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ABSTRACT

Due to the advance of the geo-spatial positioning and the- com
puter graphics technology, digital terrain data becomeenzord
more popular nowadays. Query processing on terrain data has
attracted considerable attention from both the academitnuo
nity and the industry community. One fundamental and ingoart
query is the shortest distance query and many other applisat
such as proximity queries (including nearest neighborigaend
range queries), 3D object feature vector construction &ndtgect
data mining are built based on the result of the shortesanlist
query. In this paper, we study the shortest distance queighwh
is to find the shortest distance between a point-of-intexrdtan-
other point-of-interest on the surface of the terrain due tariety

of applications. As observed by existing studies, computhre
exact shortest distance is very expensive. Some existirtjest
proposed-approximate distance oracles wheris a non-negative
real number and is an error parameter. However, the bestrkab
gorithm has a large oracle construction time, a large osizéeand

a large distance query time. Motivated by this, we proposeveln
e-approximate distance oracle called tBeace Hficient distance
oracle (SEwhich has a small oracle construction time, a small or-
acle size and a small distance query time due to its compextne
storing concise information about pairwise distances betwany
two points-of-interest. Our experimental results show tha or-
acle construction time, the oracle size and the distanceydime

of SEare up to two orders of magnitude, up to 3 orders of mag-
nitude and up to 5 orders of magnitude faster than the bestikn
algorithm.

1. INTRODUCTION

With the advance of geo-spatial positioning and computaplg
ics technology, digital terrain data has become incredspapular
nowadays, and it has been used in many applications such-as Mi
crosoft’s Bing Maps and Google Earth in the industry comrtyuni
The terrain data has also attracted considerable attefiionthe
academic community [9, 11, 30, 35, 25, 36, 21, 20].

Terrain data is usually represented by a séaoéseach of which
corresponds to a triangle. Each face (or triangle) has tlimee
segments calleddgesconnected with each other at threertices
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Figure 1: An Example of Digital Terrain Surface and Geodesic
Shortest Path

An example of a piece of terrain data is shown in Figure 1, @her
we have 24 faces, 40 edges and 17 vertices.

The geodesic distancbetween two given locations (or points)
on the surface of the terrain is the length of #hertestpath/route
from one point to the other on the surface. For example, in Fig
ure 1,s andt are two POls on the terrain surface and the short-
est path from poing to pointt is shown and is denoted Wy P,
which corresponds to a sequence of line segments on thedéces
the terrain. Note that the geodesic distance is usuallegliffer-
ent from the Euclidean distance, and according to [9], thie cf
the geodesic shortest distance and the Euclidean distangetd
300%. In Figure 1, the Euclidean distance betwe@amdt is the
length of the line segmerit P.

1.1 Application

In many applications, a set of points-of-interest (POIQii&n
on the surface of the terrain, and it is required to compuée th
geodesic distances between pairs of POIs. Some examples are
troduced as follows.

(1) Geographic Information System (GIS).In GIS, it is important

to compute the geodesic distance between two POls. For égamp
hikers need the geodesic distance to measure the travelbgme
tween a source and a destination which are landmarks (whéh a
POIs) in practice [29]. Besides, the vehicles (e.g., Goddé
camera car and military vehicles) estimate the geodesiardie to
measure the travel cost [24, 33]. In life sciences, scientisnduct
distance queries on residential locations (which are P&fishe
animals in the wildness to study their migration patterr P6].

(2) Computer Graphics and Vision. In computer graphics and
vision [23, 31], measuring similarities between two diffier 3D
objects is very important. In order to measure similaribesveen
objects, a number of reference points (which are POIs) [2Ba&
selected on the surface of each object. These references jpéy
an important role in similarity measurement since they avari-



ant to transformations such as rotation and translatiorr. etioh
object, geodesic distances between all pairs of referevicgspare
computed and are stored as a feature vector for similarigsome-
ment. In this application, multiple geodesic distance cotatons
are involved.

(3) Scientific Data 3D Modeling.There is a need to model scien-
tific data in 3D models in areas like biology, chemistry, aofol-
ogy and archeology [1, 18]. In neuroimaging, similar to coiep
graphics and vision, a 3D model of an organ is associated avith
set of reference points [1, 18] (which are POIs) and theszeate
points correspond to functional units on the organ and tiemtsts
use the geodesic distance between reference points tozaertaly
mor development with magnetic resonance imaging (MRI) iesag
In neuroscience, scientists conducted spatial queries3@hlaain
model to study the neuron density and the number of branches i
a region of the brain [32]. Similarly, multiple geodesic tdisce
computations are involved in this application.

(4) Online 3D Virtual Game. In some online 3D virtual games
like INGRESS, a city (e.g., San Francisco in game INGRESS) ha
a terrain surface which consists of a numbepoftals (which are
POIs). For each portal, it is important to calculate the gsax
distance from this portal to each of the other portals so tihat
influence of this portal is estimated. Here, multiple conagiohs

for geodesic distances are involved.

(5) Spatial Data Mining. There are many data mining techniques
used in the spatial databases. For example, in the clugterah-
nique, the inner-cluster distance and the inter-cluststadce are
needed. In the co-location pattern mining, shortest distaperies,
are also used frequently. In a city, buildings and parks @R®Is
and in the wildness, radio-telemetry receivers set up fdleco
ing animal movement data could be POls. In the context ofalpat
data mining, the number of geodesic distance computatgovesry
large.

1.2 Motivation

Consider a terraii” with N vertices. LetP be a set ofz POls
on the surface of the terrain.

Due to a variety of applications in different domains as désd
in Section 1.1, computing geodesic distances [27, 7, 34225,
20, 2, 3, 13] is very important and is very fundamental to pthe
proximity queries such as nearest neighbor queries [108@,135,

21, 20], range queries [21, 20] and reverse nearest neighisoies
[36, 21].

Motivated by this, we aim to study three kinds of queries, egm
vertex-to-vertex (V2V) distance querid3Ol-to-POI (P2P) dis-
tance queriesindarbitrary point-to-arbitrary point (A2A) distance
queries Consider the first two types of queries. Each V2V distance
query returns the geodesic distance between a startingaimd a
destination point, where boths andt are vertices (fromV’). Each
P2P distance query returns the geodesic distance betwigsrtilags
point s and a destination poirt where boths andt are POIs (from
P). Since P2P distance queries, considering both the coméept
vertices and the concept of POIs, is more general than V2V dis
tance queries, considering only the concept of verticelsauit the
concept of POIs, P2P distance queries could be regardeceagr g
alization of V2V distance queries. Specifically, under thelylem
setting for P2P distance queries, if for each vertex in thoblem
setting for V2V distance queries, we create a POl which has th
same coordinate values as this vertex, then the P2P disjarces
will become the V2V distance queries. Thus, for clarityhirstpa-
per, we focus on P2P distance queries. Consider the thieddf/p
queries. Each A2A distance query returns the geodesiadistae-
tween a starting point and a destination poirt where boths and

t are two arbitrary points on the surface of the terrain. Si2A
distance queries allow all possible points on the surfadbefer-
rain, A2A distance queries generalize both P2P and V2V niigta
queries. For the ease of illustration, in the main body of f@per,
we first study P2P distance queries. Later, in Appendix C,tuys
A2A distance queries.

Our natural goal of answering each P2P distance query is to re
turn the corresponding distance in a short time. Howevereras
the existing studies [27, 7, 34, 25, 21, 20, 2, 3, 13] couldeaxeh
this goal satisfactorily.

Firstly, all existing algorithms [27, 7, 34] computing exac
geodesic distances on-the-fly are still slow even in the maide
sized terrain data. The time complexities of the algoritHiors
computing exact geodesic distances proposed by [27, 7,a84],
O(N?log N), O(N?), O(Nlog? N) andO(N?1log N), respec-
tively, which is still very large wheV is large. In the literature [30,
35, 21, 20], the algorithm proposed in [7] is recognized asmes
of-the-art fastest algorithm. Many existing papers [30, &5 20]
adopt this for finding the geodesic distance. According @j,[the
algorithm proposed in [7] took more than 300 seconds on aiterr
with 200K vertices, which is very slow.

Secondly, although some existing algorithms [25, 21, 20jewe
proposed to compupproximategeodesic distances on-the-fly for
reducing the computation time, all of these algorithms &Henst
efficient enough for proximity queries and applicationsoiring
many distance queries. The algorithm in [25] computes tipeap
imate geodesic distance/path satisfyirgjape conditionthe algo-
rithm in [21] computes the lower and upper bounds of the geiade
distances between two points, and it provides no guarantedse
qualities of the bounds found, and the algorithm in [20],etts an
improved version of thatin [21], runs B((N+N’) log(N+N"))
time whereN’ is the number of additional vertices introduced for
the sake of the guarantee on the qualities of the lower andrupp
bounds found.

1.3 Distance Oracle

Motivated by these, to efficiently process the geodesiadist
queries, especially for those cases where queries for miffiey-d
ent pairs of points are issued, some existing studies [23Baiin
at designing geodesic distance (and/or the correspondiogest
path) oracles. To the best of our knowledge, all existindistifo-
cused on building oracles for returning approximate geioddis-
tances only but no existing studies focused on buildinglesaior
returning exact geodesic distances (which could be exgdaby
the high computation cost of computing the exact geodesie di
tances). All of these studies [2, 3, 13] are basedaoriliary
point-based oraclesSpecifically, they first introduce a large num-
ber of auxiliary points (edges), nameSBteiner points (edgespn
the surface of the terrain where each Steiner edge conngats t
Steiner points. Then, they construct a gragh whose vertices
(edges) are either original vertices (edges) or the Stegioerts
(edges). The exact distance between any two verticesfpoimt
G. is ane-approximate geodesic distance between these two ver-
tices/points. The-approximate geodesic distance oracles proposed
in [2, 3, 13] indexes the exact distances@n Among these stud-
ies, the oracle in [13] is the best, where the space complexit
the oracle (called theracle sizg is O(sm(e% log®(£)log? 1)
where 6 is the minimum inner angle of any face of the terrain

surface. It can answer-approximate P2P distance queries in
O(m log  + log log N) time.

Unfortunately, these auxiliary point-based oracles hawve t
drawbacks. The first drawback is that each of these oracles ha
a large oracle building time and a large oracle size. Thietahse



a large number of Steiner points (edges) are introduceahgltine
oracle construction and the number of Steiner points coelséy-
eral orders of magnitude larger than the number of verticethe
surface of the terrain. Thus, each of these oracles has agpoor
pirical performance in terms of both the oracle buildingeiand
the oracle size. The second drawback is that each of theskesra
is constructed based on te&uctureof the terrain without consid-
ering the information about POIs. In other words, it is canstied
based on the set of vertices regardless of the set of POlsex~or
ample, consider the case where there are only two POIs, a naiv
oracle storing the geodesic distance for one pair (of PQis)jpies
aO(1) space only but the oracle in [13] could introduce millions of
Steiner points, resulting in a large oracle size and a laujelibg
time.

Motivated by the drawbacks of the existing methods, we pro-
pose a distance oracle called tBgace-Hficient Distance Oracle
(SE) such that for any point and any point in P, the oracle re-
turns anc-approximationof the geodesic distance betweeandt
efficiently, wherec is a non-negative real user parameter, called the
error parameter Our SEhas three good features: (1) low construc-
tion time, (2) small size and (3) low query time (comparechwiite
best-known oracle [13]). This is becauS€& is space-efficienin
the sense that its size is linear#d(i.e., no of POIs). Due to this
space-efficient property, it is much easier for us to desigeféi-
cient algorithm for constructing thBE and an efficient algorithm
for answering distance queries.

1.4 Contribution & Organization

We summarize our major contributions as follows. Firstlg w
propose a novel distance oracle cal& which can be computed
efficiently, has small size and can answeapproximate geodesic
distance queries efficiently. Secondly, dBE answers not only
P2P distance queries but also V2V distance queries. Thiially
V2V distance queries, our experimental results show tteabtlild-
ing time, oracle size and query time 8Eare, respectively, 5-100
times, 10-100 times and more than 1000 times smaller thasetho
of the best-known distance oracle [13] on benchmark realsdas.

In P2P distance queries, the building time, oracle size amtyg
time of SEare 10-100 times, 10-1000 times and 100-10000 times
smaller than those of the best-known distance oracle [1BEmich-
mark real datasets, respectively.

The remainder of the paper is organized as follows. Section 2
provides the problem definition. Section 3 presents ouadcst or-
acle, namel\SE Section 4 reviews the related work and introduces
some baseline methods. Section 5 presents the experimesuiés
and Section 6 concludes the paper.

2. PROBLEM DEFINITION

Consider a terrairf’. Let V be the set of all vertices on the
surface of the terraiff’, and E be the set of all edges on the surface
of the terrainT. Let N be the size ofl" (i.e., N = |V/|). Each
vertexv € V has three coordinate values, denotedrhyy, and
Zu.

Let P be a set of POls on the surface of the terfBiandn be the
size of P (i.e.,n = |PJ). In the following discussion, we focus on
the case when < N. Thisis because in real-life applicatioms <

be regarded as one POl in practice, and we can merge any two co-
located POls into one POI by a simple preprocessing step.

Given two points,s and ¢, on the surface of, the geodesic
shortest pathbetweens and¢, denoted by, (s, t), is defined to
be the shortest path between the two points on the surfa@eé of
Note that the geodesic shortest path corresponds to a seExjoén
line segments on the surface of the terrain. Consider thegbea
in Figure 1 where the geodesic shortest path between twaspoin
andt is denoted byG P. Given two pointss andt, on the surface
of T', thegeodesic distancbetweens andt, denoted byd, (s, t),
is defined to be the length of the geodesic shortest path batwe
the two points, i.e.Il,(s, t), where the length of a path is defined
to be the sum of the lengths of all line segments of the patle Th
geodesic distancé, (-, -) is a metric, and therefore it satisfies the
triangle inequality.

Note that a full materialization of geodesic distances fopa@s-
sible pairs of points inP is not feasible since the complexity of
the oracle size and the complexity of the oracle buildingetiame
O(n?) and O(nN log® N), respectively, which are prohibitively
large.

3. DISTANCE ORACLE

We first present the overview of our distance oracle ceiEth
Section 3.1. Then, we present the first componei@Btalled the
compressed partition treen Section 3.2, the second component
of SE called thenode pair setin Section 3.3, the query processing
algorithm based o8Ein Section 3.4, the construction algorithm of
SEin Section 3.5, and some theoretical resultSBfn Section 3.6.

3.1 Overview

Before giving an overview, we first give the concept of a
disk Given a pointp € P and a non-negative real number
r, a disk centered atp with radius equal tor on the terrain
surface, denoted by (p,r), is defined to be a set of all pos-
sible points on the terrain surface whose geodesic shadtest
tance top is at mostr. That is, D(p,r) = {p'|d,(p’,p) <
r andp’ is an arbitrary point on the terrain surfgce

With this concept, we are ready to describe our distancderac
SEwhich includes two major components, namely toenpressed
partition treeand thenode pair set

The first component is the compressed partition tree in which
each node corresponds to a disk containing a set of POls.eln th
leaf level of the tree, there arenodes each of which corresponds
to a disk containing only one POI. Each node in this level has t
smallest radius (since each node contains only one POlhdn t
level just above the leaf level of the tree, there are fewdes@ach
of which corresponds to a disk containing one or more POlshEa
node in this level has a larger radius (since each node crsntaie
or more POIs). Similarly, each node in a higher level has gelar
radius. At the root level of the tree, the (root) node has éngdst
radius since it contains all POls. Note that for different levels,
the tree has different number of nodes (with different ragdiu

The second component is the node pair set which is a set of the
pairs of nodes from the compressed partition tree. In thienmir
set, each node pair in the form ¢, O’) is associated with the
distancebetween the centers of the corresponding disk® @ind

N. For example, in the BearHead dataset, one benchmark tataseO’ whereO andO’ are two nodes in the compressed partition tree.

used in the literature; = 4k and N = 1.4M. In the EaglePeak
dataset, the other benchmark dataset= 4k and N = 1.5M.
The discussion about how we handle the case whenN can be
found in Appendix D. Each PQ} € P also has three coordinate
values, denoted by, y, andz,. In this paper, we assume that
P contains no duplicate points since any two co-located Péxs c

Besides, the node pair set satisfies one interesting pyopelted
the unique node pair match propertyhich is the key to the query
efficiency of ourSE The unique node pair match property states
that for any two points, namely andg, in P, there existexactly
onenode pair{O, O") in the node pair set such théx containsp
andO’ containsg.



Consider a distance query with a source peidt P and a des- we deduce that for each nodgin the partition tree, all points in
tination pointt € P. Let h be the height of the tree. In all of  RS(O) (which are points irP) are in the enlarged disk of nod2
our experimental results on benchmark real terrain datasds
smaller than 30. We could answer this distance quefy(ih) time
usingSE The major idea is to find a node pdi®, O’) in the node
pair setefficientlysuch thatD containss andO’ containsgt, and re-
turn the distance associated with this node pair. Intergistieven
though the distance returned is associated to this nodgitpaitl
be shown later that the distance returned is-@pproximation of
the geodesic distance betweeandt.

The major challenge here is how to des@fawhich achieves the
space-efficienproperty (mentioned in Section 1). We will describe
the details of how we address this challenge.

EXAMPLE 1 (PARTITION TREE). Consider the points on a
terrain surface as shown in Figure 2. There are 12 points
P1,DP2, P35 ceenen , P12 in P.

Figure 3 shows three small disks, naméNp1,r3), D(p2, r3)
and D(ps,r3), one medium-small disk, namelip(p2,72), one
medium-large disk, namelip(p2, r1), and one large disk, namely
D(pz,r0), whererg, 71, 72 andrs are four non-negative real num-
bers. Note that is the radius of the large disk; is the radius of
the medium-large disk;: is the radius of the medium-small disk
andrs is the radius of one of the small disks. We also show all
disks to be used in this example in Figure 4.

3.2 Oracle Component 1: Compressed Parti- There are 21 disks in the figure, each of which centers at d.poin
i For example, the dislO(p7, ro) is a disk with its center equal to
tion Tree : .
p7 and its radius equal tay = dy(p7, p11).

Figure 5 shows a partition tree of height equal to 3 which is
built based on the 12 points shown in Figure 2. In this figuaghe
black dot corresponds to a node in the tree. By definition,texy
nodes in the same layer have the same radii. In Layer O, there i
only one nodeD; (i.e., the root node) with its radius equal to
dg(p7,p11). In Layer 1, there are three nodes, naméls, O19
and 04, each with its radiug; equal t00.57¢. In Layer 2, there
are 5 nodes, namel9;3, 014, O15, O16 andO17 each with its ra-
dius 2 equal to0.257¢. In Layer 3, there are 12 nodes (i.e., leaf
nodes), namely);, O., ..., O12, each with its radiugs equal to
0.1257¢. In the figure, we list the center of each node below the
label of the node. For example, there is a lghebelow the label
013, which means that the center©f;s is p-.

Consider the leaf nod®; with its center equal tp; and its
radius equal tes. Itis easy to see that digR(p1, r3) contains only
o ) - one point inP (i.e., p1) as shown in Figure 3. The representative
sef denoted by25(0), which is defined to be a set contain- gt of this node is a set containing only the center of thir{oé.,
ing the centers of all the leaf nodes in the subtree rooted at p1). This holds as well for each of the other leaf nodes (e.gleno

. 0. , . . Oz and nodeDs).
Given two nodes, namely and ', the (geodesic) distance Consider the internal nod®@,s with its center equal t, and

betweenO and O', denoted byd,(0,0"), is defined to be i radius equal tao. The center of each child of node:s (i.e.,
dg(co; cor)- ) . . nodeO;, nodeO» and nodeDs) is in disk D(p2, r2) as shown in

Let i be the height of the partition tree. The partition tree has Figure 3. Besides, the radius of each child of ndig is equal
h +1layers, namely Layer O, Layer 1, ..., LayerLayer Oisthe 4,79 5. ., (since the radius of each child is equalotd25ro and
layer containing the root node only. For each [L, h], Layeri is ro = 0.25r¢). The representative set of this node is a set containing
the layer containing all child nodes of each node in Layer 1). 4 centers of all the leaf nodes in the subtree rocat(i.e., the
Finally, Layerh is the layer containing all leaf nodes. If anode is . ontar of node); (which ispy), the center of nod€. (which is

in Layeri wherei < [0, h], we also say that the depth of thisnode s 3 the center of nod@s (which isps)). This holds as well for
is i. Note that all nodes in the same layer have the same radii. Theeach of the other internal nodes.

radius of Layeri, denoted by-;, is defined to be the radius of one It is easy to verify that the partition tree shown in this figur
of the nodes in Layet. For anyi, j € [0, h], we say that Layer is

In this section, we first present a hierarchical structutkedaa
partition treeto index all POIls inP, which is used for construct-
ing the first component (i.e., the compressed partition) wéeur
distance oraclSE

A partition treeis defined to be a tree with the following compo-
nents.

e Each node in the tree has two attributes, namelydenter
denoted by, and itsradius denoted by-o, whereco is a
point in P andro is a non-negative real number.

e For each leaf nod®, D(co,ro) contains only one point in
P (which isco) (and thus contains no objectsihother than
co). Note that there are leaf nodes.

e For each internal nod®, the center of each child of node
Oisin D(co,ro) and the radius of each child of nodeis
equal to0.5 - ro.

e Each node) in the tree is associated with itspresentative

satisfies the three properties described above.
higherthan Layer; (or Layer; is lower than Layer) if and only prop U
if i <. ) ) ) - Next, we present our top-down method for building the partit
Next, we give the three properties of this partition treegcht- tree.

isfied. We will describe how to construct a partition treesging

X e Step 1 (Root Node Construction):We create the root node as
these three properties later.

follows.
e Separation Property: For eachi € [0, 1], the radius of each — Step (a) (Initialization): We assign a variablg denoting
node in Layeri is 52 and the inter-cluster distance between the layer number, with O.
any two nodes in this layer is at leagt. — Step (b) (Point Selection)We randomly select a poiptin
e Covering Property: For each layer whereX denotes a P.
set of all nodes in this layer, the region represented by — Step (c) (Radius Computation): We perform a single-
Uoex D(co,ro) covers all points inP. source all-destination (SSAD) exact shortest path algo-
e Distance Property: For each nod® in the tree, ifO’ is one rithm [34, 7, 27] which takep as an input of the source
of the descendant nodes ©f thend,(co,cor) is at most point and executes until the search region of the algo-
270, i.e.,cor isinthe diskD(co,2 - 70). rithm covers all points inP. When we terminate the
Given a nodeD in the partition tree, thenlarged diskof node algorithm, we obtain the maximum distané®etween

O is defined to beD(co,2 - ro). From the Distance Property, p and a point inP.
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Figure 5: An Example of Partition Tree o
tition Tree
— Step (d) (Node Construction): We create a root nod®
where its center is set tp and its radius is set td.
Note that in this layen;, = d.
e Step 2 (Non-Root Node Construction)We perform the follow-
ing operations.
— Step (a) (Initialization): We increment variabléby 1. We
assign a variabl#’, denoting a set of remaining points
in P to be “covered” by a node in Layéywith P.
— Step (b) (Iterative Step): We perform the following itera-
tive steps.

x Step(i) (Point Selection):Let C be a set containing the
centers of all nodes in Layér— 1 and letP: be
the set of remaining points iR’ each of which is
one of the centers of all nodes in Layier 1 (i.e.,

Pc = P’ N C). We randomly select a poiptfrom

P if Pc # (0, and select a point from P’ based

on a point selection strategy (to be described later)
otherwise.

« Step (i) (Point Covering): We find a setS of all points
in P’ that are inD(p, 52) by performing a single-
source all-destination (SSAD) exact shortest path
algorithm which take$ as an input of the source
point and executes the algorithm until the distance
between the boundary of the search region and
is greater tharg?. We remove all points it$' from
P

« Step (iii) (Node Creation): We create a nod® where
its center is settp and its radius is set tg. Then,
we find the node),en in Layer (i — 1) whose
distance taD is the minimum. We set the parent
of O 10 Oparent.

x Step (iv) (Additional Node Creation): We repeat the
above steps (i.e., Steps (i)-(iii)) unfit’ is empty.

— Step (c) (Next Layer Processing):We repeat the above

D(Rz:rl)
D§€3,r3) 7'2:0.51"1

01 02 030405 O(, 07 03 09 OIOOII 0]2
pl p2p3p4p5p6 p7 p8 p9p]0p1]p12
Figure 6: An Example of Compressed Par-

r,=0.5r,

r,=0.5r
S

(0) _
2 1,=6 Layer 0: 0, =6 A, A,
20 V1_0.5V0 Layer 1: }"110.5}"0 021 7 021
r=025r,  Layer2{0, 0,1r=025r, i~
013"7 016
Fm() e\ y
: Layer 3: =0 0, <= 0,

0,0) 0.(0)
Figure 7: An Example of Distance
Query Processing

steps (i.e., Step (a) and Step (b)) until the number of
nodes in Layei is equal ton.

LEmMMA 1. The partition tree generated by the above procedure
satisfies the Separation, Covering and Distance Properties

PROOF. For the sake of space, all the proofs in the paper can be
found in Appendix B.

Some implementation details of this algorithm are givenas f
lows.

Implementation Detail 1 (Point Selection Strategy in Step
2(b)(i)): We propose two heuristic-based point selection strategies
as follows. The first one is called thrandom selection strategy
It randomlyselects a poinp from P’. The second one is called
the greedy selection strategyhich is to select a point fron®’ in
the “densest” region (or formally cell) on the surface of theain.
The major idea of this strategy is to select a point fré¥nin the
densest region (because if this point is selected as the€icenf
the disk, then this disk can cover many points (which coulch&o
from the densest region)). Specifically, this strategy iegisome
additional operations included in other steps, and we destiem

as follows. (A) Between Step 2(a) and Step 2(b), we consauct
grid on thez-y plane with the cell width equal t0(%). Then, we
insert all points fromP’ in corresponding cells, and all point IDs
in each cell are indexed in a B+-tree. We also build a max-heap
containing all non-empty cells whose keys are the sizes @if th
B+-trees. (B) In Step 2(b)(i), in the case that = (), we select a
pointp in P’ by finding the cell with the greatest number of points
in P’ and randomly selecting a poiptfrom P’ in the cell. (C) In
Step 2(b)(ii), for each poinp’ in S, we removep’ from the B+-
tree of its corresponding cell and decrease the key of thénchle
max-heap by 1.

Implementation Detail 2 (SSAD algorithm): Note that in Step
1(c) and Step 2(b)(ii), we need to perform the SSAD algorifim



27] which is a best-first search algorithm. There are twoigassof
this algorithm here, but the major principle is the same &mhebut
with different stopping criteria. The major principle issteibed
as follows. The algorithm performs a search that starts fs@nd
expands its search with the vertexWhwhich has not been pro-
cessed and has its minimum geodesic distah¢g to s. For each
vertex expansion, all points i on each face expanded together
with the vertex are computed with their geodesic distandaste
that we know that for each vertex expansion, all verticeg iwith
their geodesic distances smaller th&n,, have been processed.
The first version of this algorithm (in Step 1(c)) has an inplua
source points only. For each vertex expansion, the first version
of the algorithm checks whether all points fhhave been visited.
If yes, this algorithm terminates. The second version «f &hgo-
rithm (in Step 2(b)(ii)) takes as its inputs a source pairgnd a
distance threshold’ (denoting the boundary of the search region
starting froms). For each vertex expansion, the second version of
the algorithm checks whethel,,;,, is larger thand’. If yes, this
algorithm terminates. The time complexity of each of these t
versions i (N log N + k), whereN is the number of vertices in
V processed and is the number of points i processed.

Finally, we analyze the depthof the partition tree. The follow-
ing lemma presents the depth of the partition tree.

maxy, gep dg(p,q)
min, 4ep dg(p,q)

LEMMA 2. h < log( )+ 1 0

By our assumption of Section 2 that there are no duplicatesPOI
it follows that min, qep dg(p, q) is strictly positive. We want to

emphasize that the upper boundm.e.,log(%fm) +

1) is a small value in practice. Firstly, in all of our experinta!
results,h is at most 30. Secondly, even in the extreme case where
the minimum distance is one nanometer {0~°m) and the max-
imum distance is the length of the Earth’s equater4 x 10”m),
Lemma 2 yields an upper bound of only 56.

Consider the first component called tw@mpressed partition tree
which is a variation of the partition tree.

We construct the compressed partition tg,,.ss based on
the original partition tre€l,,, as follows. Firstly, we generate
Teompress DY duplicatingT,,. Secondly, whenever there is a node
O in Teompress CONtaining only one child nod@ .4, if there is a
parent node),,,.... of O, then we remove the parent-and-child re-
lationship betwee® andO..;;; and then the parent 63,4 is set
to Oparent- Then, we delet®. We repeat this step iteratively until
there is no node iff’compress CONtaining only one child. Thirdly, for
each leaf node iff.ompress, We set its radius to 0.

Note that each leaf node (containing no child node) is stifitk
after the above operation since each node removal operition
volves a node containing only one child node. Note that fehea
pointp in P, there exists exactly one leaf node whose center is
Given a poinip in P, itscorresponding leaf nodelenoted by),,, is
defined to be the leaf node in the compressed partition treesevh
center isp. Besides, given a nod@ in the compressed partition
tree, the layer number of the layer containifign the compressed
partition tree is defined to be the layer number of the layataio-
ing O in the (original) partition tree.

EXAMPLE 2 (COMPRESSEDPARTITION TREE). Consider
the partition tree (Figure 5) in Example 1. According to thewe
procedure, since nod@:7 has only one child node (i.e., node
0O12), we remove the parent-and-child relationship betwéan
andO;2 and then we set the parent @fi> to nodeO2 (which is
the parent ofD;~ in the original partition tree). Then, we remove
nodeO,;. After this operation, we do a similar operation for node

015 containing only one child nod@,5. After that, no node in the
resulting tree contains only one child. Finally, for eacif leode in
the resulting tree, we set its radius (i2¢;) to 0. The resulting tree
is the compressed partition tree as shown in Figure 6. Natelile
layer number of the layer containing node, is 1 and the layer
number of the layer containing nod®; is 3 (although the node
O17 in Layer 2 of the (original) partition tree (which connes;
andOqo) is removed). O

As will be shown later, the space complexity of the compreésse
partition tree isD(n) (which is linear ton).

3.3 Oracle Component 2: Node Pair Set

Consider the second componentS# called thenode pair set
Before we define this, we give some definitions based on the com
pressed partition tree which will be used in the node pair set

Given two node) andO’ in the compressed partition tre@,
andO’ arewell-separated6] if and only if dy(co, cor) > (2 +
2) - max{r, '} wherer is the radius of the enlarged disk©fand
r’ is the radius of the enlarged disk ©f. Given two node€) and
O’ which are well-separated in the compressed partition tree,
say that{O, O') is awell-separated (node) pair

Given a node paiO, O") and two node® andQ’ in a tree
where (1)O is eitherO or a descendant node 6f and (2)O’ is
eitherO’ or a descendant node 6f, we say thatO, O’) contains
(0, O"). Note that in our context, a node paiv, O') has an order.
Specifically, even ifO, O") contains(O, Q"), it is possible that
(O', O) does not contaifO, O’).

In practice, given two pointg andq € P with their correspond-
ing leaf nodegD,, andO, in the compressed partition tree, we say
that(O, O") contains(p, ¢) if (O, O") contains(O,, Og).

Next, we give a method of generating the node pair set given a
compressed partition tree. We maintain a variabktoring a set of
node pairs, initialized a$§(Oroot, Oroot) } WhereO,,0¢ is the root
node of the compressed patrtition tree. At each iteratiorextract
apair(O;, O;) from S which is not well-separated. Then, we select
the node in the paifO;, O;) whose radius is larger. Without loss of
generality, we assume thaX is selected and lef', Cs,
denote its children. Next, we insef€, O;), (C2,O;), ..., and
(Cm, Oj) into S. For eachw € [1,m], (Cy,0;) is said to be a
pairgenerated byO;, O;) andO; is said to besplit from (O;, O;).

Note that if O; and O; have the same radius, then we select the
node with a smaller node ID in the pdi®;, O;) for processing. We
repeat the above procedure until each paif is well-separated.

Let S be the set of node pairs returned by the above procedure.
S is called thenode pair sebf SE

In the above procedure, note that whenever we check whether
a node pair(O;, O;) is well-separated, we have to compute the
distance betwee®; andO;. Later in Section 3.5 as a part of the
oracle construction, we will explain how we compute thigatise
efficiently.

The following theorem shows a key property of the node pair se
generated, namely thanique node pair match property

THEOREM 1. LetS be the node pair set &E Each node pair
in S is a well-separated pair and for any two poiniendgq in P,
there exists exactly one node p&i®, O’) in S containing (p, q)
and the distance associated with this node pair is-@pproximate
distance oty (p, q). O

Next, we present the following theorem showing that theee ar
O(E%,hg) node pairs considered in the procedure of generating the
node pair set (which is linear t@) where/ is a real number and is
in the range from 1.5 and 2 in practice.



THEOREM 2. There are onI)O(E';—’;j) node pairs considered in
the procedure of generating the node pair set and thus there a
O(%%) inthe node pair set oSE

Finally, we adopt a standard hashing technique, namelpehe
fect hashing scheni8], to index all node pairs in the node pair set

a first-higher-layer node paiif O has a higher layer tha®’ in
the compressed partition tree (i.&qyer(O) < Layer(0’)). A
node pair(O, O’) is said to be dirst-lower-layer node paiif O
has a lower layer tha®’ in the compressed partition tree (i.e.,
Layer(O) > Layer(0")).

Consider the compressed partition tree as shown in Figure 6.

of SE The hashing technique takes a linear space and requires aThe node pairO14,015) is a same-layer node pair. The node

linear preprocessing time in expectation in terms of the lmemof
the node pairs in the node pair setSiE Given two nodes) and
O’ in the compressed partition tree, we could check whetheethe
exists a node paitO, O") in the node pair set oBE in constant
time and if so, it could also return the associated geodésiartte
dg(O, O") in constant time.

3.4 Query Processing

Next, we present how we use our distance or&fdor a dis-
tance query with a source point € P and a destination point
te P.

We first present one naive method, whose time complexity is
O(R?), for this distance query. Next, we present an efficient algo-
rithm whose time complexity i©(h).

Naive Method: Before we introduce the naive method, we give
some notations first. L&D,..: be the root node of the compressed
partition tree. By our notation convention, we know tliat de-
notes the corresponding leaf node of paiith the compressed par-
tition tree andD, denotes the corresponding leaf node of poiimt
the compressed partition tree. L&t be the array of sizé + 1
where A,[i] is equal to the node in Layéralong the path fron®s

to Oro0: in the compressed partition tree if there exists a node in
Layeri and is equal t@) otherwise for each € [0, h]. We have an-
other notationA; which has a definition similar td ; and involves
the path starting fron®; instead ofO,;. We denote the Cartesian
product between the set of all nodes4n and the set of all nodes
in A; by A5 x A:. Itis easy to have the following observation from
Theorem 1: there exists exactly one pd, O’) in A; x A; such
that (O, O") contains(s, t) and (O, O’} is in the node pair set of
our SE

Based on this observation, we have the following naive ntetho
for a distance query. Firstly, we find a leaf no@ and a leaf
nodeO;. Then, we construct arrayts (A:) by traversing fronO,
(O4) 10 Or0t. Secondly, for each nod® € A, and each node
O’ € A, we check whether node pai©, O’} is in the node pair
set of ourSE If so, we return the distance associated with O').
Otherwise, we continue to check the next node pair.

Note that by this observation, the above naive method must re
turn one distance value (associated with one node pairgarit.

The correctness of the naive method (i.e., df@pproximation)
comes naturally from Theorem 1.

It is easy to verify that the time complexity of the naive nuth
is O(h?) since the first step take8(h) time and the second step
takesO(h?) time (because the second step invol@&?) node
pairs and each node pair requires to be checked with itseexist
in the node pair set of o BEin O(1) time using the perfect hashing
scheme).

Efficient Method: Next, we will present our efficient algorithm for
the distance query which takéx k) time. Before we present the
algorithm, we give some concepts first.

Let Layer(O) be the layer number of the layer containing node

We categorize node paif®, O’) into one of three types. A
node pair(O,O’) is said to be asame-layer node paiif O
has the same layer a3’ in the compressed partition tree (i.e.,
Layer(O) = Layer(0")). A node pair(O,0’) is said to be

pair (O14, O7) is a first-higher-layer node pair and the node pair
(O¢, O15) is afirst-lower-layer node pair.

By definition, in a same-layer node pdi©, O’'), both nodeO
and nodeD’ are in the same layer. We know that in a first-higher-
layer node paikO, O’), since nod& has a higher layer than node
O’, we know that there exists a layer higher than the layer aonta
ing nodeO’, and thus we deduce th&' has a parent node in the
compressed partition tree. With the following lemma, iagtingly,
we know that the layer containing the parent of nédds equal to
or higher than the layer containing no@e We could have a similar
conclusion for a first-lower node pair.

LEMMA 3. Consider a node paitO, O’) in the node pair set
of our SE If (O, O’) is a first-higher-layer node pair, then the layer
containing the parent of nod@’ is equal to or higher than the layer
containing nodeD. If (O, O’) is a first-lower-layer node pair, then
the layer containing the parent of nodeis equal to or higher than
the layer containing nod®”’. O

Consider the compressed partition tree as shown in Figure 6.
The error parameter is set to 2. Note that for illustration pur-
pose, this error parameter is set to 2 but in practice, it lshbe
set to a smaller value (e.g., 0.1) as what we did in our expriai
studies. The node paif®:4, O7) and(O1¢, O12) are both first-
higher-layer node pairs in the node pair set of 8& The parent
of O7 (012) is O15 (O20). The layer containing): s is the same
as that containing4 and the layer containin@so is higher than
that containing):¢. Similar illustrations could be made to the two
first-lower-layer node pairs in the node pair set of 8& namely
(O¢, O15) and(O13, O20), in @ symmetric way.

Let parent(O) be the parent of nod® in the compressed par-
tition tree.

With Lemma 3, we have the following observation.

OBSERVATION 1. Consider a node paifO,O’) in the node
pair set of ourSE If (O, O’) is a first-higher-layer node pair, then
Layer(parent(0')) < Layer(O) < Layer(O'). If (0,0
is a first-lower-layer node pair, therLayer(parent(O)) <
Layer(0O") < Layer(O).

Consider the compressed partition tree as shown in Fig-
ure 6. The node pair§O.4,07) and (O16,012) are both
first-higher-layer node pairs in the node pair set of GE
parent(O7) (parent(Oi12)) is O1s (O2). It is clear that
Layer(parent(O7)) < Layer(O14) < Layer(O7) and
Layer(parent(O12)) < Layer(Ois) < Layer(O12). Similar
illustrations could be made to the two first-lower-layer eaguhirs
in the node pair set of oBE namely(Og, O15) and(O13, O20),
in a symmetric way.

Based on Observation 1, we give the major idea why we could
have an efficient algorithm. Note that the naive method regui
that O(h?) node pairs should be enumerated. However, our effi-
cient method just needs to enumeré&éh) node pairs. Specifi-
cally, our efficient method involves three steps. Roughiaging,
the first step handles same-layer node paitdin< A., the second
step handles first-higher-layer node pairsiinx A, and the third
step handles first-lower-layer node pairsdpn x A;.



Specifically, the first step checks whether there exists @& nod
O in A, and a nodeD’ in A, such that(O, O’) is a same-layer
node pair andO, O") is in the node pair set dBE If there ex-
ists such a node paifO, O'), we return the distance associated
with (O, 0’). This can be done i®(h) time by linearly scan-
ning both arraysAs and A; from index 0 throughh and checking
whether(A;[i], A¢[i]) is in the node pair set @Ewherei € [0, h]
(note that(A[i], A¢[i]) is a same-layer node pair). The second
step is to check whether there exists a nddén As and a node
N’ in A; such that{(O, O’) is a first-higher-layer node pair and
(0, 0") is in the node pair set BE If there exists such a node
pair (O, O"), we return the distance associated with O’). This
can be done irO(h) time by the following sub-steps. For each
i € [1,h], if A¢i] # 0, then we obtain the layer numbgrof
the layer containing the parent of;[i] (in O(1) time) and, for
eachk € [j,14), check whethe(A,[k], A;:[i]) is in the node pair
set of SE (in O(j — 7) time) (note that it is sufficient to scan to
CheCk<AS[j]7 At[l]>7 <A-5[j + 1]7 At[l]>7 ) <A-5[7' - 1]7 At[l]> for
one particular nodel.[i] in A; based on Observation 1). It is easy
to verify that the second step také€gh) time since we can scan
O(h) elements inA, andO(h) elements inA;. The third step is
similar to the second step, but this step focuses on theldingtr-
layer node pairs instead of the first-higher-layer nodesp@etails
are skipped here since similar descriptions are appliedis,Tthe
overall time complexity of the efficient methodd¥(h).

EXamMPLE 3 (QUERY PROCESSING. The error parameter
is set to 2. Consider the example as shown at the left handrside
Figure 7, wher&, is O; andO is Oqo. It shows all edges and all
nodes along the path from the leaf ndde with its centerp; to the
root node and the path from the leaf nade, with its centemp;o to
the root node. The pai{O13, O16) containing(O1, O10) is the pair
in the node pair set GE In this exampleA; = [O21,0, O13, O1]
and A; = [O21, 020, 016, 010]. Consider the figure at the right
hand side in Figure 7. All node pairs processed in the quewy pr
cessing algorithm are shown in the form of node pairs comadect
by lines (which are solid lines, thin dashed lines and thia&te:d
lines). Specifically, each node pair connected by a soliel ina
same-layer node pair processed. Each node pair connecéetthioy
dashed line is a first-higher-layer node pair processedh Bade
pair connected by a thick dashed line is a first-lower-layetenpair
processed. Our query algorithm checks all the three typesadé
pairs. When one of the node pairs processed is in the nodegiair
of SE we return the distance associated with this node pair.

It is worth mentioning that the total number of lines in thipie
corresponds to the greatest number of node pairs proceskth,
is equal toO(h) instead ofO(h?) (denoting the total number of
lines in a complete bipartite graph betwednand A;). Thus, the
query step is very efficient. 0O

It is easy to verify that the distance returned by the efficien
method isc-approximate based on Theorem 1.

3.5 Oracle Construction

In this section, we first present a naive method of constgcti
SEand then present an efficient method of construc8ig

Naive Method: We first present a naive method of constructig
First, we build a partition tre&,.,. Then, we build a compressed
partition treeTcompress based orl,,, and deletel,,,. Next, we
follow the procedure described in Section 3.3 to generateocale
pairs for the node pair set. Note that for each node pair densd,
we have to compute the distance between the two nodes in tiee no

pair. In the naive method, for each node pair considered, ave p
form the SSAD algorithm, which takes the center of one nodieen
node pair as an input of the starting point and performs theche
until it reaches the center of the other node in the node pair.

We proceed to analyze the running time of the naive method. It
takesO(nhN log® N) to build T,,, since there ar©(nh) nodes
in T,y and each node has to perform the SSAD algorithm which
takes the center of this node as an input of the starting @oidt
performs the search until it reaches a certain radiG(iN log® N)
time. It takesO(nh) time to construct compress, SINCET compress
could be constructed with a postorder traversal'of, and there
areO(nh) nodes inT,,. For each node paifO,O’) generated,
we need to perform the SSAD algorithm which takes the center
of one node in the node pair as an input of the starting poidt an
performs the search until it reaches the center of the othde m
the node pair to compui#, (co, co/). Thus, the total running time
of generating the node pair selﬂk{!;—’,;Nlog2 N). In conclusion,

the total running time of the naive method of constructBigis
O( nhN log? N)
€28 :

Efficient Method: Since the naive method takéz(’ml\’eii%gz]\’)
time to construct th&E distance oracle, which is very costly, we
propose an efficient algorithm of constructi8& next. The major
reason why the naive method is slow is that in the naive method
for each node pair considered in the procedure describe@dn S
tion 3.3, the naive method has to perform an expensive SSAD al
gorithm, and thus the number of times that the SSAD algorithm
is called is equal to the number of node pairs considered. -How
ever, we will present an efficient algorithm which could reelthe
number of times that the SSAD algorithm is called from thaltot
number of node pairs considered to the total number of nades i
the (original) partition tree by using a new concept callacea-
hanced node paifwhich is a node pair involving two nodes in the
same layer of the (original) partition tree and satisfyirmgpadition)

(to be introduced later). Specifically, the efficient metiad two
major differences from the naive method. The first diffeeeie
that the efficient method includes an additional (pre-cotan)
step of computing the distance between the two nodes intaive
each possible enhanced node pair. Although ther®éhe?) pos-
sible enhanced node pairs and we have to compute the distance
of these pairs, the total number of times that the SSAD dlgori

is called in this additional step is just equal to the totamber

of nodes in the (original) partition tree (which @(hn)). The
second difference is that the efficient method finds the wigta
of each node paitO, O’) considered in the procedure described
in Section 3.3 by searching one of the “pre-computed” distan
of the enhanced node pairs containing the node {@ji0’) and
assigning this distance (of the enhanced node pair fountheto
distance of the node paiO, O’) (instead of performing the ex-
pensive SSAD algorithm). Note that the time complexitiebath

the search operation and the assignment operatio@drég (to be
shown later), which is much lower than the time complexityhef
SSAD algorithm (i.e.,O(N log® N)). Later, we will show that
for each node paitO, O’) considered in the procedure described
in Section 3.3, there exists one enhanced node pair comgaihe
node pair(O, O"), which is a key to the efficiency of the efficient
method.

Before we present the efficient method, we define the condept o
theenhanced node paiGiven two node®) andO’ in the (original)
partition tree,(O, O') is said to be arenhanced node paif O
and O’ are in the same layer of the (original) partition tree and
dg(0,0") < l-ro wherel = £ +10. Note thatl is about 4 times
the well-separated factor (i.e2, + 2). The ratio of 4 & 2 x 2)



is split two parts. The first part (i.e., a ratio of 2) comesrthe (o} (if these two nodes have their node péi, 6')

radius of theenlargeddisk of a nodeO (defined in the definition of found in the perfect hash) (i0(1) time).
the well-separated pajrwhich is two times the radius of node. Then, the distance associated with this enhanced edge corre
The second part (i.e., another ratio of 2) comes from ougdesi sponds to the distance we want (i&,(co, co)).
With the definition of theenhanced node paimwe give the fol- i .
lowing lemma which is used in our efficient method. 3.6 Theoretical Analysis

Before analyzingSE we introduce a well-known concept called
LEMMA 4. Consider a node paifO, O’) considered in the the largest capacity dimensiomriginally defined on a metric
procedure described in Section 3.3. There exists an enbamoge space [22, 14]. For the sake of space, the definition and e di
pair (O,0') such that (10, 0') contains(0, 0'), (2) ¢c5 = co cussion of thdargest capacity dimensionould be found in the
and (3)cy = cor- 0 appendix. In the appendix, we show that in an extreme caseewhe
the terrain surface is a 2D plane, tlaggest capacity dimensiofi
is at most 1.8. In a general case,is a little bit larger than 1.8

The major idea why we can design an efficient method compared (since the terrain surface could be regarded as a 2D surfibe w
with the naive method is that the efficient method is desidrasgd some fluctuations in terms of height).

on Lemma 4 using the concept of teehanced node pair Our experimental results show that tllegest capacity dimen-
We present the efficient algorithm of constructigas follows. sion 3 of the terrain surface that we considered is between 1.5 and

e Step 1 (Tree Construction):We build the partition tre&,,, 2.
and a compressed partition tré@,mpress based onlo,. Then, we present the oracle building time, oracle size ytiree
ng just constructed becomes the first component of and distance error bound of 08Ein the following theorem.

e Step 2 (Enhanced Edge Creation):We insert all possible THEOREM 3. The oracle building time, oracle size, query time
enhanced edgesto T,,,. Specifically, for any two node® and distance error bound d@Eare O(% +nhlogn-+ :‘Wh),
andO’ in the samelayer of the (original) partition tre&,,, 0(5_’5), O(h) ande, respectively. 0O

if (O,0’) is an enhanced node pair, then we add an edge
connecting them. We call an edge added in this stepran

hanced edgeWe associate a distance to each enhanced edge4. RELATED WORK AND BASELINES

added. Specifically, for each enhanced edge connecling In this section, we present the related work and baselinaaust
andO’, we associate the distance between these two nodesjn Section 4.1 and Section 4.2, respectively.

(i.e., dg(co, cor)) with this edge. To construct all the en-

hanced edge®gether for each node in the partition tree, 4.1 Related Work

we perform the SSAD algorithm which takes as an in-

put of the source point and performs the search until the disk
D(co,l-ro) is totally expanded.

e Step 3 (Perfect Hash Construction): We insert all en-
hanced edges into the perfect hash [8] (with an oracle build-
ing time and a space cost which are linear to the total number
of edges in expectation).

e Step 4 (Node Pair Set Generation)\We generate the node

The existing studies of finding thexactgeodesic distance be-
tween two vertices are [27, 7] and [34]. Their time compiesit
are O(N?log N), O(N?), O(N log? N) and O(N?log N), re-
spectively, which are impractical even on moderate tewata.

Motivated by the intrinsic expensive cost of computing éxac
geodesic distances, many existing studies focus on congpayi-
proximategeodesic distances [25, 21, 20]. In [25], the authors stud-
- - . ied the problem of finding an approximate geodesic shortatt p
pair set, the second component3g using7., added with which satisfies alope constraintin [21], the authors proposed an

enhanced edges. Specifically, we follow the procedure de- . S . ! X
scribed in Section 3.3 to generate all node pairs for the node glgonthm for finding a geodesic path between wo pointssiati

pair set. However, we present a detailed implementation of ing a condition on the terrain surface and computing the tamel
how to c;omputei (’Co cor) for each node pait0, ') gen upper bounds of the geodesic shortest distance based antjté |
g ) ’ s -

; e ) of the path found, but the gap between the bounds depend®on th
erated in the procedure. For each node airQr) gener structure of the terrain surface, and thus it could be veryelam-

ated,lvle_ find an enhanced ed_ge_t/:omectmg a uodad a plying that there exists no guarantee on the qualities obthands.
”OF’eO 'n_TZg, such that (1X0, 0') is an enhanced node In [20], the authors proposed$teiner point-basedlgorithm in-
pair, (2) (0,0) contains(0, 0"), (3) cg = co and (4) troducing additional points calleSteiner pointon the surface of
cg' = cor- (Note that by Lemma 4, there exists such an the terrace for finding asrapproximate geodesic shortest path be-
enhanced edge.) This step of finding an enhanced edge canyyeen two points, where is a user-specified parameter. The al-

be done inO(h) time by _ gorithm computes tighter lower and upper bounds of the ggode

— (D) first obtainingeo from O andceo- from O’ (in O(1) distance than those of [21], which do not depend on the uyidgr!
time), ) ] terrain. According to the experimental results in [20], éfgorithm

— (2) then accessing the corresponding leaf nod co ran more than 300 seconds even for a setting with a very laose e
and the corresponding leaf nod¥ of co (in O(1) parametet = 0.25. All of these algorithms compute the approxi-
time), _ mate geodesic distances-the-fly which is not efficient enough in

— (3) traversing both the patR from O to the root node  (yeal-time) applications involving many distance queries
and the patfP’ from O’ to the root node together start- In order to answer the geodesic shortest path/distancéeguer

ing from Layerh to Layer 0 to check whether the node  more efficiently, some existing studies aim at designinglesa[19,
O being traversed alon and the node& being tra- 2, 3, 13]. [19] proposed a data structure for the Single-Goll-
versed along’ (in the same layer) have their node pair  Destination (SSAD) approximate geodesic shortest pathiege
(O, 5') found in the perfect hash (i@ (k) time), and where the source point of each shortest path query is aligiaey
— (4) returning the enhanced node edge conneciragnd before the data structure is built. This data structureccanswer



[ Algo. [ Oracle Building Time [ Oracle Size [ Query Time
SP-Oracle [13] o(ﬁ log®(X)log” 1) o(ﬁ “log®(X)log? 1) O(5toy= log ¢ + loglog(N + n))
SE(Naive) O(ZhN 1o N ) o(3k) O(h?)
13 N 1 . N l N
K_A| 20 — — max max 1 max
90 [20] 2 Umin € V1—cos 0)3 ' elpin-v/I—cos0 og( cToin V1I—c0s0 )
SE O(ME N 1 nhlogn + 4l o(3) O(h)
Table 1: Comparison of Different Methods with Error Bound e (where 8 € [1.5,2] and h < 30 in practice)
Dataset| No. of | Resolution | Region No. of SE(Greedy) —— SE-Naive - ) K-Algo
\_/er' Covered POIs ’(7;104 A%é‘éjl(l?iiom) = , SP-Oracle ’::103 Theoretical bound (g) 0.05
tices % 3 _. 10 £ %83 oo 0.2
BH 1.4M T0meters | 14km x | 4K g g 10 T g 10 5 015
10km -gloz .g 1(?(1) ’; 11[%2 LA A A A 5 0.1
EP | 1.5M 10 meters | 10.7kmx | 4K S| me—e—t—e | || m—e—sp | i[g);g gm oo 0.05
SE T70K 5 : }i:m 51K 0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25 0.05 0.1 0.15 0.2 0.25 oot OBS O“.“l 035 O“.“Z 035
meters m X e ¢ e €
11.1km (a) (b) (©) (d)

Table 2: Dataset Statistics

any shortest path query from this fixed source point to anyi-des
nation. However, this data structure is limited to a fixedreeu
point. Even though different data structures from all passi
source points could be built, the total space occupied bthae
data structures is prohibitively large, which is not fessib prac-
tice. [2, 3] designed an oracle for approximate geodesictssio
path queries and [13] designed an oracle for approximatdegto
shortest distance queries. These two oracles share siaas,
and the one in [13] is better in terms of oracle size and quieg t
mainly because geodesic distance queries are intringieatlier
than geodesic path queries. Specifically, the oracle in fg3]its
space complexity w(ﬁ -log?(£)log? 1) and its query
time complexity ofO(m log % + loglog N), whereg is the
minimum inner angle of any face on the terrain surface.

As will be introduced later, we use this oracle as a baseline o
acle for comparison, and our experimental results showttfiat
oracle has a scalability issue due to its large oracle sizkita cor-
responding query time is significantly larger than that afanacle.

Some other related studies include those proximity queges
lying on the geodesic shortest distance queries [10, 11,330,
36]. Specifically, [10, 11, 30] studiek-NN queries, [35] studied
dynamic kNN queries and [36] studied reverse nearest neighbor
queries.

Besides, some studies [6, 15, 28] focused on studying well-
separated pairs. [6] studied it in the Euclidean space, tifi]ied
its dynamic case (e.g., insertion and deletion) and [28&]istlit on
road networks. However, they are different from ours besaus
studied it in the terrain context and different contextsegiifferent
challenges (e.g., in the terrain context, how to build aadisé or-
acle involving many expensive geodesic distance compuistis
very challenging).

4.2 Baseline Methods

In this section, we first present two baseline oracles (Sec-
tion 4.2.1), then give one baseline on-the-fly algorithmc{Se
tion 4.2.2) and finally compare them wiSE (Section 4.2.3).

4.2.1 Baseline Oracles

In this part, we first introduce two baseline oracles, nantiegy
Steiner pint-based oraclgin short,SP-Oracl¢ and the naive im-
plementation oSE (in short,SE(Naive).

Steiner Point-Based Oracle: The first baseline oracle is called
the Steiner int-based oracldin short, SP-Oracl@ proposed in
[13] which were originally proposed for vertex-to-verteistdnce

queries and could also be adapted for both POI-to-POI (P2P) N') + (24—

Figure 8: Effect of ¢ on SF dataset (Smaller Version) (P2P Distance Queries)

distance queries and arbitrary point-to-arbitrary poi2A) dis-

tance queries. Next, we describe how this adapted distaacteo
[13] could handle A2A distance queries only (since A2A dist
queries could be regarded as a general setting comparedP@ith
distance queries). Its major idea is as follows. It firstadtices
O(-—=—= log 1) additional points calleéteiner pointon each

sin(0)-/e
face of the terrain surface a@( —2~-— log 1) Steiner edges con-

sin(6)-e
necting Steiner points on the san(we) face, wheig the minimum
inner angle of any face on the terrain surface. It then cootr

a graph, denoted bgr., where the set of vertices in the graph is
the set containing all the Steiner points and all existingises
and the set of edges in the graph is the set of all existingsedge
and all the additional edges added each with its weight eual
its correspondindgtuclidean distanceSP-Oracleindexes the exact
distances between any two Steiner pointstan Consider a A2A
distance query. Given two arbitrary points, namelgndt, on the
surface of the terrair§P-Oraclefinds (1) a sef(; of Steiner points

on the face containing and its adjacent faces, and (2) another set
X of Steiner points on the face containihgnd its adjacent faces.
Then, for each point; in X and each poinp; in X, it computes

a distance equal to the sum of the Euclidean distance betwaeth

ps, the exact distance betwegn andp: on G and the Euclidean
distance betweep; andt. Finally, it returns the smallest distance
computed as the estimated geodesic distance betwapdt. We
present the oracle building time, oracle size, query tinnel, dis-
tance error bound ddP-Oraclein Table 1.

SE(Naive): The second baseline is called the naive metho8Ef
(in short,SE(Naive) which is exactly ouSEwith the naive method
for the both the oracle construction and the query procgssive
present the oracle building time, oracle size, query tinne, dis-
tance error bound dE(Naive)n Table 1.

4.2.2 Baseline On-the-fly Algorithm

The Kaul's algorithm (in short, K-Algo) recently proposed
in [20] could be used as the baseline algorithm which congpute
the approximate geodesic distarmethe-fly(since it is the best-
known algorithm in the literature). AlthougK-Algo is a non-
distance oracle algorithm, it is interesting to compareithvour

i 1 i li’namN
SE The time complexity ofK-Algo is O(m +
lmaz-N log(— lnaz-N

S =)' wherel,in (resp.lmaz) is

€lmin: min’

!By Section 4.2 of [20], its running time ©((N + N’)(log(N +

Luge K )%) where N’ = O(;—msl N) and i



the length of the shortest (resp., longest) edgefaadhe minimum
inner angle of any face.

4.2.3 Comparison

We compare the oracle proposed in this paper, $E.,and the
three baselines, i.eSP-Oracle SE(NaivelandK-Algo, in terms of
error bound, oracle building time, oracle size and quengetiand
the results are shown in Table 1. We highlight some of the @mp
ison results as follows. Consider the error bound. SHiand all
baseline methods, nameBP-Oracle SE(NaiveandK-Algo, have
the same error bound equal¢oConsider the oracle building time.
As described before, we know th&E has a lower oracle building
(or oracle construction) time complexity th&f(Naive) Besides,
in our experimental results, the empirical oracle buildiimye of
SEis smaller than that d8P-Oracle Consider the oracle size. The
oracle size ofSEis the same as that &E(Naive) Besides, in our
experimental results, the empirical oracle siz&gis smaller than
that of SP-Oracle Consider the query time. Sinéeis very small
(at most 30 in our experimental resultSE has the lowest query
time complexity compared witBE(NaiveandSP-Oracle K-algo
has the largest query time which is significantly larger thdrers.

5. EMPIRICAL STUDIES
5.1 Experimental Setup

We conducted our experiments on a Linux machine with
2.67 GHz CPU and 48GB memory. All algorithms were imple-
mented in C++.

Datasets. Following some existing studies on terrain data [30,
10, 25], we used three real terrain datasets, namely BedrHea
(in short, BH), EaglePeak (in short, EP) and San Francisco
South (in short, SF) and these datasets can be downloaded fro
http://data.geocomm.com/. For each of these terrain el@tawe
extracted a set of POIs from the corresponding region in ©pen
StreetMap. Table 2 shows the dataset statistics. Besidesaker
version of SF dataset which corresponds to a small sub+regfio
the SF dataset and contains 1k vertices and 60 POls was &do us
since one of the baselineSE-Naiveis not feasible on any of the
full datasets due to its expensive cost of building an oracle
Algorithms.  Our new oracleSE and three baselinesSP-
Oracle [13], K-Algo [20] and SE-Naive are studied in the exper-
iments. FoISE we study two variations: one 8E(Greedyyhich

is based on the greedy point selection strategy and the @her
SE(Randomjvhich is based on the random point selection strat-
egy.

Query Generation. Each P2P (V2V) query was generated by ran-
domly sampling two POls (vertices) on the surface of a tarrai

[ Dataset] max [ min [ avg. | std. |

BH 16,57 | 0.82 | 7.8 | 3.33
EP 1415 033 ] 6.25 | 3.15
SF 1692 | 0.48 | 7.09 | 3.6
Table 3: Statistics of Query Distances (km)
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Figure 11: Effect of n on SF dataset (V2V Distance Queries)

in a terrain), were studied. Four measurements, namelgrétie
building time(which is the time for constructing the distance ora-
cle), (2)oracle sizgwhich is the space consumption of the distance
oracle), (3)query time(which is the time for answering a distance
query based on the oracle) and étjor (which is the error of the
distance returned based on the oracle), were used for ¢vajtlae
oracles. For the query time, 100 queries were answered &nd th
average running time was returned.

5.2 Experimental Results

In this section, we present the results of P2P distance epiari
Section 5.2.1, other experiments (e.g., V2V distance geeaind
A2A distance queries) in Section 5.2.2, and a summary ofehe r
sults in Section 5.2.3.

5.2.1 P2P Distance Queries

Effect of e. We tested 5 different values ot from
{0.05,0.1,0.15,0.2,0.25}. Figure 8(a)-(d) show the results on the
smaller version of the SF dataset. According to the res{djshe
building times ofSE(GreedyandSE(Randomare almost the same
and are both smaller than those $#®-Oracleand SE-Naive e.qg.,
whene = 0.05, SE(Greedy)and SE(Randomjave their build-
ing times 1 order (resp., at least 2 orders) smaller thanah&P-
Oracle(resp.,SE-Naiv, (2) the sizes o8E(Greedy)SE(Random)
andSE-Navieare 2-3 orders of magnitude smaller than thaBBf
Oracle, (3) the query time 0SE(Greedy)s the smallest and about
half of that of SE(Random)and the query times of boBE(Greedy)
andSE(Randomare orders of magnitude smaller than those of oth-
ers, and (4) the errors of all oracles are very small and muonetiler
than the theoretical bound (whichds

Based on the results shown above, we adopt the following for
the simplicity of presentation: (1) the results of errortioe rest of
experiments are omitted since the errors of all oracles iatidas

one as a source and the other as a destination. Each A2A queryand very small (smaller thary10) compared with the error bound,

was generated by randomly selecting two arbitrary pointg, as
a source and the other as a destination. To randomly selext an
bitrary point, we first generated a 2D coordindte y) which is
a point randomly selected in the 2D rectangular region ax/éy
the terrain and then computed the point on the terrain seidmse
projection on thec-y plane is(x, y).

Table 3 shows the statistics of the query distances of aliiegie
performed on each dataset as shown in Table 2.

Factors & Measurements. Three factors, namely (the error pa-
rameter),n (the number of POIs), an/ (the number of vertices

is a parameter which is a positive number at least 1. By Tinedre
of [20], we obtain that its error boundis equal to1~. Thus, we
obtain this time complexity.

(2) the results oSE-Naiveon any full datasets are not shown sim-
ply because it cannot be built within a reasonable amouritrad,t
e.g., within a month, and (3) the resultsSi (Greedypare omitted
for the rest of experiments sin&E(RandomandSE(Greedyhave
similar performance and we on8E(Greedyjor the clarity and by
SE it meansSE(Randomfor the remaining presentation.

The results on the other two datasets, namely BH nad EP, are
shown in Figure 13 and Figure 14, respectively, where theltes
of SP-Oraclefor all settings ok are not shown since the size®P-
Oracle exceeds our memory budget (i.e., 48GB). Since the results
on the BH and EP datasets are similar to those on the SF dataset
for the sake of space, they could be found in [4].
Effect of n. We tested 5 different values of. from
{60k, 90k, 120k, 150k, 180k} and used the SF dataset for this ex-
periment. As mentioned in Section 5.1, we h&ié POIls in the
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Figure 9: Effect of n on SF dataset (P2P Distance Queries)

SF South dataset (170k vertices), and in order to obtain afset
the targeted number of POls, we do as follows. heienote the
targeted number of POIs we want to generate. Rdte the set of
POls that we have and be the number of POls iR. We generate
(n —n") 2-dimensional point$z, i) based on a Normal distribu-
tion N(p, o), wherep = (z = =22’ 3 = Zp/ff 2"y and

0? = (2 yeplry —T)% 3 p(ypy —7)?). If agenerated
point (z,y) is outside the range of the terrain, we simply discard
it and re-do the process until a point within the range is geted.

At the end, we project each generated pginty) to the surface of
the terrain and take the projected point as a newly generatdd
The results are shown in Figure 9. According the these esulir
oracleSEoutperformsSP-Oraclein terms of oracle building time,
oracle size and query time and significantly outperfokmalgoin
terms of query time.

Effect of N. We tested 5 values of N from
{0.5M,1M,1.5M,2M,2.5M} on synthetic datasets. Each
synthetic dataset withV vertices is a terrain surface from an
enlarged BH dataset (4.2M vertices) simplified by a surface
simplification algorithm [25]. Note that each simplified ren
surface covers the same region as the original BH datasktawit
different simplification ratio and still has 4k POls. The angled
BH dataset was generated from the BH dataset as follows. €n ea
face of BH, we added a new vertex on its geometric center add ad

p’eP Tp!
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Figure 10: Effect of N on BH dataset (P2P Distance Queries)
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Figure 12: P2P Queries In The Caser > N and A2A Queries

to the resultsSE outperformsSP-Oracleby several times in terms

of building time and size. The query time 8Eis 2-3 (resp., 5-6)
orders of magnitude smaller than thaiS®-Oraclgresp. K-Algo).

P2P Queries In The Casen > N. We tested P2P queries of the
casen > N on the low resolution BH (resolution: 30 meter, 150k
vertices) dataset by varyirgrom {0.05, 0.1, 0.15, 0.2,0.25}. We
generated 1M POls by the same method as mentioned in Sec-
tion 5.2.1. Figure 12(a)(b)(d) shows the building time,cbezsize

and query time, respectively. The result is similar to tHafABA
query. Note that the building time and space of P2P Querid®ein
casen > N is the same as those of A2A queries since each tested
oracle is the same in the two queries.

5.2.3 Experimental Result Summary

Our SE consistently outperforms the state-of-the-art oracte, i.
SP-Oraclein terms of all measurements (i.e., building time, oracle
size, and query time) and for any types of distance queries 2P

a new edge between the new vertex and each of the three gertice queries, V2V queries and A2A queries).

on the face. The results are shown in Figure 10, where thétsesu
of SP-Oracleare not shown since the size 8P-Oracleexceeds
our memory budget (i.e., 48GB).

5.2.2 Other Experiments

V2V Distance Queries:In V2V queries, the original POls are dis-
carded, and we treat all vertices as POIs. We variethd ¢ for
the experiments. Consider the experiment studying thetedfe..
Note thatV = n in this experiment. We tested 5 valuesrofi.e.,
N) from {60k, 90k, 120k, 150k, 180k} on synthetic datasets, and
each synthetic dataset wiffi vertices corresponds to a sub-region
of a SF dataset with a higher resolution (19&0m resolution, 1M
vertices). The results are shown in Figure 11, and accortditige
results,SE has its building time and size both at least 1 order of
magnitude smaller thaBP-Oracleand its query time 2-3 (resp.,
5-6) orders of magnitude smaller than thatS#-Oracle(resp. K-
Algo).

We also conducted the experiment studying the effeetwith
values in{0.05, 0.1, 0.15,0.2, 0.25} on the smaller version of the
SF dataset. The results are also similar. In particulargtrery
time of SEis 5-6 orders (resp., 6-8 orders) of magnitude smaller
than that ofSP-Oracle(resp. K-Algo).

Arbitrary Point to Arbitrary Point (A2A) Queries. We tested
the A2A distance queries where the query point is not a POabut
arbitrary point on the terrain surface. We used the low regmi
BH (resolution: 30 meter, 150k vertices) dataset by varyifrpm
{0.05,0.1,0.15,0.2,0.25}. Figure 12(a), (b), and (c) shows the
building time, oracle size and query time, respectivelycaéxding

6. CONCLUSION

In this paper, we studied an important spatial query, thetsab
distance query, which is fundamental to many other spatietigs
and many data mining applications. We proposed a distance or
acle calledSE which have three good features: (1) low construc-
tion time, (2) small size and (3) low query time (comparedhwit
the best-known oracle [13]). Our experimental studies stiat
SE consistently outperforms than the best-known algoriti®R;
Oracle, in terms of all measurements for P2P queries, V2V queries
and also A2A queries. There are several interesting relselnec-
tions. One of them is to study how to efficiently update theedfise
oracle when there is an update on some POls.
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APPENDIX
A. LARGEST CAPACITY DIMENSION

Consider a metric space€ with a distance metrid(-, -). Given a
positive real number, a sety” C X is said to be--separatedf for
any two distinct points;, y € Y, d(z,y) > r. Given a positive real
numberr and a setS C X, ther-packing numbenf S, denoted
by M(r,S), is defined to be the maximum cardinality of an
separated subset 5 Given a metric spac& and a distance mea-
sured, a setS C X and two positive real numbers andrs, the
scale-dependent capacity dimens@inS w.r.t. , andrz, denoted
by D(S,r1,72), is defined to be- 28 (r1.5)—j0e M(r2.5) 73],
This dimension is used to measure tigrinsic dimensiohof a
metric space. Many high-dimensional data points are hedido
be distributed in a manifold with a lowritrinsic dimensioh In-
tuitively, the ‘intrinsic dimensiohis the number of independent
variables needed to represent the whole dataset. A goaodagsti
of the ‘intrinsic dimensiohcould be used to set the input parame-
ters of the dimension reduction algorithms (e.g., Prircipbmpo-
nent Analysis). There are many different specific formolagi of
the ‘intrinsic dimensiohcapturing certain properties [22, 14, 17,
5]. Thescale-dependent capacity dimensiaptures the geomet-
ric property of the data and provides a multi-resolutionefigion-
ality which depends on the radius It measures the growth rate of
M (r,S) w.r.t. r of a subseiS of X. In our context, the data space
X is the setP of all then POIls and the distance meti-, -) is
the geodesic distancg;(-,-). Then, we give the definition of a
‘ball’ on a terrain surface. Given a poipte P and a non-negative
real numberr, a ball centered ai with radius equal to:, denoted
by B(p,r), is defined to be a set of all POlIs in the diBKp, ).
Then, we give the definition of theapacity dimensiorof a ball
B(p,r) on the terrain surface which only measures the growth rate
of M(r, B(p,r)) whenr reduces fron2r to 5.

DEFINITION 1. Given a ball B(p,r) on a terrain surface,
wherep is a point in P and r is a positive real number, the ca-
pacity dimension of3(p, r) is defined to beD(B(p, ), 2r, 5) =

log M (2r,B(p,r))—log M(5,B(p,r)) __ M(%5,B(p,r))
- log 2r—log & 2 =05 IOg m

Consider a set of points whose pairwise distances are atleas
Since the diskD(p, r) could overlap with at most 1 of them, we
obtain thatV/ (2r, B(p,r)) = 1. Thus, for a given balB(p, r), the
capacity dimensionis equal t00.5log M (5, B(p,r)). Thus, we
obtain that given a dislo(p, r), 22P(B®):27:3) s the maximum
number of POIs whose pairwise geodesic distance is atjesisth
that the diskD(p, r) contains them.



Next, we define thdargest capacity dimensionf a setP of
POls on aterrain surface to b&ax,c p,re(0,00) D(B(p, 1), 21, 5),
denoted bys. By the definition of thdargest capacity dimension
any diskD(p, ), wherep is a point inP andr is a positive real
number, could contain at mogt? POls whose pairwise geodesic
distance is at leas].

The definition oflargest capacity dimensiohas an equivalent
presentation as follows. Given a getof POIs on a terrain surface,
its largest capacity dimensiofi is the largest positive real number
such that for any poinp in P and any non-negative real number
r, the diskD(p, ) overlaps with at mosg®* disjoint disks each
with radius at least. [16] proved that in the 2D Euclidean space,
a disk with radiusr overlaps with at most 12 disjoint disks with
radii equal to——5:. Thus, in the 2D Euclidean space, a disk with

4.029 "
radiusr overlaps with at most 12 disjoint disks with radii equal

prove that for any two pointg andgq in P, there is exactly one
pair (O, O") containing(p, ¢) in S. Consider each iteration of the
procedure presented in Section 3.3. It must be true thaé tiser
exactly one node pair i§' containing(p, ¢) if at the beginning of
the iteration, there is exactly one node pair, denoted®y, O2),
in S containing(p, ¢). Since if (O1,O2) is not extracted in the
iteration, then(O1, O2) is still the only one containingp, ¢) at the
end of the iteration. OtherwiséQ, O:) is deleted and; or O,
is split and some new node pairs are inserted $itoAmong the
new node pairs, it is obvious that exactly one contas, Oz). It
must be true that at the beginning of the first iteration, #yame
node pair (i.e{Oroot, Oroor)) cONtaINs(O1, O2). By induction, we
obtain that at the end of the final iteration, exactly one noaiein
S contains(O1, O2).

Consider the unique paifO,O’) containing (p,q) in the

to Z. Based on this, we obtain that in an extreme case where thenode pair set of ouSE Since (O,0’) is well-separated, then

terrain surface is a 2D plane, thergest capacity dimensiofi is
at most 1.8. In general cases, intuitivedyis a little bit larger than
1.8, since the terrain surface could be regarded as a 2Dcsusfith
some fluctuations in terms of height.

B. PROOF

LEMMA 5. Given disksD:(c1,71) and D2 (c2, r2) where (1)
c¢1 and ¢ are two points inP and (2)r; and r» are two non-
negative real numbers, for any poipt in D; and any pointp
in Da, dg(c1,c2) is an e-approximate distance ofy(p1, p2) if
dg(c1,c2) > (% + 2) - max{r1,r2}.

PrROOF By Triangle Inequality, we obtain that,(ci,c2) —
dg(p1,c1) —dg(p2, c2) < dg(p1,p2) < dg(er, c2) +dg(pr, 1) +
dg(p2,c2). Thus, we obtain thatly(pi,p2) — r1 — r2 <
dg(ci,c2) < dg(p1,p2) + r1 + r2.  We further obtain that
dg(p1,p2) > (2 +2) max{ri,r2} —r —7r2 > (2 +
2) - max{ri,ro} — 2max{ri,r2} = 2 - max{ri,r2}. By the
two inequalities obtained above, we obtain tHatp1,p2) — ¢ -

dg(p1,p2) < dg(er,c2) < dg(pr,p2) + € dg(p1,p2). O

PROOF OFLEMMA 1. It is easy to see that the tree built in
the procedure satisfies Separation Property and Coveriog- Pr

erty. Then, we prove that it also satisfies the distance prop-

erty: Consider a nod® and any of its descendent3’. Let
(0,01,02,0s,...... ,0.,0") denote the path fronD to O’ in
the partition tree. By Separation Property, we obtain that =
2(1 <i<t),ro, = 2-ror. By our building method, we ob-
tain thatdg(coi,coHl) < Toi(l <1 <t-— 1),dg(co7co]) <
ro,dg(co,,cor) < ro,. By Triangle Inequality, we obtain
that dg(covco’) < dg(co,co]) + Zf;} dg(COi7COi+1) +
dg(co,,cor). By integrating all the inequalities above, we obtain
thatd,(co,cor) <31 g2 <2-r0. O

PROOF OFLEMMA 2. SinceVi € [1,h — 1],r; = 2 - 141, We
obtain thath = log :—2 Let p., p, denote the two points i®
such thatdg (pz, py) = max, qcp dg(p,q). Thus, we obtain that
ro < maxp qep dg(p, q) Sincery is a geodesic distance between
two POls (the center of the root and its farthest neighbor)is |
obvious thatr,+1 > min, qep dg(p, q), Since otherwiseyp €
P, the diskD(p, rn+1) contains only 1 POI and the construction
algorithm stops at layeh-1. Sincer, = =1 we obtain that

2
rr > 0.5 - min, qep dg(p, ¢) by contradiction.

Finally, we obtain thab < log %%_ 0
: P.q 5

PROOF OFTHEOREM1. By the algorithm for generatingj, we
obtain that every pair ir$ is well-separated at the end. Then, we

dg(0,0") > (2 +2) - max{ro, 5}, whererg, (resp.,rq,,) de-
note the radius of the enlarged disk ©f (resp.,O’). Since the
enlarged disk ofO (resp.,0’) containsp and ¢, we obtain that
dy(0,0") = dy(co, cor) is ane-approximate distance af; (p, q)

by Lemma5. O

LEMMA 6. Consider a chain of node pairs
(01,01),{(02,04), ..., {0;,05), ..., (Om, O;,), where (O;, O;)
is generated byO;_1, O;_,) for each integeii € [2,m]. Letrg-
denotemax{ro,, o/} for each integet € [1,m]. V&, j € [1,m)],
rop > ro; ifand only ifk < j.

PROOF OFLEMMA 6. It is easy to see thatk,j; € [1,m]
wherek < j, Ok (resp.,0;) is O; (resp.,O}) or an ancestor
of O; (resp.,0;) in Teompress- Thus, we obtain thato, > ro,
andro; > ror Sincerg, = max{romro;} and ro; =
max{ro;,ro; }, we obtain that- > ro-. U

J

PROOF OFLEMMA 3. Consider the chain of pairs
(01,01),(02,05),..,{0;,0}), ..., (O, Oy}, where
01 = Ol1 = O'r'ooty O'rn - Ov O;n = O/ and <OZ7O:> is
generated by(O;_1,0;_;) for all integer i in [2,m] in our
method of constructing the node pair set ®E Consider the
case that{O, O') is a first-higher-layer node pair. We denote
the parent ofO’ by in Teompress parent(O’), there must exist
an integerk such thatc € [1,m — 1] and parent(O’) is split
from (O, O},). Since otherwise(O, O") would not be generated.
Consider the paifOy, O},) from which parent(O’) is split and
thus, 7parent (0 = max{rok,rogc}. By Lemma 6, we obtain
Tparent(0’) = max{ro,ro/} and thus the layer containing
panrent(O’) is higher than or equal to that containiig The
case thatO, O’) is a first-lower-layer node pair is symmetric and
we omit the details. [

PROOF OFLEMMA 4. Consider a node paifO, O") consid-
ered in the procedure described in Section 3.3, whéxgD’) #
(Oroots Oroot). Letparent(O) (resp.parent(O')) denote the par-
ent of O (resp.,0’) in Teompress if O (resp.,0’) is not the root
node. It is obvious thatO, O’) is generated byO, parent(O’))
or {parent(0),0’).

Without loss of generality, we assume tféx, O’) is generated
by (parent(0),0’). By Lemma 6, we obtain that,, cnt(0) <
Tparent(0’)- BY Lemma 3, we obtain thaty: < r,qpent0) and
70 < Tparent(ony. Let O denote the child oparent(O) in the
original partition tre€l’,,, which is on the path fromparent(O)
to O. There are two cases @ and we present that in both
cases, it is true thaty = co. If O = O, it is obvious that
= co.

o) Then, consider the case whete # O. Since



any node on the path fro® to O excludingO must have only
one child, we obtain that; = co. Similarly, the childO.
of parent(Q’) in the original partition tre€l,,,, which is on the
path fromparent(O’) to O" has the same center with. Since
Tparent(0) < Tparent(0’), W€ Obtain that < ro,. Then, con-
sider the node®’ on the path fronO, to O’ in Torg Which is on
the same layer a®. It is obvious thatcz: = co/ and thus we
obtain thatd,(0,0') = d,(0,0’). Since(parent(0),0') is
not a well-separated pair, we obtain thBt(parent(0),0’) <
2(% +2)- max{rparent(O)vTo’} = 2(% + 2)7'pa7nent(o). Thus,
we obtain thatl, (parent(0), 0') < 2(2 + 2)Fparent(0)- Since
O is a child ofparent(O) in the original partition tred,,,, we
obtain thatd, (parent(0),0) < Tparent(o) = 2rg. By trian-
gle inequality, we obtain that,(0,0) < dy(parent(0),0) +
dg (O, parent(0)) < 2(2 +2)rparent(0) +2rg = 4(2 +2)r5+
2r5 = (2 +10)rg. Thus, thugO, 0') must be an enhanced node
pair. [

LEMMA 7. The maximum number of child nodes of each node
O in a partition tree or a compressed partition treex%’.

PROOF By the definition of the partition tree, the center of each
children ofO must lie in the diskD(co, ro). Besides, by the Sep-
aration Property, the minimum pairwise distance of all igdren
must be at mostZ. Thus, by the definition of thiargest capacity
dimension3, we obtain that the maximum number of children that
any nodeO in a partition tree has i82”. Itis easy to see that the
converting from a partition tree to a compressed partitier tloes
not change the number of children of any undeleted node. ,Thus
we obtain that the maximum number of children that any néde
in a compressed partition tree ha@#. O

LEMMA 8. Any diskD(c,r) centered at the PQt with radius
r can hold at most2%?)" points, the minimum pairwise geodesic
distance of which is at leasf .

PrROOF Consider a sePSET of points in D(c,r) such that
their minimum pairwise geodesic distance is at legst We first
build a partition tree upo®’ SET as follows: first, we create the
root to beO(co = ¢,ro = r) instead of following Step(a) and the
building procedure of other nodes is the same as Step(kje &ie
radius of each non-root node is half of its parent’s radisptain
that there are totally layers in the tree. By Lemma 7, we obtain
that the number of children of any node in the compressedipart
tree is at mos2”. Thus, the number of nodes in Layteis at most
220 times that in Layek — 1, where0 < ¢ < h. Thus, we obtain
that there are at mo$2>”)’ nodes in the Layet. In other words,
PSET has at most2*?)" points. [

LEMMA 9. The compressed partition tré€.ompress hasO(n)
nodes.

PROOF. Let m, k denote the number of nodes and edges in
Teompress, respectively. By the construction @fompress, Tcompress
hasn leaf nodes and every inner node Tompress has at least
2 children. ThusTcompress hasm — n inner nodes and at least
2 - (m — n) edges. SINCH compress IS a tree, we obtain that
k = m — 1. Thus, we obtain that = m — 1 > 2(m — n).
Finally, we obtain thain < 2n — 1. O

PROOF OFTHEOREM2. Proof Sketch. To give the intuition of
the theorem, we present an intermediate node pai’sethich is
conceptual. Lefl” denote the tree which is the same as the orig-
inal partition tree except that the radius of each leaf nad& iS5’
denote a node pair set built by the node pair generating itigor

presented in Section 3.3 which takésas input instead of the com-
pressed partition tree. It is clear from a high-level inanitthat the
node pair sefS of SEis not larger thars” and the number of the
node pairs considered in the process of generairgO(|S|) (see
the full proof for the details). In the following, we denate, as
the radius of a nod®.. in the original partition tree. Consider a
nodeO in 7" and a setS’(O) which is {O'|(O,0’") or (O’,0)
isin S’ andro > ro/}. Note thatUperS'(O) = S’. By the
node pair generating algorithm, we obtain that for each note
in §’(0), 1. 0" is in the same layer a9 or one layer lower than
O (see Lemma 10) 2. there is a upper bounddg(O, O'), i.e.,
O’ lies in a diskD centered ato: with a ro- and e-related ra-
dius (see Lemma 11). Then, together with a property (see Llemm
8) derived fromg, we obtain thatS’(O)| = O((1)*”) and thus
18| = O((2)*nh).

Detailed Proof. Now, we delve into the detailed proof and adopt
the same notations as shown in the proof sketch.

LEMMA 10. VO’ € §'(0),ror <ro <2-70/

PROOF Sinceparent(O') is split before the node pajD, O’)
is generated, by Lemma 6, we obtaig,,c...(or) > ro.

Sincerparent(ory = 2 - ror , We obtain thator < ro < 2-
To’. O

LEMMA 11. VO’ € §'(0), dy(co,cor) < (42 +10) - ro.

PROOF By our node pair set generating algorithm presented
in Section 3.3,(0,0’) is generated by(parent(0),0’) or
(O, parent(O")) and the node pair which generat@d, O') is not
well separated. Consider the case whigeO’) is generated by
(O, parent(0")) (the analysis of the case whef@, O’) is gen-
erated by(parent(0),0’) is symmetric, i.e., just witltD andO’
swapped, and has the same result and thus, we do not preisent th
case for the sake of space). We obtain thatco, cparent(07)) <
2. (% + 2) . max{r077‘parent(0’)}v Whererpa'rent(o/) = 27‘0'
by the definition of the partition tree. By Lemma 10, we obtain
thatdg(CO7 Cparent(o’)) <2 (% + 2) * Tparent(O’)- By Triangle
Inequality, we obtain thatly(co,cor) < dg(co, Cparent(or) +
dg(cor, Cparent(ory). BY the definition of the partition tree, we
obtain thatd, (co’, ¢parent(07)) < Tparent(ory- ThUs, we obtain
thatdg(CO7CO’) <2 (% + 2) * Tparent(O') + Tparent(O’)- By
Lemma 10, we obtain thak, (co,cor) < (42 +10) -ro. O

Let S” be a point set containing the centers of all nodes in
S'(0). By Lemma 10, we obtain th&’ is either in the same layer
asO in the partition tree or one layer lower théhin the partition
tree. LetSy (resp.,Sy) denote{O”|0"” € §"”,0" is in the same
layer asO} (resp.{O"|0"” € 8”,0" is one layer lower tha®}).

By the Separation Property, we obtain that the minimum pair-
wise geodesic distance 8f' (resp.,S5) must be at leasto (resp.,
L2). By Lemma 8, we obtain that the DidR(ro, (42 + 10) - 7o)
can hold at most22?)10s(4 2 +10) (resp, (228)1°a(2(4 2 +10)) points
whose minimum pairwise geodesic distance is at leas(resp.,
9. Thus, we obtain thatS’(0)| < 2 - (22#)les(>(12+10) —
O((%)Qﬁ). There are at mosth such nodeO in T. Thus, we
obtain thaf.S’| is O( 2 ) sinceUoerS'(0) = 5.

Next, we prove thatS| is at most|S’| (i.e. O(;—’g)), whereS
is the node pair set E Consider a node paijO, O’) in S. We
denote the node ii#” which comes from the same node in the par-
tition treeT,,, asO (resp.,0") by O, (resp.,0,). Since(O, O’)
are well-separatedQ.., O, ) are well-separated and thus, we could
find a node pairO., O,) in S’ containing (O, 0,). We call
(O, Oy) the corresponding pair of0, O’). Let O, (resp.,0})
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denote the node it which comes from the same nodelib,, as
the parent o0 (resp.,0") iN Teompress. Op andO;, are not well
separated, since otherwisg), O’) could not be generatedO,
(resp.,0,) must be on the path fro®, (resp.,0,) to O, (resp.,
O,) and any node on the path excludi@g andO,, (resp.,0, and
0,,) must have only one child. Thus, we obtain that any two differ
ent node pairs ir5 must have different corresponding pairs. Thus,
we obtain thatS| < |S'| = O( "’L) Since in each iteration of
the procedure of generatirffjy we extract one pair and insert more
than one pair t&5. The number of node pairs considered must be
at most 2 times the size of the finslland thus it isO(ﬂ)

LEMMA 12. The oracle building time oSE is O(Xeg N 4
nhlogn + %5 n).

PROOF. Proof Sketch. There are 3 terms in the time complex-
ity which corresponds to the running time of 1. all SSAD aitjon
performed (it is a final result considering that in Layéi € [0, ),
the radius of the search region of SSAD algorithm (resp.ntha-
ber of the nodes) is geometrically decreasing (resp., &sing)
with increasing ofi), 2. all heap/B+-tree operations (there are
O(nh) nodes, each of which také¥(log n) time for heap/B+-tree
operation) and 3. node pair generating algorithm (therédré; )
considered, each of which tak€gh) time). The running time of
other parts is hidden in the bi@ notation (see the full proof).

Detailed Proof. The oracle building time o8E consists of the
time ¢,,, of building the original partition tre&,,,, the timeta»
of transforming the partition tree to the compressed pantitree
Teompressed, the timet., of creating all the enhanced edges and
the timet,,, of generating the node pair set8E ¢,,, consists of
the running time of B+-tree operations, the point selectdgo-
rithm and all SSAD algorithms invoked. Note that we index & se
of points/nodes with a B+-tree and we find the parenbah Step
(iii) with a SSAD algorithm andl, (O, Oparent) is at most2ro due
to the covering property. The running time of all the B+-topera-
tions int,r, is O(nhlog n) since there aré layers and each layer
needsO(n) insertion/search operation in B+-tree. For the point
selection algorithm, theandom selection algorithrtakesO(nh)
time since there are at most nodes inT,,, and each takes at
mostO(1) time. Thegreedy selection algorithtakesO (nh log n)
time since in each layer since it tak@$n log n) time to create the
grid and corresponding B+-tree in each cell and there areoat m
O(n) heap operations and B+-tree operations. Itis obvious lieat t
overall running time of all SSAD algorithms performedtig, is
smaller thart.c,. tuan is O(nh) time since the partition tree has
O(nh) nodes. By Theorem 2, there are at m@$t€’;—’g) node pairs
considered in the procedure described in Section 3.3 argj#thu
is O(Z&p ). Next, we will analyze.,,.

We |ntroduce a new parameter of the terrain surface, dermted

0. 6 is defined to be the largest positive real number such that the

number of vertices on the terrain surface in a di¥l¢, r) is at least
2% times the number of vertices on the terrain surface contdime
the disk D(c, 5), wherec is a POI on the terrain surface and
is a positive real number. Thus, the number of vertices coada
in a disk centered at any POl is at mc%t times that in a disk
with double radius and the same center. For the root r{odg,

we expand the disl(co,,,.,70). For any node in other layers,

we expand the dislO(co,! - ro), wherel = % + 10. Note that
Vi € [[logl], h],l-r; < ro. SinceD(c,ro) is a sub-region on the
terrain surface, whereis any point on the surface, we obtain that
the vertices of terrain visited by SSAD algorithm invoked éach
node in layer: is at mostV, if ¢ € [0, [log ] — 1]; otherwise, itis
By Lemma 7, there are at mo&*?)* nodes in Layet. Thus,
we obtain thatt., is at mostO(ZZifog”’l@w)'Nlog N +

h (22#)iNlog® N (228)os 11 _q
2= log ] =TT ) O(Nlog? NP +

(226) [log 1] Zh [log 1] (22ﬂ) Nlog N)

2201
0((226)i1°g”1v10g N o (25)7). Our empirical study

verified that? > . Thus, we obtain thagz—s < 1 and thust., is
0((22%)N1o811-1 N 1og? N) = O(X19 X)) Thus, we obtain that
the oracle building time i©(X%6 Y | phlogn + 24). O

PROOF OFTHEOREM3. By Lemma 12, Theorem 2, and the
analysis in Section 3.4, we obtain the resulf]

C. A2ADISTANCE QUERY PROCESSING

We present an oracle to answer the arbitrary point-to+anyit
point (A2A) distance query based on our proposed distanae or
cle SE This oracle is the same as that presented in Section 3 ex-
cept that it takes some Steiner points introduced as ingte:da of
all POls, where Steiner points are introduced by the methiod p
posed in [13] (there ar@(sm(e) 7 log ) Steiner points, where
6 is the minimum inner angle of any face). Then, we present the
query processing. Given two arbitrary poigtandt, we first find
the neighborhood of (resp.,t), denoted by\ (s) (resp., N (1))

(It is a set of Steiner points on the same face containifigesp.,

t) and its adjacent face(s) [13]. Finally, we retufgi(s,t) =
min,e v (s),qen () ldg (5, 2) + dg (p, q) + dg (g, t)], wheredy (s, p)
and dy(q,t) could be computed in constant time by SSAD al-
gorithm andcfg(p, q) is the distance betweem and ¢ estimated
by the oracle constructed. By [13]N(s)| - IN(¢)| = ﬁle)e

and if d,(p,q) is an e-approximate distance of,(p,q), then
dy(s,1) is also ane-approximate distance af,(s,t). By Theo-

rem 3, we obtain that for any two Steiner poiptandgq, d4(p, q)
is an e-approximate distance af,(p, q) and it takesO(h ) time

to computed:,(p7 g) and the building time (resp oracle size) is

Nlog? N Nh 1, Nlog £
O( €28 + sin(6)v/e lOg € lOg sln(Q)f + sln(Q)ﬁe B IOg )
(resp. O(W log 1)). Thus, we obtain that for any two

arbitrary pointss andt, the oracle gives asrapproximate distance
of dy(s,t) and the query time |é)(bm(9) -).

D. DISCUSSION FOR CASE WHEN~» > N

Whenn > N, we adopt the same distance oracle described
in Appendix C, which is POIl-independent. This distance lerac
could answer not only A2A distance queries but also V2V dista
queries and P2P distance queries (because A2A distanciegjuer
could be regarded as a general setting compared with V2¥riist
queries and P2P distance queries).



