
hit probability of each tuple p in D by finding the size of
V (p) and obtaining the hit probability with a division of
this size by N .

Specifically, based on Lemma 10, we propose the following
steps for computing the hitting solid angles for all tuples in
Surf(Conv(D)) (used in Step 2).

• Step (a) (Sampling): We randomly pick N d-
dimensional non-negative real vectors of unit length
in S where N is a parameter for the sampling size and
can be determined from some error parameters (which
will be described later in Section 4.2.1).

• Step (b) (Cone Location): For each vector v from
the N vectors generated, we determine which tuple p
in Surf(Conv(D)) has its cone containing v and then
increment variable count(p), initialized to 0, by 1

• Step (c) (Standalone HP Estimation): For each
p ∈ Surf(Conv(D)), the hitting solid angle for p is

estimated to be count(p)
N

· 1
2d

. The estimated HP (p) is

equal to count(p)
N

.

Algorithm 2 shows the pseudo-code of the implementation
of our detailed algorithm k-Hit Alg.

Case 2 (Θ is Not a Uniform Distribution on L): In this
case, we do not determine the standalone hit probability of
each tuple by computing the hitting solid angle of this tuple
(because Θ is not a uniform distribution on L and thus the
concept of “hitting solid angle” cannot be used). Instead, we
compute the standalone hit probability of each tuple based
on the distribution Θ in the following way.

• Step (a) (Sampling): We randomly pick N d-
dimensional non-negative real vectors of unit length
in S based on distribution Θ where N is a parame-
ter for the sampling size and can be determined from
some error parameters (which will be described later
in Section 4.2.1)

Algorithm 2 Implementation of Our Detailed Algorithm
k-Hit Alg (for Linear Utility Function Class)

Input: A set of n d-dimensional points D = {p1, p2, ..., pn}, a sam-
pling size N , a positive integer k.

Output: A subset S of D of size k

1: // Step 1 (Convex Hull Construction)
2: Compute Conv(D)
3: Find Surf(Conv(D))
4: // Step 2 (Standalone HP Estimation)
5: Sample N d-dimensional non-negative real vectors of unit length
6: for each vector v from the N vectors generated do

7: we determine which tuple p in Surf(Conv(D)) has its cone
containing v and then increment variable count(p), initialized
to 0, by 1

8: // Step 3 (Output)
9: S ← the set of the k tuples in Surf(Conv(D)) with the greatest

count(·)
N

values

10: return S

• Step (b) (Cone Location): For each vector v from
the N vectors generated, we determine which tuple p
in Surf(Conv(D)) has its cone containing v and then
increment variable count(p), initialized to 0, by 1

• Step (c) (Standalone HP Estimation): For each
p ∈ Surf(Conv(D)), HP (p) is estimated to be
count(p)

N
.

The pseudo-code of this algorithm is exactly the same as
Algorithm 2 except that in this case, sampling N vectors is
based on distribution Θ instead of a uniform distribution.
For the ease of naming, we also call this algorithm as k-
Hit Alg.

In this section, we give some details of k-hit Alg. All steps
in Algorithm 2 are straightforward but there are two issues.
The first issue is how to determine the sampling size N used
in Line 5 of Algorithm 2 (Section 4.2.1). The second issue
is how to determine which tuple p has its cone containing a
sampled vector v efficiently (Section 4.2.2).

4.2.1 Issue 1: Determining Parameter N
In this section, we give a way to determine the sampling

size N .
Let S be the solution set returned by our algorithm (no

matter what distribution are considered). Let So be the
optimal solution of a k-hit query. Let si be the i-th largest
estimated standalone HP value of our algorithm for each
i ∈ [1, k].

Theorem 3. Given a confidence parameter δ ∈ [0, 1] and
an error parameter ǫ ∈ [0, 1], if the sampling size N is at

least
8s1k

2 ln 2/(δ/2)
1
k

ǫ2
, then with confidence at least 1− δ,

|HP (S)−HP (So)| ≤ ǫ

Based on this theorem, we know that given two user-given
parameters δ and ǫ, we can determine the minimum sam-

pling size N as 8s1k
2 ln 2/(δ/2)

1
k

ǫ2
(since s1 can be found from

the dataset and k is given).

4.2.2 Issue 2: Determining Which Tuple Has Its
Cone Containing a Sampled Vector Efficiently

In our proposed algorithm, k-Hit Alg, we have to execute
Step (b) (Cone Location). In this section, we present an in-

dexing technique which executes Step (b) efficiently. Specif-
ically, given a sampled vector v, we want to determine which
cone contains v.

A straightforward method is to check whether v is inside
each cone one-by-one and then to return the cone containing
v. Consider a cone C. Determining whether v is inside C
is equivalent to determining whether v is a convex combina-

tion1 [9] of all vectors in ConeV ector(C). It is known [9]
that determining whether a given vector is a convex com-
bination of a set X of r vectors in a d-dimensional space
can be done in O(r2) time. Let |H | be the total number of
cones and r be the greatest number of vectors in the cone
vector set of a cone (i.e., ConeV ector(·)). Thus, the time
complexity of this straightforward method is O(|H |r2) time.

In the following, we propose to use an index built on all
cones in the dataset and thus we can determine which cone
contains a given sample vector v in O(log |H |) time.

Before we introduce our method, we first describe a ray

shooting query [1], which is used in our method.

Definition 2 ([1]). Let H be a set of M hyperplanes

and P (H) be its polytope. Given a ray ρ from a point x
towards a direction where x ∈ P (H), a ray shooting query
is to find the first hyperplane h ∈ H hit by ρ.

For example, in Figure 3, the polytope is referred to the
convex hull Conv(D). Except the line containing O and p1
and the line containing O and BP1, the hyperplanes on the
surface of Conv(D) are the line containing pi and pi+1 for
each i ∈ [1, 5] and the line containing p6 and BP1. When
a ray ρ from the origin O with a direction v1 is the input
of a ray shooting query, the answer for the query is the line
containing p1 and p2.

It is known [1] that given a set H of hyperplanes in a
d-dimensional space, a ray shooting query for the polytope
P (H) can be answered in O(log |H |) time [1].

In our problem setting, we can adopt an existing tech-
nique of the ray shooting query for the step of cone location.
Specifically, we have the following steps.

• Step 1 (Hyperplane Set Construction): for each
tuple p ∈ Surf(Conv(D)), we find HitV ector(p) and
then, for each u ∈ HitV ector(p), we find the intersec-
tion point ip between u and the surface of Conv(D).
Thus, each tuple p ∈ Surf(Conv(D)) is associated
with a set of intersection points. For example, in Fig-
ure 6, since HitV ector(p2) = {v1, v2}, the 2 intersec-
tion points are ip1 and ip2. p1 is associated with ip1
and ip2. We know that there are at least d intersection
points. If there are exactly d intersection points, then
we construct a hyperplane based on these d intersec-
tion points and insert it into a variable H , initialized
to ∅. If there are more than d intersection points, then
we randomly pick d intersection points which can con-
struct a hyperplane. In this case, we construct a hyper-
plane based on these d points and insert it into H . For
instance, in Figure 6, tuple p2 is associated with two
intersection points, namely ip1 and ip2. Since there
are two intersection points, the hyperplane/line h2 is

1Given a vector v and a set X of vectors, namely
x1, x2, ..., xr, v is said to be a convex combination of X if
there exists a non-negative real number αi for each i ∈ [1, r]
such that v =

∑r
i=1 αixi.

constructed based on these two points. Note that fi-
nally, the size of H is equal to |Surf(Conv(D))|. In
conclusion, each tuple p ∈ Surf(Conv(D)) has a cor-
responding hyperplane in H .

• Step 2 (Index Construction): We build an index
according to [1].

• Step 3 (Ray Shooting Query): Given a sampled
vector v, we issue a ray shooting query with the input
as v and determine which hyperplane h in H hit by the
ray. The corresponding tuple p of the hyperplane h is
returned as an output. This tuple is the tuple whose
cone contains v.

It is easy to verify the correctness of the above algorithm.

4.3 Non-Linear Utility Function Class
In Section 3, we described our detailed algorithm k-

Hit Alg when the utility function class is the linear util-
ity function class. In this section, we describe our detailed
algorithm k-Hit Alg when the utility function class is the
non-linear utility function class.

4.3.1 Theoretical Properties
Before we present the algorithm, we first give the follow-

ing two lemmas which will be used in the algorithm in the
context of the non-linear utility function class.

Lemma 11. Let Y = Surf(Conv(D)). Let p be a tuple in

D but not in Surf(Conv(D)). It is possible that HP (p) 6= 0
and the optimal solution of a k-hit query contains p.

Lemma 11 suggests that some tuples not in
Surf(Conv(D)) can be candidates under the non-linear
function class case.

Lemma 12. Let V be a set of N randomly sampled d-
dimensional non-negative real vectors of unit length. Let

V (p) be the set of sampled vectors in V such that for

each vector v in this set, tuple p has the greatest value of

p · v. Then, when N approaches ∞, for each tuple p in D,

HP (p) = |V (p)|
N

.

Lemma 12 suggests that we can compute the standalone
hit probability of each tuple p in D by finding the size of
V (p) and obtaining the hit probability with a division of
this size by N .

4.3.2 Algorithm
Based on Lemma 11 and Lemma 12, we modify Algo-

rithm 2 (our detailed algorithm k-Hit Alg for the linear util-
ity function class) with the following three changes for the
non-linear function class case. The first two changes are due
to Lemma 11 and the last change is due to Lemma 12. The
first change is to remove Lines 1-3 of Algorithm 2 (which
correspond to the additional step of finding the candidates
from Surf(Conv(D))). The second change is to replace each
occurrence of Surf(Conv(D)) by D. The third change is to
replace Line 7 of Algorithm 2 (which corresponds to deter-
mining which tuple p in Surf(Conv(D)) has its contains a
sampled vector v and incrementing variable count(p) by 1)
with a similar operation of determining which tuple p in D
has the greatest value of p · v (where v is a sampled vector)

Algorithm 3 Implementation of Our Detailed Algorithm
k-Hit Alg (for Non-Linear Utility Function Class)

Input: A set of n d-dimensional points D = {p1, p2, ..., pn}, a sam-
pling size N , a positive integer k.

Output: A subset S of D of size k

1: // Step 1 (Standalone HP Estimation)
2: Sample N d-dimensional non-negative real vectors of unit length
3: for each vector v from the N vectors generated do

4: we determine which tuple p in D has the greatest value of p · v
and then increment variable count(p), initialized to 0, by 1

5: // Step 2 (Output)

6: S ← the set of the k tuples in D with the greatest count(·)
N

values

7: return S

and incrementing variable count(p) by 1. The pseudo-code
can be found in Algorithm 3.

Similar to the linear utility function class, for the non-
linear utility function class, we can also determine the pa-
rameter N as described in Section 4.2.1.

5. RELATED WORK
We categorize the related work into two parts. The first

part is to describe how our work is related to existing queries
(Section 5.1). The second part is to describe the related work
about utility function distribution mining (Section 5.2).

5.1 Existing Queries
Top-k queries [30, 14, 27, 34, 24, 32] are one kind of pop-

ular queries which were studied by many researchers. There
are two branches of top-k queries. The first branch is top-k
queries on certain databases. In this branch, as described
in Section 1, a concrete utility function f is given. Each
top-k query returns k tuples with the greatest utility values
computed based on this concrete utility function f . Some
representative papers are [30, 14]. As described before, these
studies are different from us because they require a concrete
utility function given by a user which is one of the utility
functions in F studied by us.

The second branch is top-k queries on uncertain

databases. Some representative papers are [27, 34, 24, 32].
To the best of our knowledge, most (if not all) existing stud-
ies in this branch focused on the uncertainty of the dataset
D but did not study the uncertainty of the utility func-
tion space F . Besides, they focused on the possible world

model which is based on a discrete uncertain space but the
uncertainty space we are considering (i.e., F) is the utility
function space and is continuous. Specifically, under this
branch of these studies, each dataset D is uncertain. That
is, each tuple in D has a probability that it is (was) present
or not. Based on the tuple probabilities in D, these studies
construct a possible world model and calculate some prob-
abilities related to the top-k queries based on this possible
world model. There are different criteria for outputting the
output set of the top-k queries for different studies. For ex-
ample, one query called U-Topk [27] is to return a set S of
tuples such that the sum of the probabilities that S is con-
tained in all possible worlds is maximized. Another query
called U-kRanks [27] is to return a set S of tuples, namely
t1, t2, .., tk, such that for each i ∈ [1, k], the sum of the prob-
abilities that ti is ranked at the i-th position in all possible
words is maximized.

Although there are some studies [28, 11] about top-k
queries studying the uncertainty of the utility values (called
scores) of tuples, they are different from us. [28] considers

that each tuple is associated with a score range in the form
of (a, b) meaning that a is the smallest possible score value
and b is the greatest possible score. However, the uncer-
tainty considered in [28] comes from each individual tuple
but the uncertainty considered in our work comes from the
whole utility function space. Besides, the uncertainty in [28]
is represented in a particular range form but the uncertainty
in our work is very general. [11] enumerates all possible
words and compute the sum of the scores of all tuples in
the top-k query computed based on a fixed utility function.
Finally, [11] constructs the distribution on the (score) sums
and then returns a set of tuples based on this distribution.
Obviously, [11] is different from us since [11] considers a sin-
gle fixed utility function but we focus on a whole function
utility function space F .

Many existing studies [3] also investigated skyline queries.
A tuple t is said to be dominated by another tuple t′ if t is
better than t′ in at least one dimension and t is no worse
than t′ in each dimension. A tuple is said to be a skyline

tuple in D if this tuple is not dominated by any other tuples
in D. A skyline query is to return a set of all skyline tuples
in D. Intuitively, a tuple in the output of the skyline query
is a candidate tuple which is the favorite of a user with any
monotonic utility function. However, it is found that the
skyline query has its undesirable drawback of a large output
size. In the worst case, all tuples in the dataset can form
the output of a skyline query.

There are some variants of skyline queries which try to
get rid of this drawback and introduce a parameter k, a
positive integer, denoting the output size of a skyline query.
Some examples are a representative skyline query (RepSky)
[29] and a dominating skyline query (DomSky) [21]. Given a
parameter k, RepSky is to find a set S of k tuples such that
each tuple in S is a skyline tuple in D and the maximum
Euclidean distance between each tuple in D and its closest
tuple in S is minimized. Given a parameter k, DomSky is to
find a set S of k tuples such that the scores of these k-tuples
are the greatest where the score of a tuple is defined to be
the number of tuples dominating by this tuple in D.

However, the above variants do not consider the distribu-
tion of utility functions even if the distribution is available.
There are some other variants of skyline queries such as [18]
which is to find a set of tuples such that the number of tu-
ples dominated by at least one tuple in the selection set is
maximized. But, they also do not consider the distribution.

Recently, there is a newly proposed query called a k-regret
query [20, 22] which consider the utility function space F .
Given a parameter k, a k-regret query is to return a set S of
k tuples such that the“difference”called themaximum regret

ratio between the selection set S and the whole dataset D
is minimized. Given a utility function f and a selection
set S, the regret ratio of S with respect to f is defined to

1−
maxp∈S f(p)

max
p′∈D

f(p′)
. The maximum regret ratio between S and

D is defined to be the maximum of the regret ratios of S
with respect to all possible utility functions in F . Though
the k-regret query considers the utility function space F
in the problem/query formulation, it does not consider the
distribution on utility functions.

The closely related work is [36] called the order-based rep-

resentative skyline problem considering the distribution of
utility functions. As described in Section 1, the objective
of the order-based representative skyline problem is differ-

Dataset No. of Dim. Size |Dconv | |H|
household-10d 10 1,103,241 753 14235
household-6d 6 903,077 927 10394

nba 5 21,962 65 2774
color 9 68,040 124 4813
stocks 5 122,574 396 5892

Table 1: Real datasets
k-hit_Alg
RepSky

DomSky
Regret

SampleClus

0

0.1

0.2

0.3

0.4

20 40 60 80 100

H
it

P
ro

ba
bi

lit
y

k

0

1

2

3

4

5

20 40 60 80 100Q
ue

ry
 T

im
e

(S
ec

on
ds

)

k

100

1000

20 40 60 80 100

M
em

or
y

U
sa

ge
 (

K
B

)

k

(a) Hit Probability (b) Query Time (c) Memory Usage

Figure 7: Effect of k based on Synthetic Datasets

ent from ours though the distribution on utility functions is
considered.

5.2 Utility Function Distribution Mining
The distribution on utility functions has been widely ex-

plored in the machine learning area, such as user’s recom-
mender systems [4, 25], Bayesian learning models [8, 15] and
user’s preference elicitations [2, 7].

User’s recommender systems [4, 25] give a way to predict
the ratings that a user could give to different items (or tu-
ples in our context). In general, two common approaches
are adopted for recommendation. One is content-based fil-

tering which models the description of the items and users’
profiles to estimate the user’s preference (or utility functions
in our context) to each item, and the other is collaborative

filtering which leverages the similarities between a user and
other users to predict the user’s ratings on each item without
knowing the content of the items.

Bayesian learning models [8, 15] use the Bayes’ rule to
update the probability estimates when new information is
obtained. By defining a prior probability on utility func-
tions properly, the posterior probability on utility functions
will also follow the same distribution with the updated pa-
rameters defined in the model so that it can be considered
as the prior probability afterwards and the distribution on
the utility function can be updated iteratively.

User’s preference elicitations [2, 7] contain a lot of ways of
representing a user’s preference and design queries to obtain
the users’ preferences. The distribution on utility functions
is one way to present the user’s preference when the exact
utility function is vague to a user.

6. EXPERIMENTS
We conducted experiments on a workstation with

1.60GHz CPU and 8GB RAM. All programs were imple-
mented in C++. There are two types of datasets in our
experiments, namely synthetic datasets and real datasets.

k-hit_Alg
RepSky

DomSky
Regret

SampleClus

0

0.1

0.2

0.3

0.4

0.5

 1⋅103 1⋅104 1⋅105 1⋅106

H
it

P
ro

ba
bi

lit
y

n

0
1
2
3
4
5
6

 1⋅103 1⋅104 1⋅105 1⋅106Q
ue

ry
 T

im
e

(S
ec

on
ds

)

n

 1⋅100

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅103 1⋅104 1⋅105 1⋅106M
em

or
y

U
sa

ge
 (

K
B

)

n

(a) Hit Probability (b) Query Time (c) Memory Usage

Figure 8: Effect of n based on Synthetic Datasets

k-hit_Alg
RepSky

DomSky
Regret

SampleClus

0

0.1

0.2

0.3

2 4 6 8 10 12 14

H
it

P
ro

ba
bi

lit
y

d

0

1000

2000

3000

2 4 6 8 10 12 14Q
ue

ry
 T

im
e

(S
ec

on
ds

)

d

 1⋅101

 1⋅102

 1⋅103

 1⋅104

 1⋅105

2 4 6 8 10 12 14

M
em

or
y

U
sa

ge
 (

K
B

)

d

(a) Hit Probability (b) Query Time (c) Memory Usage

Figure 9: Effect of d based on Synthetic Datasets

k-hit_Alg
RepSky

DomSky
Regret

SampleClus

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250

H
it

P
ro

ba
bi

lit
y

k

0
2
4
6
8

10
12
14

50 100 150 200 250Q
ue

ry
 T

im
e

(S
ec

on
ds

)

k

 3⋅102

 6⋅102

 9⋅102

50 100 150 200 250

M
em

or
y

U
sa

ge
 (

K
B

)

k

(a) Hit Probability (b) Query Time (c) Memory Usage

Figure 13: Effect of k on Yahoo!Mustic Datasets

The synthetic datasets were generated by the synthetic
dataset generator for skyline operators developed by [3]. Un-
less stated explicitly, following [36], for synthetic datasets,
we fix the number of tuples to be 1,000,000 (i.e., n = 1,000,
000), the dimensionality to be 3 (i.e., d = 3), and k to be
10. For synthetic datasets, the distribution Θ we adopted is
the uniform distribution on the linear utility function class.

There are two categories of real datasets for ex-
periments. The first category of real datasets con-
tains the five datasets commonly used in the existing
studies for skyline queries and top-k queries, namely
household-6d, household-10d (http://www.ipums.org),
nba (http://www.basketballreference.com),
color (http://kdd.ics.uci.edu) and stocks

(http://pages.swcp.com/stocks). The distribution Θ
we adopted is also the uniform distribution on the linear
utility function class. The number of dimensions and the
data size of each of these real datasets can be found in
Table 1. The second category of real datasets contains a
large real dataset called the Yahoo!music dataset which
was used for KDD-Cup 2011. From this dataset, we can
obtain the distribution Θ on non-linear utility functions
by existing machine learning techniques [16]. Details of
how to obtain Θ will be described later in Section 6.2.2.
Since the experiment for the second category considers
the most general case that the utility functions considered
are non-linear and the distribution is non-uniform, we
do not conduct experiments on other distributions (e.g.,
non-uniform distribution on linear utility functions).

Since our k-hit query considers a utility function space
F containing many utility functions and a traditional top-k
query considers an exact utility function, we do not compare
our proposed method (k-hit Alg) with the algorithms orig-
inally designed for the top-k query. Instead, we compared
the performance of our proposed algorithm (k-hit Alg) with
the state-of-the-art algorithms originally proposed for solv-
ing traditional queries which do not rely on an exact con-
crete utility function. They are (1) the algorithm RepSky

[29] for a k-representative skyline query, (2) the algorithm
DomSky [21] for a dominating skyline query, (3) the algo-
rithm Regret [20] for a k-regret query and (4) the algorithm
SampleClus [36] for an order-based k-representative skyline
query/problem.

k-hit_Alg RepSky DomSky Regret SampleClus

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

Hi
t P

ro
ba

bil
ity

k

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

Hi
t P

ro
ba

bil
ity

k

0

0.2

0.4

0.6

0.8

1

20 40 60

Hi
t P

ro
ba

bil
ity

k

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

Hi
t P

ro
ba

bil
ity

k

0

0.2

0.4

0.6

0.8

1

20 40 60 80 100

Hi
t P

ro
ba

bil
ity

k

(a) household-10d (b) household-6d (c) nba (d) color (e) stocks

Figure 10: Effect on Hit Probability for Real Datasets
k-hit_Alg RepSky DomSky Regret SampleClus

0

5

10

15

20

20 40 60 80 100Qu
er

y T
im

e
(S

ec
on

ds
)

k

0

2

4

6

8

10

20 40 60 80 100Qu
er

y T
im

e
(S

ec
on

ds
)

k

0

0.5

1

1.5

2

20 40 60Qu
er

y T
im

e
(S

ec
on

ds
)

k

0
2
4
6
8

10
12

20 40 60 80 100Qu
er

y T
im

e
(S

ec
on

ds
)

k

0
2
4
6
8

10
12

20 40 60 80 100Qu
er

y T
im

e
(S

ec
on

ds
)

k

(a) household-10d (b) household-6d (c) nba (d) color (e) stocks

Figure 11: Effect on Query Time for Real Datasets

There are some parameter settings for these algorithms.
The parameter k for all these algorithms is set to the same
value in all of our experiments. There are no other param-
eters to be set in RepSky, DomSky and Regret. k-hit Alg
has two additional parameters related to sampling, namely
ǫ and δ, to determine the sampling size N . By default, in k-
hit Alg, we set ǫ = 0.0001 and δ = 0.1. In SampleClus, in ad-
dition to parameter k, there are 5 parameters. The first two
parameters are related to sampling similar to our algorithm
k-hit Alg. They are parameter ǫ and parameter δ (which are
written as δ and ρ in the paper [36] with the same meaning,
respectively). We set these parameters used in SampleClus

exactly the same as the ones used in k-hit Alg. The other
three parameters are related to [36] only. The first two are
parameters m and α which have been described in Section 1,
and the third parameter is parameter β, a parameter intro-
duced in the algorithm SampleClus, where m is a positive
integer and α and β is a non-negative real number. In [36],
parameter m is set to |S|/k where |S| is the number of sky-
line tuples in D. Parameter β is a new parameter denoting
the minimum SIMm(·, ·) value between any two points in
the selection set. Following [36], we set the default values of
the two parameters α and β to 0.01 and 0.1, respectively.

For each algorithm, we measured with three measure-
ments, namely (1) the hit probability of the solution re-
turned, (2) the query time of the algorithm and (3) the
memory consumption of the algorithm. The query time of
an algorithm corresponds to the execution time of the al-
gorithm without the pre-processing step. Specifically, the
query time of each of RepSky, DomSky, Regret and Sam-

pleClus is its execution time excluding the pre-processing
step of finding skyline tuples. The query time of k-hit Alg
is its execution time excluding the pre-processing step of
finding the convex hull and building the index. The mem-

ory consumption of an algorithm is the maximum memory
consumed by the algorithm when the algorithm is executed.

In the following, we conducted two groups of experiments.
The first experiment (Section 6.1) is to study the perfor-
mance of each algorithm on synthetic datasets. The second
experiment (Section 6.2) is to study the performance of each
algorithm on real datasets.

6.1 Results on Synthetic Datasets

We conducted experiments on synthetic datasets. In par-
ticular, we study k (parameter k in our k-hit query), n
(dataset size) and the effect of d (dimensionality) on our
synthetic datasets.

Hit Probability: Figure 7(a), Figure 8(a) and Figure 9(a)
show the hit probability returned by each algorithm when
we vary k, n and d, respectively. In these figures, k-Hit Alg

has the greatest hit probability among all algorithms. Sam-

pleClus gives the second greatest one and the other algo-
rithms gives very low probabilities. The reason why k-
hit Alg has the greatest hit probability among all algorithms
is that the goal of k-hit Alg is to maximize the hit proba-
bility but the goal of each of the other algorithms is not.
SampleClus gives the second greatest hit probability. This is
because SampleClus needs to compute the probability term
and uses this term for calculating the similarity between the
selection set and the dataset. Since the probability term
is correlated to the hit probability we want to maximize
and each of the other algorithms (i.e., RepSky, DomSky and
Regret) do not compute the probability term, SampleClus

returns a greater hit probability than each of the other algo-
rithms. Note that SampleClus still returns a low hit proba-
bility compared with k-hit Alg since the goal of SampleClus

is not to maximize the hit probability. For example, in Fig-
ure 7(a), when k = 10, the hit probability returned by Sam-

pleClus is 5.6 times smaller than the hit probability returned
by k-hit Alg.

In Figure 7(a), the hit probability of the set returned by
each algorithm increases with k because the output set con-
tains more tuples and it is more likely that a user can find
his/her favorite in the output set.

In Figure 8(a), when n increases, the hit probability of
the set returned by an algorithm decreases. This is because
there are more tuples and it is less likely that a user can find
his/her favorite.

Figure 9(a) shows the effect of d where the total number
of tuples is fixed to 100,000. When d increases, the hit prob-
ability of the set returned by each algorithm decreases. This
is because it is less likely that a tuple is found to be a user’s
favorite when the dimensionality is larger.

k-hit_Alg RepSky DomSky Regret SampleClus

 1⋅103
 2⋅103
 3⋅103
 4⋅103
 5⋅103
 6⋅103

20 40 60 80100

M
em

or
y U

sa
ge

 (K
B)

k

 0⋅100

 1⋅103

 2⋅103

 3⋅103

 4⋅103

20 40 60 80100

M
em

or
y U

sa
ge

 (K
B)

k

 1⋅102
 2⋅102
 3⋅102
 4⋅102
 5⋅102

20 40 60

M
em

or
y U

sa
ge

 (K
B)

k

 0⋅100
 1⋅103
 2⋅103
 3⋅103
 4⋅103
 5⋅103

20 40 60 80100

M
em

or
y U

sa
ge

 (K
B)

k

 2⋅102

 4⋅102

 6⋅102

 8⋅102

20 40 60 80100

M
em

or
y U

sa
ge

 (K
B)

k

(a) household-10d (b) household-6d (c) nba (d) color (e) stocks

Figure 12: Effect on Memory Usage for Real Datasets

Query Time: Figure 7(b), Figure 8(b) and Figure 9(b) show
the query time of each algorithm when we vary k, n and d,
respectively.

SampleClus, the closely related work, gives the greatest
query time since it computes a probability term which is
costly to be computed. The query time of k-Hit Alg is the
second greatest among all algorithms since k-Hit Alg needs
to compute the probability term but all other algorithms
except SampleClus do not need.

Figure 7(b) shows that the query time of each algorithm
increases with k because it needs more time for processing
the data. Similarly, Figure 8(b) and Figure 9(b) shows that
the query time of each algorithm increases with n and d,
respectively.

Memory Usage: Figure 7(c), Figure 8(c) and Figure 9(c)
show the memory usage of each algorithm when we vary k,
n and d, respectively. Generally, SampleClus needs higher
memory space than the other three algorithms.

6.2 Results on Real Datasets
We study the effect of k on each real dataset in terms of

the query time and the hit probability of the set returned
by each algorithm. In the experiments, we vary k from 10
to 100.

The experimental results based on the first-type real
datasets can be found in Section 6.2.1 and the experimental
results based on the second-type real datasets can be found
in Section 6.2.2.

6.2.1 First-Type Real Datasets

Hit Probability: Figures 10(a), (b), (c), (d) and (e) shows the
hit probability of each algorithm on five different first-type
real datasets. Similar to the results on synthetic datasets,
k-hit Alg has the greatest hit probability but the others
do not. Besides, similarly, in Figures 10(a), (b), (c), (d)
and (e), when k increases, the hit probability of the set re-
turned by each algorithm increases. In Figures 10(b) (for
the household-6d dataset), when k = 10, the hit probabil-
ity returned by k-Hit Alg is 3.17 times larger than the hit
probability returned by SampleClus.

Query Time: Figures 11(a), (b), (c), (d) and (e) show
the query time of each algorithm on five first-type real
datasets. Similar to before, the query time of k-Hit Alg is
small (within 10 seconds in the figures). Besides, in gen-
eral, the query time of each algorithm increases with k. In
Figure 11(c) (for the nba dataset), when k = 60, the hit
probability returned by k-Hit Alg is nearly equal to 1, which
means that nearly all the users (or utility functions) are cov-
ered by the solution set returned by k-Hit Alg. But, the hit
probability returned by SampleClus is equal to 0.543, which
means that nearly half of the users (or utility functions)
are covered by the solution returned by SampleClus. Thus,

k-Hit Alg can cover nearly more than half of the users com-
pared with SampleClus, which is a good result.

Memory Usage: Figures 12(a), (b), (c), (d) and (e) show
the memory usage of each algorithm on five first-type real
datasets. Similar to before, the memory usage of k-Hit Alg

is relatively small compared with its competitor SampleClus.
Besides, the memory usage of each algorithm increases with
k generally.

6.2.2 Second-Type Real Datasets
We first describe the details of the second-type dataset

and the method of obtaining the distribution Θ. Then, we
present the experimental results on this dataset.

In this dataset, there are 12,690 users and 37,813 musi-
cal songs. A user can give a numerical score to each of the
musical songs s/he would like to rate. There are 100,000
user-song pairs for scoring. We construct a 12,690×37,813
matrix M where the entry at the i-th row and at the j-th
column is equal to the score given by the i-th user for the
j-th song if there is a score, and is equal to a missing value
otherwise for each i ∈ [1, 12, 690] and each j ∈ [1, 37, 813].
Then, we adopt a matrix factorization technique [16] to ob-
tain two matrices, namely P and Q, by introducing 6 latent
variables. Matrix P is of order 12,690×6, and matrix Q
is of order 6×37,813. Each latent variable in this results
corresponds to an attribute in our problem setting. In P ,
each row vector denotes a 6-dimensional weight vector of the
utility function for a user. Based on these 12,690 row vec-
tors, we can learn a distribution Θ by using the Multivariate
Gaussian Mixture model with 5 mixture models. In Q, each
column vector denotes a 6-dimensional tuple in our problem
setting. So, all 37,813 vectors form our dataset D.

Figure 13(a), 13(b) and 13(c) shows the hit probability,
the query time and the memory usage based on the Ya-

hoo!Music dataset. We also obtain similar results.

7. CONCLUSION
In this paper, we study a k-hit query, a newly proposed

query, which returns a set of k tuples such that the proba-
bility that one of the k tuples achieves the highest utility is
maximized. We proposed an algorithm called k-hit Alg for
finding these k points efficiently. The experimental results
showed the efficiency and the effectiveness of our algorithm.

There are a lot of future studies. The first one is to study
the top-k queries when both the database and the utility
functions are uncertain. In this paper, we study the case
when the database is certain and the utility functions are un-
certain while most traditional uncertain top-k queries study
the case when the database is uncertain and the utility func-
tions are certain. The second one is to study how to answer a
k-hit query when the database changes and the distribution
on utility functions changes.

Acknowledgement: We are grateful to the anonymous re-
viewers for their constructive comments on this paper. This
research is supported by grant FSGRF13EG27.

8. REFERENCES
[1] P. K. Agarwal and J. Matoušek. Ray shooting and parametric

search. SIAM Journal on Computing, 22(4):794–806, 1993.

[2] A. Blum, J. Jackson, T. Sandholm, and M. Zinkevich.
Preference elicitation and query learning. The Journal of
Machine Learning Research, 5:649–667, 2004.

[3] S. Borzsony, D. Kossmann, and K. Stocker. The skyline
operator. In ICDE, 2001.

[4] R. Burke. Hybrid recommender systems: Survey and
experiments. User modeling and user-adapted interaction,
2002.

[5] U. Chajewska, D. Koller, and R. Parr. Making rational
decisions using adaptive utility elicitation. In Proceedings of
the National Conference on Artificial Intelligence, 2000.

[6] C. Chan, H. Jagadish, K. Tan, A. Tung, and Z. Zhang. Finding
k-dominant skylines in high dimensional space. In SIGMOD,
2006.

[7] L. Chen and P. Pu. Survey of preference elicitation methods.
Rapport technique, 2004.

[8] W. Chu and Z. Ghahramani. Preference learning with gaussian
processes. In Proceedings of the 22nd international conference
on Machine learning, pages 137–144. ACM, 2005.

[9] M. De Berg. Computational Geometry: Algorithms and
Applications. Springer, 2000.

[10] P. Fraternali, D. Martinenghi, and M. Tagliasacchi. Top-k
bounded diversification. In SIGMOD, 2012.

[11] T. Ge, S. Zdonik, and S. Madden. Top-k queries on uncertain
data: on score distribution and typical answers. In SIGMOD,
2009.

[12] M. Goncalves and M. Vidal. Top-k skyline: A unified approach.
In On the Move to Meaningful Internet Systems 2005: OTM
2005 Workshops, pages 790–799. Springer, 2005.

[13] D. Gourion and A. Seeger. Deterministic and stochastic
methods for computing volumetric moduli of convex cones.
Computational & Applied Mathematics, 29(2):215–246, 2010.

[14] Z. He and E. Lo. Answering why-not questions on top-k
queries. In ICDE, 2012.

[15] N. Houlsby, J. M. Hernandez-Lobato, F. Huszar, and
Z. Ghahramani. Collaborative gaussian processes for preference
learning. In Advances in Neural Information Processing
Systems 25, pages 2105–2113, 2012.

[16] S. Lai, Y. Liu, H. Gu, L. Xu, K. Liu, S. Xiang, J. Zhao,
R. Diao, L. Xiang, H. Li, et al. Hybrid recommendation models
for binary user preference prediction problem. Journal of
Machine Learning Research, 2012.

[17] J. Lee, G. You, and S. Hwang. Personalized top-k skyline
queries in high-dimensional space. Information Systems, 2009.

[18] X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. Selecting stars: The
k most representative skyline operator. In ICDE, 2007.

[19] D. Mindolin and J. Chomicki. Discovering relative importance
of skyline attributes. VLDB, 2009.

[20] D. Nanongkai, A. Sarma, A. Lall, R. Lipton, and J. Xu.
Regret-minimizing representative databases. VLDB, 2010.

[21] A. Papadopoulos, A. Lyritsis, A. Nanopoulos, and
Y. Manolopoulos. Domination mining and querying. Data
Warehousing and Knowledge Discovery, pages 145–156, 2007.

[22] P. Peng and R. C.-W. Wong. Geometry approach for k-regret
query. In ICDE, 2014.

[23] P. Peng and R. C.-W. Wong. k-hit query: Top-k query with
probabilistic utility function (technical report). In
http://www.cse.ust.hk/~raywong/paper/kHitQuery-
technicalReport.pdf,
2015.

[24] L. Qin, J. Yu, and L. Chang. Diversifying top-k results. VLDB,
2012.

[25] A. M. Rashid, G. Karypis, and J. Riedl. Learning preferences of
new users in recommender systems: an information theoretic
approach. ACM SIGKDD Explorations Newsletter, 2008.

[26] J. M. Ribando. Measuring solid angles beyond dimension three.
Discrete & Computational Geometry, 36(3):479–487, 2006.

[27] M. Soliman, I. Ilyas, and K. Chen-Chuan Chang. Top-k query
processing in uncertain databases. In ICDE, 2007.

[28] M. A. Soliman and I. F. Ilyas. Ranking with uncertain scores.
In ICDE, 2009.

Algorithm 4 Implementation of Our Detailed Algorithm
k-Hit Alg (for Countable Utility Function Class)

Input: A set of n d-dimensional points D = {p1, p2, ..., pn}, a sam-
pling size N , a positive integer k.

Output: A subset S of D of size k

1: // Step 1 (Standalone HP Estimation)
2: for each weight vector ω in W do

3: we determine which tuple p in D has the greatest value of p ·
ω and then increment variable weight(p), initialized to 0, by
Probω

4: // Step 2 (Output)
5: S ← the set of the k tuples in D with the greatest weight(·)

values
6: return S

[29] Y. Tao, L. Ding, X. Lin, and J. Pei. Distance-based
representative skyline. In ICDE, 2009.

[30] Y. Tao, X. Xiao, and J. Pei. Efficient skyline and top-k
retrieval in subspaces. TKDE, 2007.

[31] Y.-Y. Tsai, C.-M. Wang, C.-H. Chang, and Y.-M. Cheng.
Tunable bounding volumes for monte carlo applications. In
Computational Science and Its Applications-ICCSA. 2006.

[32] A. Vlachou, C. Doulkeridis, K. Nørv̊ag, and M. Vazirgiannis.
On efficient top-k query processing in highly distributed
environments. In SIGMOD, 2008.

[33] R. Whitcher. A monte carlo method to calculate the average
solid angle subtended by a right cylinder to a source that is
circular or rectangular, plane or thick, at any position and
orientation. Radiation protection dosimetry, 2006.

[34] D. Xin, J. Han, H. Cheng, and X. Li. Answering top-k queries
with multi-dimensional selections: The ranking cube approach.
In VLDB, 2006.

[35] M. Yiu and N. Mamoulis. Multi-dimensional top-k dominating
queries. The VLDB Journal, 18(3):695–718, 2009.

[36] F. Zhao, G. Das, K.-L. Tan, and A. K. Tung. Call to order: a
hierarchical browsing approach to eliciting users’ preference. In
SIGMOD, 2010.

APPENDIX

A. DISCUSSION ON COUNTABLE UTIL-
ITY FUNCTION

When a set F of utility functions are countable, we are
given a limited number of utility functions. As we know,
each utility function is associated with a weight vector.
Let W be the set of the weight vectors of all utility func-
tions in F . Each utility function with a weight vector ω
in F is associated with a probability Probω. Note that∑

ω∈W Probω = 1.
Given a tuple p in D, we denote G(p) to be a set of weight

vectors in W such that for each ω in this set, p achieves
the highest utility with respect to the utility function with
the weight vector ω. It is easy to verify that HP (p) =∑

ω∈G(p) Probω. Based on this observation, we present the
pseudo-code of our algorithm on how to handle the case
when the utility functions are countable in Algorithm 4.

B. COMPLEXITY ANALYSIS

B.1 Linear Utility Function Class
Time Complexity: In the context of the linear utility
function class, k-Hit Alg involves three steps. Step 1 is to
construct the convex hull, whose cost is denoted by Tconv,
and to build an index described in Section 4.2.2, whose
cost is denoted by Tindex. Step 2 is to compute the stan-
dalone hit probabilities of all tuples in Surf(Conv(D)),
whose cost is denoted by Tprob. Step 3 is to output the
k tuples with the greatest standalone probabilities, whose

cost is denoted by Toutput. Thus, the time complexity of
k-Hit Alg is equal to O(Tconv + Tindex + Tprob + Toutput).
Consider Tconv for Step 1. The time complexity of build-
ing a convex hull [9] is O(nd/2 log n). Thus, Tconv =

O(nd/2 log n). Consider Tindex for Step 2. The time com-

plexity of building the index [1] is O(|H |⌊d/2⌋(log |H |)O(1)).

Thus, Tindex = |H |⌊d/2⌋(log |H |)O(1). Consider Tprob for
Step 2. In Step 2, there are three sub-steps, Step (a), Step
(b) and Step (c). Step (a) takes O(N) time. Step (b)
takes O(N log |H |) time. Step (c) can be done in O(|H |).
Thus, Tprob = O(N + N log |H | + |H |) = O(N log |H | +
|H |). Consider Toutput for Step 3 which can be done
in O(|H |) time. Thus, the time complexity of k-Hit Alg

is O(nd/2 log n + |H |⌊d/2⌋(log |H |)O(1) + N log |H | + |H | +
|H |). Since |H | = O(n), the time complexity becomes

O(nd/2(log n)O(1) +N log |H |+ |H |).

Space Complexity: k-Hit Alg maintains the follow-
ing components during its execution: (1) all points in
Surf(Conv(p)), whose space cost is denoted by Xconv, (2)
the index described in Section 4.2.2, whose space cost is de-
noted by Xindex, and (3) N sampled vectors, whose space
cost is denoted byXsample. The space complexity is equal to
O(Xconv +Xindex +Xsample). Note that Xconv = O(n) and
Xsample = O(N). The space complexity of the index pro-

posed in [1] (i.e., Xindex) is O(|H |⌊d/2⌋(log |H |)O(1)). In our
experiments, in practice, Xindex is very small and is at most
0.205GB in all experiments. The overall space complexity is
equal to O(n+N + |H |⌊d/2⌋(log |H |)O(1)).

B.2 Non-Linear Utility Function Class
Time Complexity: In the context of the non-linear util-
ity function class, k-Hit Alg involves two steps. Step 1 is
to compute the standalone hit probabilities of all tuples
in D, whose cost is denoted by Tprob. Step 2 is to out-
put the k tuples with the greatest standalone hit proba-
bilities, whose cost is denoted by Toutput. The time com-
plexity of k-Hit Alg is O(Tprob + Toutput). Consider Tprob

for Step 1. Similar to the linear utility function class, in
the context of the non-linear utility function class, Step 1
includes three corresponding sub-steps, Step (a), Step (b)
and Step (c). Step (a) takes O(N) time. Step (b) takes
O(Nn) time. Step (c) of estimating the standalone hit
probabilities of all tuples in D takes O(n) time. Thus,
Tprob = O(N + Nn + n) = O(Nn). Consider Toutput for
Step 2 which can be done in O(n) time. Thus, the time
complexity of k-Hit Alg is O(Nn+ n) = O(Nn).

Space Complexity: The space complexity of k-Hit Alg

maintaining D and N sampled vectors is O(n+N).

C. PROOF OF LEMMAS/THEOREMS
Proof of Lemma 1: We denote the only one utility func-
tion in F by f . Let p be the tuple in D which achieves the
highest utility with respect to f . Let S = {p}. We derive
that the probability that one of the tuples in S is the favorite
of a user is equal to 1, the greatest possible value. Thus, S is
the optimal selection set of a 1-hit query. Note that S is the
selection set of the top-1 query where the utility function
used is f . Thus, the k-hit query becomes the top-k query
where k = 1.

Proof of Lemma 2: Let D′ be the set of candidate tuples
in D which achieves the highest utility with respect to at

least one utility function in F . Note that |D′| = M . We
know that HP (D′) = 1.

Consider two cases. Case 1: k ≥ M . Since |D′| = M ,
we have |D′| ≤ k. Since HP (D′) = 1, for any subset X of
D, HP (D′ ∪ X) = 1. Thus, there exists a set S ⊆ D such
that D′ ⊆ S and HP (S) = 1. Since min{ k

M
, 1} = 1, we

conclude that HP (S) ≥ min{ k
M
, 1}. Case 2: k < M . Thus,

min{ k
M
, 1} = k/M . We want to show thatHP (S) ≥ k

M
. We

prove by contradiction. Suppose that HP (S) < k
M
. Since

the size of the optimal set S is k, there are M − k tuples
which are not in S. Since HP (D′ \ S) + HP (S) = 1 (by
Equation (1)) and HP (S) < k

M
, we derive that HP (D′ \

S) ≥ M−k
M

. Let t1, t2, ..., tk+1 be the k + 1 tuples in D′

such that they have the greatest standalone HP values and
HP (ti) ≥ HP (ti+1) for each i ∈ [1, k]. Since t1, t2, ..., tk
are the k tuples in D′ with the greatest standalone HP
values, by Equation (1), we know that the optimal set S is
equal to {t1, t2, ..., tk}. Note that tk+1 has the greatest HP
value in D′ \ S. Since HP (D′ \ S) ≥ M−k

M
and there are

M − k tuples in D′ \ S, by the pigeonhole’s principle and
Equation (1), we deduce that HP (tk+1) ≥

M−k
M

· 1
M−k

= 1
M
.

Since HP (tk) ≥ HP (tk+1), we have HP (tk) ≥ 1
M
. Since

HP (S) =
∑k

i=1 HP (ti) (by Equation (1)) and HP (ti) ≥
HP (tk) for each i ∈ [1, k], we deduce that HP (S) ≥ k ·
HP (tk) ≥

k
M

which leads to a contradiction.

Proof of Lemma 3: Firstly, we want to show that L′ is
concise with respect to L. That is, we want to show that any
two different utility functions in L′ do not return the same
ranking result on any set D of the d-dimensional points.
Consider any two different utility functions in L′, namely f
and f ′. Let the weight vectors of functions f and f ′ be ω and
ω′, respectively. Note that ω and ω′ are different. Note that
the norm of ω (i.e., ‖ω‖) is equal to 1 and the norm of ω′ (i.e.,
‖ω′‖) is equal to 1. Thus, ‖ω‖ = ‖ω′‖. We construct a set D
containing two d-dimensional points, namely p and q, where
p is set to ω and q is set to ω′. Consider two cases. Case 1:

p is ranked higher than q with respect to the utility function
with the weight vector ω. That is, ω · p > ω · q. We derive
that ω · ω > ω · ω′. Thus, ‖ω‖2 > ω · ω′. Since ‖ω‖ = ‖ω′‖,
we have ‖ω′‖2 > ω ·ω′. Thus, ω′ ·ω′ > ω′ ·ω. We derive that
ω′ · q > ω′ · p. In other words, p is ranked lower than q with
respect to the utility function with the weight vector ω′. In
conclusion, the two different utility functions f and f ′ (with
their weight vectors ω and ω′, respectively) do not return the
same ranking result on a set D. Case 2: p is ranked lower
than q with respect to the utility function with the weight
vector ω. We also obtain a similar conclusion obtained in
Case 1 since the proof is similar. Case 3: p has the same
rank as q with respect to the utility function with the weight
vector ω. Similar to the proof of Case 1, we obtain that
ω′ · ω′ = ω′ · ω. Since ω and ω′ are two d-dimensional non-
negative real vectors, we derive that ω′ = ω, which leads to
a contradiction that ω and ω′ are different. In other words,
Case 3 is not possible.

Secondly, we want to show that L′ is complete with re-
spect to L. That is, we want to show that for each util-
ity function f ∈ L, there exists f ′ ∈ L′ such that f and
f ′ return the same ranking result on any set D of the d-
dimensional points. Consider an arbitrary utility function
f in L. Let ω be the weight vector of f . Let ω′ be a
d-dimensional non-negative real vector such that for each
i ∈ [1, d], ω′

i =
ωi

‖ω‖
. Note that ω′ = ω

‖ω‖
. Consider ‖ω′‖2 =

∑d
i=1(ω

′
i)

2 =
∑d

i=1(
ωi

‖ω‖
)2 =

∑d
i=1

ω2
i

‖ω‖2
= 1

‖ω‖2
·
∑d

i=1 ω
2
i =

1
‖ω‖2

·‖ω‖2 = 1. Thus, we derive that ‖ω′‖ = 1. Let f ′ be the

utility function with the weight vector f ′. Since ‖ω′‖ = 1,
we know that f ′ is in L′. Next, we want to show that f
and f ′ return the same ranking result on any set D of the
d-dimensional points. Let D be a set of n tuples, namely
p1, p2, ..., pn. Without loss of generality, we assume that for
each i ∈ [1, n], pi has the i-th highest utility with respect
to f . In other words, f(p1) ≥ f(p2) ≥ ... ≥ f(pn). We
derive that ω ·p1 ≥ ω ·p2... ≥ ω ·pn. Dividing the expression
by ‖ω‖, we obtain that ω

‖ω‖
· p1 ≥ ω

‖ω‖
· p2... ≥ ω

‖ω‖
· pn.

Since ω′ = ω
‖ω‖

, we have ω′ · p1 ≥ ω′ · p2... ≥ ω′ · pn. Thus,

f ′(p1) ≥ f ′(p2) ≥ ... ≥ f ′(pn). In other words, for each
i ∈ [1, n], pi has the i-th highest utility with respect to f ′.
So, f and f ′ return the same raking result.

Proof of Lemma 4: Firstly, we show that for any point
p′ ∈ D and any (linear) function f ∈ L associated with its
weight vector ω, f(p′) is equal to the length of the projection
of the vector from the origin to point p′ on vector ω. This can
be shown as follows. We denote the vector from the origin

to point p′ by
−→
op′. Let θ be the angle between vector ω and

vector
−→
op′. f(p′) = ω ·p′ = ||ω|| · ||

−→
op′ || cos θ. Since the norm

of the weight vector ω is 1 (by definition) (i.e., ||ω|| = 1), we

have f(p′) = ||
−→
op′|| cos θ. Note that ||

−→
op′|| cos θ is equal to

the length of the projection of vector
−→
op′ on vector ω, which

completes the proof.
Secondly, we show that HP (p) = 0. For any weight vector

ω where its corresponding utility function f is in L, there
exists a point p′ on the surface of Conv(D) such that the
length of the projection of the vector from the origin to point
p′ on vector ω is greater than the length of the projection of
the vector from the origin to point p on vector ω. This means
that f(p′) > f(p). In other words, for any utility function f
in L, there exists a point p′ on the surface of Conv(D) such
that f(p′) > f(p). This implies that HP (p) = 0.

Proof of Lemma 5: Since HP (D) = 1 and S is a subset
of D, we have HP (S) ≤ 1. Next, we want to consider two
cases. Case 1: S is equal to Y . We prove by contradiction.
Suppose thatHP (S) < 1. Since S = Y , S is the set of points
on the surface of the convex hull of D. Since HP (S) < 1 and
HP (D) = 1, by Equation (1), we deduce that there exists a
point p in D\S such that HP (p) > 0. Note that p is a point
in D which is inside Conv(D) but is not on the surface of
Conv(D). By Lemma 4, we know that HP (p) = 0, which
leads to a contradiction. Case 2: S is a proper superset of
Y . From Case 1, we know that HP (Y) = 1. Since Y ⊂ S
and HP (S) ≤ 1, by Equation (1), HP (S) = 1.

Proof of Corollary 1: It is easy to verify that the set of the
points on the surface of Conv(D) is the set of the points (or
tuples) in D which achieve the highest utility with respect
to at least one utility function in F (by Lemma 4). Since M
is the number of the points on the surface of Conv(D) (i.e.,
|Surf(Conv(D))|), according to Lemma 2, we deduce that
HP (S) ≥ min{ k

M
, 1}.

Proof of Lemma 6: Suppose that HitV ector(p) =
{v1, v2, ..., vl}. For each i ∈ [1, l], vector vi from the
origin can be written as a point v′i in the form of
(vi[1], vi[2], ..., vi[d]). Let V ′ = {v′1, v

′
2, ..., v

′
l}. Let X be

the set of all non-boundary faces of Conv(V ′) each of which
contains at least d points in V ′.

Firstly, we show that for each i ∈ [1, l] and each p′ ∈ D,
v′i · p

′ ≤ v′i · p. In the first part of the proof of of Lemma 4,
we know that for any point p′ ∈ D and any (linear) function
f ∈ L associated with its weight vector ω, f(p′)(= ω · p′)
is equal to the length of the projection of the vector from
the origin to point p′ on vector ω. For each i ∈ [1, l], there
exists a face in Face(p) such that vi is perpendicular to the
face. Since p is in Surf(Conv(D)), due to the convex hull
property, we deduce that for each i ∈ [1, l] and each point
p′ ∈ D, the length of the projection of the vector from the
origin to point p′ on vector vi is at most the length of the
projection of the vector from the origin to point p on vector
vi. In other words, vi · p

′ ≤ vi · p. That is, v
′
i · p

′ ≤ v′i · p.
Secondly, we show that for any unit vector u from the

origin, there exists at least a face X in X such that u inter-
sects with X if and only if for each p′ ∈ D, u · p ≥ u · p′.
Consider the “only if” part. Consider any unit vector u
from the origin. Let X be the face in X such that u inter-
sects with X. Without loss of generality, we assume that
face X contains the first d points in V ′, i.e., v′1, v

′
2, ..., v

′
d.

Since u intersects with X, there exists an intersection point
u′ between u and face X. By the convex combination,
we know that there exist d non-negative real numbers,
namely a1, a2, ..., ad, such that u′ =

∑d
i=1 ai · v

′
i. Consider

u′ · p = (
∑d

i=1 ai · v
′
i) · p = [

∑d
i=1 ai · (v

′
i · p)]. Since for

each p′ ∈ D, v′i · p ≥ v′i · p
′, we derive that for each p′ ∈ D,

u′ · p ≥ [
∑d

i=1 ai · (v
′
i · p

′)] = (
∑d

i=1 ai · v
′
i) · p

′ = u′ · p′. Thus,
we conclude that for each p′ ∈ D, u′ · p ≥ u′ · p′. Since the
vector from the origin to point u′ has the same direction of
vector u, there exists a non-negative real number h such that
||u′|| = h · ||u||. We derive that for each p′ ∈ D, u · p ≥ u · p′.

Consider the “if” part. We can use the same technique
used in the “only if” part for this part. We do not show the
proof since it is straightforward.

Thirdly, we show that HP (p) = 2d · SA(HitV ector(p)).
Let P be the partition containing all possible d-dimensional
points in the d-dimensional space such that each point of
these points has a non-negative real value for any dimen-
sion. Let W be a set of all possible weight vectors of util-
ity functions in L. Note that each vector in W has its
norm/length equal to 1. We can regard that each point
in P on the surface of Bd is a weight vector in W. Let
C = Cone(HitV ector(p)).

Let L′′ be the set of utility functions such that p achieves
the highest utility with respect to each of these utility func-
tions. Let W ′′ be the set of all weight vectors of utility func-
tions in L′′. Since the distribution on the utility functions is

uniform, we have HP (p) = |L′′|
|L|

. Since L and W have a one-

to-one correspondence relationship, we have HP (p) = |W′′|
|W|

.

Note that in the second part of the proof, we know that
for any unit vector u ∈ W from the origin, there exists a face
X in X such that u intersects with X if and only if for each
p′ ∈ D, u · p ≥ u · p′. In other words, for any unit vector
u ∈ W from the origin, there exists a face X in X such
that u intersects with X if and only if p achieves the highest
utility with respect to the utility function with its weight
vector equal to u. We derive that W ′′ is the set of all weight
vectors intersecting with at least a face in X . Since (1) X is
the set of all non-boundary faces of Conv(V ′) each of which
contains at least d points in V ′, (2) V ′ = HitV ector(p) and
(3) W ′′ is the set of all weight vectors intersecting with at
least a face in X , we derive that all unit vectors in W ′′

form the region denoted by the intersection between C(=

Cone(HitV ector(p))) and the surface of Bd. Thus, |W′′|
|W|

is

equal to the ratio of the area of the intersection between C
and the surface of Bd to the area of the surface of Bd in P .
Note that the ratio of the area of the intersection between
C and the surface of Bd to the area of the surface of Bd

in P is equal to the ratio of the volume of C in P to the
volume of Bd in P . Since the volume of C in P is equal to
V old(Cone(HitV ectors(p)) ∩Bd) and the volume of Bd in

P is (1
2
)dV old(Bd), we derive that HP (p) = V old(C)∩Bd)

(1
2
)dV old(Bd)

.

Since C = Cone(HitV ector(p)), we have

HP (p) =
V old(Cone(HitV ector(p))) ∩Bd)

(1
2
)dV old(Bd)

(2)

Since SA(HitV ector(p)) is equal to the vol-
ume of Conv(HitV ector(p)) and the vol-
ume of Conv(HitV ector(p)) is equal to
V old(Cone(HitV ectors(p))∩Bd)

V old(Bd)
, we have SA(HitV ector(p)) =

V old(Cone(HitV ectors(p))∩Bd)
V old(Bd)

. From (2), we derive that

HP (p) = 2d · SA(HitV ector(p)).

Proof of Lemma 7: Firstly, we show that HP (S) = 1.
Let Y = Surf(Conv(D)). Since S is a superset of the set
of all points on the surface of the convex hull of D (i.e.,
Surf(Conv(D))), by Lemma 5, HP (S) = 1.

Secondly, we show that So ⊆ S. We prove by contra-
diction. Suppose that there exists a point p ∈ So such
that p ∈ D \ S. Since p ∈ D \ S, p is not a skyline
tuple. Thus, there exists a tuple q in D such that p is
dominated by a tuple q. This means that no user chooses
p (since q is better than p). Thus, HP (p) = 0. Be-
sides, since p is a non-skyline point, we know that p is
not in Surf(Conv(D)). Since k ≥ |Surf(Conv(D))| and
So contains p which is not in Surf(Conv(D)), we deduce
that there exists a point q′ ∈ Surf(Conv(D)) such that
q′ 6∈ So. Since q′ ∈ Surf(Conv(D)), HitV ector(q) con-
tains at least d distinct vectors. Thus, Cone(HitV ector(q))
is non-empty and thus SA(HitV ector(p)) > 0. Thus, by
Lemma 6, HP (q′) > 0. Let S′ = So \ {p} ∪ {q′}. Note
that |S′| = k. By Equation (1), we know that HP (S′) =
HP (So \ {p} ∪ {q′}) = HP (So \ {p}) + HP (q′). Since
HP (p) = 0, we have HP (S′) = HP (So) + HP (q′). Since
HP (q′) > 0, we have HP (S′) > HP (So), which leads to a
contradiction that So is the optimal selection set (with the
greatest HP value).

Proof of Lemma 8: According to [22], the solution of
a k-regret query can be a set which includes no points in
Surf(Conv(D)). According to Equation (1) and Lemma 4,
HP (S) =

∑
p∈S HP (p), which is equal to 0.

We give a concrete counter example as follows. Let D =
{p1, p2, p3, p4, p5}, where p1 = (0, 1), p2 = (0.7, 0.81), p3 =
(0.8, 0.8), p4 = (0.81, 0.7) and p5 = (1, 0). A 2-hit query
returns the point p1 and p3 (note that HP (p1) = HP (p5)
in our example). An optimal solution of a 2-regret query in
terms of D is {p2, p4}. The points on the surface of Conv(D)
are p1, p3, p5 (i.e., Surf(Conv(D)) = {p1, p3, p5}). Note
that both p2 and p4 are not the extreme points of Conv(D),
which implies that HP (p2) = 0 and HP (p4) = 0. Therefore,
we know that HP ({p2, p4}) = 0.

Proof of Lemma 9: Since the solution of a k-
representative skyline query can be a set which includes no

points in Surf(Conv(D)), according to Equation (1) and
Lemma 4, HP (S) =

∑
p∈S HP (p), which is equal to 0.

We give a concrete counter example as follows. Let
D = {p1, p2, p3, p4, p5}, where p1 = (0, 1), p2 = (0.5, 0.9),
p3 = (0.8, 0.8), p4 = (0.9, 0.5) and p5 = (1, 0). It is obvi-
ous that the set of skylines S = D in our example. A 2-hit
query returns the point p1 and p3 (note that HP (p1) =
HP (p5) in our example). Let K be the optimal solution
of a 2-representative query. Then, we have K = {p2, p4}.
The points on the surface of Conv(D) are p1, p3, p5 (i.e.,
Surf(Conv(D)) = {p1, p3, p5}). Note that both p2 and p4
are not the extreme points of Conv(D), which implies that
HP (p2) = 0 and HP (p4) = 0. Therefore, we know that
HP (K) = 0.

Proof of Lemma 10: According to the definition of
HP (p), HP (p) =

∫
f∈F (p)

η(f)df . Note that η(f) is the

probability density function of distribution Θ.
Firstly, we want to use the claim of the first part of the

proof of Lemma 6 to show that if a sampled vector v in V is
inside the cone of p, then p achieves the highest utility with
respect to the utility function with v. In this part, we adopt
the notations from the proof of Lemma 6. From this proof,
we know that for each i ∈ [1, l] and each p′ ∈ D, v′i ·p

′ ≤ v′i ·p.
Since a sampled vector v in V is inside the cone of p, v is a
convex combination of V ′ and thus v =

∑l
i=1 Ai × v′i where

Ai ≥ 0 for each i ∈ [1, l]. For each p′ ∈ D, we derive that

v · p′ =
∑l

i=1 Ai × (v′i · p
′) ≤

∑l
i=1 Ai × (v′i · p) ≤ v · p, which

implies that p achieves the highest utility with respect to
the utility function with the weight vector v.

Secondly, we show the main result of our lemma based on
the first part. V (p) denotes the set of all sampled vectors in
V such that p achieves the highest utility with respect to the
utility function with the weight vector equal to each of these
sampled vectors. When N approaches ∞, F (p) is equal to
the set of all utility functions with the weight vectors equal
to each of V (p). Thus, F (p) and V (p) have a one-to-one

correspondence relationship. Thus, HP (p) = |V (p)|
N

. By

Lemma 6, the hitting solid angle for p is |V (p)|
N

· 1
2d

.

Proof Sketch of Theorem 3: For the sake of space, we
omit the details of the proof. The major idea is to use Cher-
noff’s bound to link the three parameters, δ, ǫ and N . The
complete proof can be found in [23].

Proof of Lemma 11: To prove this lemma, it is equiva-
lent to showing that there exists a tuple p in D but not in
Surf(Conv(D)) such that p achieves the highest utility with
respect to a non-linear utility function. We give a concrete
counter example as follows. Let D = {p1, p2, p3}, where
p1 = (0.25, 1), p2 = (1, 0.25) and p3 = (0.1, 0.1). We know
that Surf(Conv(D)) = {p1, p2}. Note that p3 is a tuple in
D but not in Surf(Conv(D)). We construct a function f
such that f(p1) = 0, f(p2) = 0 and f(p3) = 1. Note that f is
non-linear. Consider a function class F = {f} and a distri-
bution Θ on F where η(f) = 1. We know that HP (p3) 6= 0
and the optimal solution of a 1-hit query contains p.

Proof of Lemma 12: The proof is similar to the proof of
Lemma 10 which is based on any distribution Θ by replacing
the first part of the proof with the following observation: If
a sampled vector v in V has the greatest value of p · v,
then p achieves the highest utility with respect to the utility
function with the weight vector v.

