
Proximity Queries on Point Clouds using Rapid Construction
Path Oracle
YINZHAO YAN, The Hong Kong University of Science and Technology, Hong Kong

RAYMOND CHI-WING WONG, The Hong Kong University of Science and Technology, Hong Kong

The prevalence of computer graphics technology boosts the developments of point clouds in recent years,

which offer advantages over terrain surfaces (represented by Triangular Irregular Networks, i.e., TIN s) in

proximity queries, including the shortest path query, the 𝑘-Nearest Neighbor (kNN) query and the range query.
Since (1) all existing on-the-fly and oracle-based shortest path query algorithms on a TIN are very expensive,

(2) all existing on-the-fly shortest path query algorithms on a point cloud are still not efficient, and (3) there are

no oracle-based shortest path query algorithms on a point cloud, we propose an efficient (1 + 𝜖)-approximate

shortest path oracle that answers the shortest path query for a set of Points-Of-Interests (POIs) on the point

cloud, which has a good performance (in terms of the oracle construction time, oracle size and shortest path

query time) due to the concise information about the pairwise shortest paths between any pair of POIs stored

in the oracle. Our oracle can be easily adapted to answering the shortest path query for any points on the

point cloud if POIs are not given as input, and also achieve a good performance. Then, we propose efficient

algorithms for answering the (1 + 𝜖)-approximate kNN and range query with the assistance of our oracle. Our

experimental results show that when POIs are given (resp. not given) as input, our oracle is up to 390 times,

30 times and 6 times (resp. 500 times, 140 times and 50 times) better than the best-known oracle on a TIN in

terms of the oracle construction time, oracle size and shortest path query time, respectively. Our algorithms

for the other two proximity queries are both up to 100 times faster than the best-known algorithms.

CCS Concepts: • Information systems→ Proximity search.

Additional Key Words and Phrases: proximity queries; spatial database; point clouds

ACM Reference Format:
Yinzhao Yan and Raymond Chi-WingWong. 2024. Proximity Queries on Point Clouds using Rapid Construction

Path Oracle. Proc. ACM Manag. Data 2, 1 (SIGMOD), Article 6 (February 2024), 26 pages. https://doi.org/10.

1145/3639261

1 INTRODUCTION
Conducting proximity queries, including (1) the shortest path query, i.e., given a source 𝑠 and a

destination 𝑡 , which answers the shortest path between 𝑠 and 𝑡 , (2) the k-Nearest Neighbor (kNN)

query [51], i.e., given a query object 𝑞 and a user parameter 𝑘 , which answers all the shortest paths

from 𝑞 to the 𝑘 nearest objects of 𝑞, and (3) the range query [43], i.e., given a query object 𝑞 and a

range value 𝑟 , which answers all the shortest paths from 𝑞 to the objects whose distance to 𝑞 are at

most 𝑟 , on a 3D surface is a topic of widespread interest in both industry and academia [25, 58]. The

shortest path query is the most fundamental type of the proximity query. In industry, numerous

companies and applications, such as Google Earth [2] and Cyberpunk 2077 [4], utilize the shortest

path passing on a 3D surface (such as Earth) for route planning. In academia, the shortest path query

Authors’ addresses: Yinzhao Yan, The Hong Kong University of Science and Technology, Hong Kong, yyanas@cse.ust.hk;

Raymond Chi-Wing Wong, The Hong Kong University of Science and Technology, Hong Kong, raywong@cse.ust.hk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/2-ART6

https://doi.org/10.1145/3639261

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

HTTPS://ORCID.ORG/0000-0001-6261-1569
HTTPS://ORCID.ORG/0000-0001-7045-6503
https://doi.org/10.1145/3639261
https://doi.org/10.1145/3639261
https://orcid.org/0000-0001-6261-1569
https://orcid.org/0000-0001-7045-6503
https://doi.org/10.1145/3639261

6:2 Yinzhao Yan & Raymond Chi-Wing Wong

on a 3D model is a prevalent research topic in the field of databases [19, 30, 31, 39, 55, 56, 59, 60].

There are different representations of a 3D surface, including a terrain surface represented by a

Triangular Irregular Network (TIN) and a point cloud. While performing the shortest path query

on a TIN has been extensively studied, answering the shortest path query on a point cloud is an

emerging topic. For example, Tesla uses the shortest path passing on point clouds of the driving

environment for autonomous driving [12, 18, 38, 42], and Metaverse uses the shortest path passing

on point clouds of objects such as mountains for efficient navigation in Virtual Reality [36, 37].

Applications of the other two proximity queries include rover path planning [14] and military

tactical analysis [33].

Point cloud and TIN : (1) A point cloud is represented by a set of 3D points in space. Figure 1

(a) shows a satellite map of Mount Rainier [47] (a national park in the USA) in an area of 20km ×
20km, and Figure 1 (b) shows the point cloud with 63 points of Mount Rainier. Given a point cloud,

we create a conceptual graph of the point cloud, such that its vertices consist of the points in the

point cloud, and its edges consist of a set of edges between each vertex and its 8 neighbor vertices

in the 2D plane (where this graph is stored in the memory and used for the shortest path query).

Figure 1 (c) shows a conceptual graph of a point cloud. (2) A TIN contains a set of faces each of

which is denoted by a triangle. Each face consists of three line segments called edges connected
with each other at three vertices. The gray surface in Figure 1 (d) is a TIN of Mount Rainier, which

consists of vertices, edges and faces. We focus on three paths: (1) the path passing on (a conceptual

graph of) a point cloud in Figures 1 (b) and (c), (2) the surface path [31] passing on (the faces of) a

TIN in Figure 1 (d), and (3) the network path [31] passing on (the edges of a) a TIN in Figure 1 (e).

b

cd

a

cd

a

cd

a

cd

a

cd

a

(a) (b) (c) (d) (e)

Fig. 1. (a) A satellite map, (b) paths passing on a point cloud, (c) a conceptual graph of a point cloud, (d)
surface and (e) network paths passing on a TIN

1.1 Motivation
1.1.1 Advantages of point cloud. (1) Points clouds have four advantages compared with TIN s.

(i) More direct access to point cloud data. We can use an iPhone 12/13 Pro LiDAR scanner to scan

an object and generate a point cloud in 10s [54], or can use a satellite to obtain the elevation of

a region in an area of 1km
2
and generate a point cloud in 144s ≈ 2.4 min [44]. But, in order to

obtain a TIN of an object, typically, researchers need to transform a point cloud to a TIN [29]. Our

experimental results show that it needs 210s ≈ 3.5 min to transform a point cloud with 25M points

to a TIN.
(ii) Lower hard disk usage of a point cloud.We only store the point information of a point cloud in

hard disks, but a TIN model needs to store the vertex, edge and face information. Our experimental

results show that storing a point cloud with 25M points needs 390MB in the hard disk, but storing

a TIN generated by this point cloud needs 1.7GB in the hard disk.

(iii) Faster shortest path query time on a point cloud. After we transfer a point cloud to a TIN,
calculating the shortest path passing on the point cloud is faster than calculating the shortest

surface or network path passing on this TIN, since a TIN is more complicated than a point cloud.

In addition, calculating the shortest surface path passing on a TIN is even slower since the search

space is larger. Our experimental results show that calculating the shortest path passing on a point

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

ProximityQueries on Point Clouds using Rapid Construction Path Oracle 6:3

cloud with 2.5M points takes 3s, but calculating the shortest surface (resp. network) path passing

on a TIN constructed by the point cloud takes 580s ≈ 10 min (resp. 17s).

(iv) Small distance error of the shortest path passing on a point cloud. In Figures 1 (b) and (d), the

shortest path passing on a point cloud is similar to the shortest surface path passing on a TIN (since

for the former path, each point can connect with 8 neighbor points). But, in Figures 1 (d) and (e), the

shortest surface path and the shortest network path passing on a TIN are very different (since for

the latter path, each vertex can only connected with only 6 neighbor vertices). Our experimental

results show that the distance of the shortest path passing on a point cloud (resp. the shortest

network path passing on a TIN) is 1.008 (resp. 1.1) times larger than that of the shortest surface

path passing on a TIN.
(2) Although calculating the shortest path passing on a point cloud can be regarded as on a

conceptual graph of the point cloud, point clouds have two advantages compared with graphs, i.e.,

(i) there is no method to directly obtain a graph of an object, and (ii) we need to store the vertex

and edge information of a graph in hard disks. They are similar to (i) and (ii) in point (1). Our

experimental results show that storing a point cloud with 25M points needs 390MB in the hard

disk, but storing a graph generated by this point cloud needs 980MB in the hard disk.

1.1.2 P2P and A2A query. (1) Given a set of Points-Of-Interests (POIs) on a point cloud or a TIN,
conducting (i) the shortest path query between pairs of POIs, or (ii) the kNN and range query such

that the query object and other objects are all POIs, on the point cloud or the TIN, i.e., POIs-to-POIs
(P2P) query, is important. For example, we can select POIs as reference points when measuring

similarities between two different 3D objects [32, 52], and we can select POIs as residential locations

when studying migration patterns of the wildness animals [22, 40]. (2) If POIs are not given as

input, we need to conduct (i) the shortest path query between pairs of any points, or (ii) the kNN
and range query such that the query object and other objects are any points, on the point cloud, i.e.,

Any points-to-Any points (A2A) query, or (iii) the shortest path query between pairs of arbitrary

points, or (iv) the kNN and range query such that the query object and other objects are arbitrary

points, on the TIN, i.e., ARbitrary points-to-ARbitrary points (AR2AR) query. Note that the AR2AR
query on a TIN is more general than the A2A query on a point cloud since a point may lie on the

face of a TIN.

1.1.3 Usage of oracles. Although answering the proximity query on a point cloud on-the-fly is

fast, if we can pre-compute the pairwise P2P or A2A shortest paths by means of indexing (called an

oracle) on a point cloud, then we can use the oracle to answer the proximity query more efficiently,

where the time taken to pre-compute the oracle is called the oracle construction time, the space
complexity of the oracle is called the oracle size, and the time taken to return the shortest path is

called the shortest path query time.

1.1.4 Example. We conducted a case study on an evacuation simulation in Mount Rainier due to

snowfall [48]. In Figure 1 (a), we need to find the shortest paths (in blue and yellow lines) from one

of the viewing platforms (e.g., POI 𝑎) on the mountain to its 𝑘-nearest hotels (e.g., POIs 𝑏 to 𝑑) due

to the limited capacity of each hotel. In Figures 1 (b) - (e), 𝑐 and 𝑑 are the 𝑘-nearest hotels to 𝑎 where

𝑘 = 2. Our experimental results show that we can construct an oracle on a point cloud with 5M

points and 500 POIs (250 viewing platforms and 250 hotels) in 400s ≈ 6.6 min, but it needs 77,200s

≈ 21.4 hours on a TIN (constructed based on the same point cloud) to construct the same oracle. In

addition, we can return the shortest paths from each viewing platform to its 𝑘-nearest hotels in 6s

with the oracle, but it needs 4,400s ≈ 1.2 hours on a point cloud without the oracle. These show the

usefulness of performing proximity queries on point clouds using oracles in real-life applications.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

6:4 Yinzhao Yan & Raymond Chi-Wing Wong

1.2 Challenges
1.2.1 Inefficiency of on-the-fly algorithms. All existing algorithms [45, 53, 62] for conducting

proximity queries on a point cloud on-the-fly are very slow, since they (1) first construct a TIN
using the given point cloud in 𝑂 (𝑁) time, where 𝑁 is the number of points in the point cloud,

and (2) then calculate the shortest path passing on this TIN. For calculating the shortest surface
path passing on a TIN, the best-known on-the-fly exact [15] and approximate [30] algorithm run

in 𝑂 (𝑁 2) and 𝑂 ((𝑁 + 𝑁 ′) log(𝑁 + 𝑁 ′)) time, respectively, where 𝑁 ′ is the number of additional

points introduced for bound guarantee. For calculating the shortest network path passing on a TIN,
the best-known on-the-fly approximate algorithm [31] runs in 𝑂 (𝑁 log𝑁) time. Our experimental

results show (1) algorithm [15] needs 290,000s ≈ 3.4 days, (2) algorithm [30] needs 161,000s ≈ 1.9

days, and (3) algorithm [31] needs 15,000s ≈ 4.2 hours to perform the kNN query for all 500 objects

on a TIN (constructed by the given point cloud) with 0.5M vertices.

1.2.2 Non-existence of oracles. No existing oracle can answer proximity queries on a point

cloud. The best-known oracle [55, 56] for the P2P query and the best-known oracle [28] for the

AR2AR query only pre-compute shortest surface paths passing on a TIN. Although we can first

construct a TIN using the point cloud, then use [28, 55, 56] for point cloud oracle construction,

their oracle construction time is very large due to the bad criterion for algorithm earlier termination.
This is because although they use the Single-Source All-Destination (SSAD) algorithm [15, 30, 31],

i.e., a Dijkstra-based algorithm [23], to pre-compute the shortest surface path passing on the TIN
from each POI (or point) to other POIs (or points), and provide a criterion to terminate it earlier, its
criterion is very loose, and different POIs (or points) have the same earlier termination criterion. In

our experiment, even after the SSAD algorithm has visited most of the POIs (or points), their earlier

termination criterion are still not reached. After constructing a TIN using the given point cloud, the

oracle construction time is 𝑂 (𝑛𝑁 2 + 𝑐1𝑛) for the oracle [55, 56] and is 𝑂 (𝑐2𝑁 2) for the oracle [28],
respectively, where 𝑛 is the number of POIs on the point cloud and 𝑐1, 𝑐2 are constants depending

on the point cloud (𝑐1 ∈ [35, 80] on a point cloud with 2.5M points, 𝑐2 ∈ [75, 154] on a point cloud

with 100k points). In our experiment, the oracle construction time for the oracle [55, 56] is 78,000s

≈ 21.7 hours on a point cloud with 2.5M points and 500 POIs and for the oracle [28] is 50,000s ≈
13.9 hours on a point cloud with 100k points.

1.3 Our Oracle and ProximityQuery Algorithms
We propose an efficient (1 + 𝜖)-approximate shortest path oracle that answers the P2P shortest

path query on a point cloud called Rapid Construction path Oracle, i.e., RC-Oracle, which has a good

performance in terms of the oracle construction time, oracle size and shortest path query time

compared with the best-known oracle [55, 56] for the P2P query on a point cloud due to the concise

information about the pairwise shortest paths between any pair of POIs stored in the oracle, where

𝜖 is a non-negative real user parameter called an error parameter. RC-Oracle can be easily adapted to

answer the A2A shortest path query on the point cloud if POIs are not given as input (we denote it

as RC-Oracle-A2A), and also achieve a good performance compared with the best-known oracle [28]

for the A2A query on a point cloud. Based on RC-Oracle and RC-Oracle-A2A, we develop efficient

(1 + 𝜖)-approximate proximity query algorithms. We introduce the key idea of the small oracle

construction time of RC-Oracle.
(1) Rapid point cloud on-the-fly shortest path query algorithm: When constructing RC-

Oracle, we propose algorithm Fast on-the-Fly shortest path query, i.e., FastFly, which is a Dijkstra-

based algorithm [23] returning its calculated shortest path passing on a point cloud. It can signifi-

cantly reduce the algorithm’s running time, since computing the shortest path passing on a TIN is

expensive.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

ProximityQueries on Point Clouds using Rapid Construction Path Oracle 6:5

(2) Rapid oracle construction: When constructing RC-Oracle, we use algorithm FastFly, i.e.,
a SSAD algorithm, to calculate the shortest path passing on the point cloud from for each POI to

other POIs simultaneously, and set different earlier termination criterion for different POIs, i.e., this

criterion is tight.

1.4 Contributions and Organization
We summarize our major contributions as follows.

(1) We propose RC-Oracle, which is the first oracle that efficiently answers the shortest path

queries on a point cloud. We also propose algorithm FastFly used for constructing RC-Oracle, and
develop efficient proximity query algorithms using RC-Oracle.

(2) We provide theoretical analysis on (i) the oracle construction time, oracle size, shortest path

query time and error bound of RC-Oracle, (ii) the shortest path query time and error bound of

algorithm FastFly, (iii) the kNN query time, range query time and error bound for proximity queries,

and (iv) the distance relationships of the shortest path passing on a point cloud or a TIN.
(3) RC-Oracle performs much better than the best-known oracle [55, 56] for the P2P query and

RC-Oracle-A2A performs much better than the best-known oracle [28] for the A2A query on a

point cloud in terms of the oracle construction time, oracle size and shortest path query time. The

kNN and range query time with the assistance of RC-Oracle and RC-Oracle-A2A also perform much

better than the best-known oracles [28, 55, 56]. Our experimental results show that (i) for the P2P

query on a point cloud with 2.5M points and 500 POIs, the oracle construction time and oracle size

for RC-Oracle is 200s ≈ 3.2 min and 50MB, but is 78,000s ≈ 21.7 hours and 1.5GB for the best-known

oracle [55, 56], (ii) the kNN and range query time of all 500 POIs for RC-Oracle are both 12.5s, but

the best-known oracle [55, 56] needs 150s, and the best-known on-the-fly approximate shortest

surface path query algorithm [30] on the TIN (constructed by the given cloud) needs 161,000s ≈ 1.9

days, and (iii) for the A2A query on a point cloud with 100k points and 5000 objects, the oracle

construction time, oracle size and kNN query time for RC-Oracle-A2A is 100s ≈ 1.6 min, 150M and

0.25s, but is 50,000s ≈ 13.9 hours, 21GB and 12.5s for the best-known oracle [28]. RC-Oracle also
supports real-time responses, i.e., it can construct the oracle in 0.4s and answer the kNN query and

range query in both 7ms on a point cloud with 10k points and 250 POIs.

The remainder of the paper is organized as follows. Section 2 provides the problem definition.

Section 3 covers the related work. Section 4 presents the methodology. Section 5 covers the empirical

studies and Section 6 concludes the paper.

2 PROBLEM DEFINITION
2.1 Notations and Definitions
2.1.1 Point cloud and TIN. Given a set of points, we let𝐶 be a point cloud of these points, and 𝑁

be the number of points in 𝐶 . Each point 𝑝 ∈ 𝐶 has three coordinate values, denoted by 𝑥𝑝 , 𝑦𝑝 and

𝑧𝑝 . We let 𝑥max and 𝑥min (resp. 𝑦max and 𝑦min) be the maximum and minimum 𝑥 (resp. 𝑦) coordinate

value for all points in𝐶 . We let 𝐿𝑥 = 𝑥max−𝑥min (resp. 𝐿𝑦 = 𝑦max−𝑦min) be the side length of𝐶 along

𝑥-axis (resp. 𝑦-axis), and 𝐿 = max(𝐿𝑥 , 𝐿𝑦). Figure 2 (a) shows a point cloud 𝐶 with 𝐿𝑥 = 𝐿𝑦 = 4.

In this paper, the point cloud 𝐶 that we considered is a grid-based point cloud [11, 24], because a

grid-based 3D object, e.g., a grid-based point cloud [11, 24] and a grid-based TIN [20, 39, 51, 55, 56],

is commonly adopted in many papers. Given a point 𝑝 in 𝐶 , we define 𝑁 (𝑝) to be a set of neighbor

points of 𝑝 , which denotes the closest top, bottom, left, right, top-left, top-right, bottom-left and

bottom-right points of 𝑝 in the 𝑥𝑦 coordinate 2D plane. In Figure 2 (a), given a green point 𝑞, 𝑁 (𝑞)
is denoted as 7 blue points and 1 red point 𝑠 . We can easily extend our problem to the non-grid-

based point cloud. Given a point 𝑝 in a non-grid-based point cloud, we just change 𝑁 (𝑝) to be

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

6:6 Yinzhao Yan & Raymond Chi-Wing Wong

a set of neighbor points of 𝑝 such that the Euclidean distance between 𝑝 and all points in this

non-grid-based point cloud is smaller than a user-defined parameter. Let 𝑃 be a set of POIs each of

which is a point on the point cloud and 𝑛 be the size of 𝑃 . Since a POI can only be a point on 𝐶 ,

𝑛 ≤ 𝑁 , i.e., POIs are a subset of points in a point cloud. Let 𝑇 be a TIN triangulated [46] by the

points in 𝐶 . Figure 2 (b) shows an example of a TIN 𝑇 . In this figure, given a green vertex 𝑞, the

neighbor vertices of 𝑞 are 6 blue vertices.

t

s

Lx

Ly
q

t

s
q

(a) (b)

(c)

(d)

Fig. 2. (a) A point cloud with orange Π∗ (𝑠, 𝑡 |𝐶), (b) a TIN with blue Π∗ (𝑠, 𝑡 |𝑇) and pink Π𝑁 (𝑠, 𝑡 |𝑇), (c) a
conceptual graph of a point cloud, and (d) a conceptual graph of a TIN

2.1.2 Conceptual graph. We define 𝐺 to be a conceptual graph of 𝐶 . Let 𝐺.𝑉 and 𝐺.𝐸 be the set

of vertices and edges of𝐺 . Each point in𝐶 is denoted by a vertex in𝐺.𝑉 . For each point 𝑞 ∈ 𝐶 ,𝐺.𝐸

consists of a set of edges between 𝑞 and 𝑞′ ∈ 𝑁 (𝑞). Figure 2 (c) shows a conceptual graph of a point

cloud. Given a pair of points 𝑝 and 𝑝′ in 3D space, we define 𝑑𝐸 (𝑝, 𝑝′) to be the Euclidean distance

between 𝑝 and 𝑝′. Given a pair of POIs 𝑠 and 𝑡 in 𝑃 , (1) let Π∗ (𝑠, 𝑡 |𝐶) = (𝑠 = 𝑞1, 𝑞2, . . . , 𝑞𝑙 = 𝑡), with
𝑙 ≥ 2, be the exact shortest path passing on (𝐺 of)𝐶 between 𝑠 and 𝑡 , such that (i) each 𝑞𝑖 is a vertex

in 𝐺.𝑉 , (ii) each (𝑞𝑖 , 𝑞𝑖+1) is an edge in 𝐺.𝐸, and (iii)

∑𝑙−1
𝑖=1 𝑑𝐸 (𝑞𝑖 , 𝑞𝑖+1) is the minimum, and (2) let

Π(𝑠, 𝑡 |𝐶) be the shortest path returned by RC-Oracle. The shortest path passing on 𝐶 from a source

(POI) to a destination (POI) can contain different sub-paths where a sub-path starts from a point

on 𝐶 to another point on 𝐶 , i.e., the differences between the points and POIs are that (1) we use

points (from 𝐶) to construct𝐺 , and then calculate the shortest path passing on 𝐺 , but (2) we use

POIs as sources and destinations to calculate the shortest path. 𝐺 is stored as a data structure in

the memory for internal processing and 𝐶 can be cleared from the memory, so we do not need to

construct𝐺 every time when we need to calculate the shortest path passing on𝐶 . Our experimental

results show that it just needs 0.01s to construct 𝐺 of 𝐶 with 2.5M points. Figure 2 (a) shows an

example of Π∗ (𝑠, 𝑡 |𝐶) in orange line. We define | · | to be the distance ofa path (e.g., |Π∗ (𝑠, 𝑡 |𝐶) | is
the distance ofΠ∗ (𝑠, 𝑡 |𝐶)). RC-Oracle guarantees that |Π(𝑠, 𝑡 |𝐶) | ≤ (1 + 𝜖) |Π∗ (𝑠, 𝑡 |𝐶) | for any 𝑠 and
𝑡 in 𝑃 .

Similar to𝐺 , we define𝐺 ′ to be a conceptual graph of 𝑇 . Let𝐺 ′ .𝑉 and𝐺 ′ .𝐸 be the set of vertices

and edges of 𝐺 ′, where each vertex in 𝑇 is denoted by a vertex in 𝐺 ′ .𝑉 , and each edge in 𝑇 is

denoted by an edge in 𝐺 ′ .𝐸. Figure 2 (d) shows a conceptual graph of a TIN. Given a pair of POIs 𝑠

and 𝑡 in 𝑃 , (1) let Π∗ (𝑠, 𝑡 |𝑇) = (𝑠 =𝑚1,𝑚2, . . . ,𝑚𝑙 = 𝑡) be the exact shortest surface path passing on

𝑇 between 𝑠 and 𝑡 , such that (i) each𝑚𝑖 is a point along an edge of 𝑇 , and (ii)

∑𝑙−1
𝑖=1 𝑑𝐸 (𝑚𝑖 ,𝑚𝑖+1) is

the minimum, (2) let Π𝑁 (𝑠, 𝑡 |𝑇) = (𝑠 = 𝑛1, 𝑛2, . . . , 𝑛𝑙 = 𝑡) be the shortest network path passing on

(𝐺 ′ of) 𝑇 between 𝑠 and 𝑡 , such that (i) each 𝑛𝑖 is a vertex in 𝐺
′ .𝑉 , (ii) each (𝑛𝑖 , 𝑛𝑖+1) is an edge in

𝐺 ′ .𝐸, and (iii)

∑𝑙−1
𝑖=1 𝑑𝐸 (𝑛𝑖 , 𝑛𝑖+1) is the minimum. 𝐺 ′ is also stored as a data structure in the memory

for internal processing and 𝑇 can be cleared from the memory. Figure 2 (b) shows an example of

Π∗ (𝑠, 𝑡 |𝑇) in blue line and Π𝑁 (𝑠, 𝑡 |𝑇) in pink line. Table 1 shows a notation table.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

ProximityQueries on Point Clouds using Rapid Construction Path Oracle 6:7

Table 1. Summary of frequent used notations

Notation Meaning
𝐶 The point cloud with a set of points

𝑁 The number of points of𝐶

𝐿 The maximum side length of𝐶

𝑑𝐸 (𝑝, 𝑝′) The Euclidean distance between point 𝑝 and 𝑝′

𝑃 The set of POI

𝑛 The number of vertices of 𝑃

𝜖 The error parameter

𝑇 The TIN constructed by𝐶

Π∗ (𝑠, 𝑡 |𝐶) The exact shortest path passing on𝐶 between 𝑠 and 𝑡

|Π∗ (𝑠, 𝑡 |𝐶) | The distance ofΠ∗ (𝑠, 𝑡 |𝐶)
Π (𝑠, 𝑡 |𝐶) The shortest path passing on𝐶 between 𝑠 and 𝑡 returned by RC-Oracle
Π∗ (𝑠, 𝑡 |𝑇) The exact shortest surface path passing on𝑇 between 𝑠 and 𝑡

Π𝑁 (𝑠, 𝑡 |𝑇) The shortest network path passing on𝑇 between 𝑠 and 𝑡

2.1.3 P2P and A2A query. By creating POIs that have the same coordinate values as all points in

the point cloud, the A2A query can be regarded as one form of the P2P query. Furthermore, in the

P2P query, there is no need to consider the case when a new POI is added or removed. In the case

when a POI is added, we can create an oracle to answer the A2A query, which implies we have

considered all possible POIs to be added. In the case when a POI is removed, we can still use the

original oracle.

2.2 Problem
The problem is to (1) design an efficient (1 + 𝜖)-approximate shortest path oracle on a point cloud

with the state-of-the-art performance in terms of the oracle construction time, oracle size and

shortest path query time, and (2) use this oracle for efficiently answering the (1 + 𝜖)-approximate

kNN and range query.

3 RELATEDWORK
3.1 On-the-fly Algorithms
All existing on-the-fly proximity query algorithms [45, 53, 62] on a point cloud are very slow. Given

a point cloud, they first triangulate it into a TIN [46] in𝑂 (𝑁) time, then they calculate the shortest

path passing on this TIN. To the best of our knowledge, no algorithm can answer proximity queries

on a point cloud directly without converting it to a TIN. There are two types of TIN shortest path

query algorithms, i.e., (1) the shortest surface path [15, 30, 35, 41, 57] and (2) the shortest network
path [31] query algorithms.

3.1.1 Shortest surface path query algorithms. There are two more sub-types. (1) Exact algo-
rithms: Algorithm [41] (resp. algorithm [57]) uses continuous Dijkstra (resp. checking window)

algorithm to calculate the result in 𝑂 (𝑁 2
log𝑁) (resp. 𝑂 (𝑁 2

log𝑁)) time, and the best-known

exact shortest surface path query algorithm Chen and Han, i.e., algorithm CH [15] (as recognized

by [30, 31, 51, 58]) unfolds the 3D TIN into a 2D TIN, and then connects the source and destination

using a line segment on this 2D TIN to calculate the result in 𝑂 (𝑁 2) time. But, algorithm CH
(without constructing a TIN first) cannot be directly adapted on the point cloud, because there

is no face to be unfolded in a point cloud. (2) Approximate algorithms: All algorithms [30, 35]

place discrete points (i.e., Steiner points) on edges of a TIN, and then construct a graph using

these Steiner points together with the original vertices to calculate the result. The best-known

(1 + 𝜖)-approximate shortest surface path query algorithm, i.e., algorithm Kaul [30] (as recognized

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

6:8 Yinzhao Yan & Raymond Chi-Wing Wong

by [55, 56]) runs in 𝑂 (𝑙max𝑁

𝜖𝑙min
√
1−cos𝜃

log(𝑙max𝑁

𝜖𝑙min
√
1−cos𝜃

)) time, where 𝑙max (resp. 𝑙min) is the length of

the longest (resp. shortest) edge of the TIN, and 𝜃 is the minimum inner angle of any face in the

TIN. If we let the path pass on the conceptual graph of the point cloud, algorithm Kaul (without
constructing a TIN first) can be adapted on the point cloud, and it becomes algorithm FastFly.

3.1.2 Shortest network path query algorithm. Since the shortest network path does not cross

the faces of a TIN, it is an approximate path. The best-known approximate shortest network path

query algorithm Dijkstra, i.e., algorithm Dijk [31] runs in 𝑂 (𝑁 log𝑁) time. If we let the path pass

on the conceptual graph of the point cloud, algorithm Dijk (without constructing a TIN first) can

be adapted on the point cloud, and it becomes algorithm FastFly.
Drawbacks of the on-the-fly algorithms: Although we can pre-process the point cloud

and store the generated TIN as a data structure in the memory, all these algorithms are still

time-consuming. Since the time for calculating the shortest path passing on a TIN is 10
2
to 10

5

times larger than the time for converting a point cloud to a TIN. Thus, the latter time can be

neglected. We denote algorithm (1) CH-Adapt, (2) Kaul-Adapt and (3) Dijk-Adapt, to be the adapted

algorithm [45, 53, 62], which first constructs a TIN using the given point cloud (i.e., we store the

TIN as a data structure in the memory and clear the given point cloud from the memory), and then

use algorithm (1) CH [15], (2) Kaul [30] and (3) Dijk [31] to compute the corresponding shortest

path passing on the TIN. Since we regard the shortest path passing on a point cloud as the exact

shortest path, algorithm CH-Adapt, Kaul-Adapt and Dijk-Adapt return the approximate shortest

path passing on a point cloud. Our experimental results show algorithm CH-Adapt, Kaul-Adapt
and Dijk-Adapt first needs to convert a point cloud with 0.5M points to a TIN in 4.2s, then perform

the kNN query for all 2500 objects on this TIN in 290,000s ≈ 3.2 days, 90,000s ≈ 1 day and 15,000s

≈ 4.2 hours, respectively.

3.2 Oracles for the shortest path query
No existing oracle can answer the shortest path query between pairs of POIs (or any points) on

a point cloud. But, Space Efficient Oracle (SE-Oracle) [55, 56] (resp. Efficiently ARbitrary pints-to-
arbitrary points Oracle (EAR-Oracle) [28]) can answer the P2P (resp. AR2AR) by using an oracle to

index shortest surface paths passing on a TIN. We denote (1) SE-Oracle-Adapt to be the adapted

oracle of SE-Oracle [55, 56] that first constructs a TIN from a point cloud (i.e., we store the TIN as a

data structure in the memory and clear the given point cloud from the memory), then uses SE-Oracle
on this TIN. Similarly, we denote (2) EAR-Oracle-Adapt as the adapted oracle of EAR-Oracle [28].
By performing a linear scan using the shortest path query results, they can answer other proximity

queries.

3.2.1 SE-Oracle-Adapt. It uses a compressed partition tree [55, 56] and well-separated node pair
sets [13] to index the (1 + 𝜖)-approximate pairwise P2P shortest surface paths passing on a TIN
(constructed by the given point cloud). Its oracle construction time, oracle size and shortest path

query time are𝑂 (𝑛𝑁 2 + 𝑛ℎ

𝜖2𝛽
+𝑛ℎ log𝑛),𝑂 (𝑛ℎ

𝜖2𝛽
) and𝑂 (ℎ2), respectively, where ℎ is the height of the

compressed partition tree and 𝛽 ∈ [1.5, 2] is the largest capacity dimension [55, 56]. It is regarded

as the best-known oracle for the P2P query on a point cloud.

Drawbacks of SE-Oracle-Adapt: Its oracle construction time is large due to the bad criterion
for algorithm earlier termination. For POIs in the same level of the compressed partition tree, they

have the same earlier termination criteria. But, in RC-Oracle, we have different earlier termination

criteria for each different POI, to minimize the running time of the SSAD algorithm. In the P2P

query on a point cloud, for a point cloud with 2.5M points and 500 POIs, the oracle construction

time of SE-Oracle-Adapt is 78,000s ≈ 21.7 hours, while RC-Oracle just needs 200s ≈ 3.2 min.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

ProximityQueries on Point Clouds using Rapid Construction Path Oracle 6:9

3.2.2 EAR-Oracle-Adapt. It also uses well-separated node pair sets, which is similar to SE-Oracle-
Adapt. But, EAR-Oracle-Adapt adapts SE-Oracle-Adapt from the P2P query on a point cloud to the

A2A query on a point cloud by using Steiner points on the faces of the TIN (constructed by the given

point cloud) and highway nodes as POIs in well-separated node pair sets construction. Its oracle

construction time, oracle size and shortest path query time are 𝑂 (𝜆𝜉𝑚𝑁 2 + 𝑁 2

𝜖2𝛽
+ 𝑁ℎ

𝜖2𝛽
+ 𝑁ℎ log𝑁),

𝑂 (𝜆𝑚𝑁
𝜉
+ 𝑁ℎ

𝜖2𝛽
) and 𝑂 (𝜆𝜉 log(𝜆𝜉)), respectively, where 𝜆 is the number of highway nodes covered

by a minimum square, 𝜉 is the square root of the number of boxes, and𝑚 is the number of Steiner

points per face. It is regarded as the best-known oracle for the A2A query on a point cloud.

Drawbacks of EAR-Oracle-Adapt: It also has the bad criterion for algorithm earlier termination
drawback. In the A2A query on a point cloud, for a point cloud with 100k points, the oracle

construction time of EAR-Oracle-Adapt is 50,0000s ≈ 13.9 hours, while RC-Oracle-A2A just needs

100s ≈ 1.6 min.

3.3 Oracles for other proximity queries
No existing oracle can answer proximity queries on a point cloud. But, studies [20, 21, 51] build an

oracle to answer proximity queries on a TIN. Specifically, studies [20, 21] use a multi-resolution

terrain model (resp. SUrface Oracle (SU-Oracle) [51] uses a surface index) to answer the kNN query

on a TIN in𝑂 (𝑁 2) (resp.𝑂 (𝑁 log
2 𝑁)) time. We adapt SU-Oracle to be SU-Oracle-Adapt in a similar

way of SE-Oracle-Adapt. Although SU-Oracle-Adapt is regarded as the best-known oracle to directly

answer the kNN query, studies [55, 56] show the kNN query time of SU-Oracle-Adapt is up to 5

times larger than that of using SE-Oracle-Adapt with a linear scan of the shortest path query result.

3.4 Comparisons
We compare RC-Oracle, algorithm FastFly and other algorithms that support the shortest path

query on a point cloud in Table 2. Recall that when constructing RC-Oracle, we have different
earlier termination criteria for different POIs when using algorithm FastFly. We denote the naive

version of our oracle as RC-Oracle-Naive if no earlier termination criterion is used. From the table,

RC-Oracle is the best oracle and algorithm FastFly is the best on-the-fly algorithm.

Table 2. Comparison of algorithms (support the shortest path query) on a point cloud

Algorithm Oracle construction time Oracle size Shortest path query time Error
Oracle-based algorithm

SE-Oracle-Adapt [55, 56]
𝑂 (𝑛𝑁 2 + 𝑛ℎ

𝜖2𝛽

+𝑛ℎ log𝑛)
Large 𝑂 (𝑛ℎ

𝜖2𝛽
) Medium 𝑂 (ℎ2) Small Small

EAR-Oracle-Adapt [28]
𝑂 (𝜆𝜉𝑚𝑁 2 + 𝑁 2

𝜖2𝛽

+ 𝑁ℎ

𝜖2𝛽
+ 𝑁ℎ log𝑁)

Large

𝑂 (𝜆𝑚𝑁
𝜉

+ 𝑁ℎ

𝜖2𝛽
) Large 𝑂 (𝜆𝜉 log(𝜆𝜉)) Medium Small

RC-Oracle-Naive 𝑂 (𝑛𝑁 log𝑁 + 𝑛2) Medium 𝑂 (𝑛2) Large 𝑂 (1) Tiny Small

RC-Oracle (ours) 𝑶 (
𝑵 log𝑵

𝝐 + 𝒏 log𝒏) Small 𝑶 (𝒏
𝝐) Small 𝑶 (1) Tiny Small

On-the-fly algorithm
CH-Adapt [15] - N/A - N/A 𝑂 (𝑁 2) Large Small

Kaul-Adapt [30] - N/A - N/A

𝑂 (𝑙max𝑁
𝜖𝑙min

√
1−cos𝜃

log(𝑙max𝑁
𝜖𝑙min

√
1−cos𝜃

))
Large Small

Dijk-Adapt [31] - N/A - N/A 𝑂 (𝑁 log𝑁) Medium Medium

FastFly (ours) - N/A - N/A 𝑶 (𝑵 log𝑵) Medium No error

Remark: 𝑛 << 𝑁 , ℎ is the height of the compressed partition tree, 𝛽 is the largest capacity dimension [55, 56],

𝜆 is the number of highway nodes covered by a minimum square, 𝜉 is the square root of the number of boxes,

𝑚 is the number of Steiner points per face, 𝜃 is the minimum inner angle of any face in 𝑇 , 𝑙max (resp. 𝑙min) is

the length of the longest (resp. shortest) edge of 𝑇 .

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

6:10 Yinzhao Yan & Raymond Chi-Wing Wong

4 METHODOLOGY
4.1 Overview of RC-Oracle
We first use an example to illustrate RC-Oracle. In Figure 3 (a), we have a point cloud and a set of

POIs. In Figures 3 (b) - (e), we construct RC-Oracle by calculating the shortest paths among these

POIs. In Figure 3 (f), we answer the shortest path query between two POIs using RC-Oracle. Next,
we introduce the two components and two phases of RC-Oracle.

a
b

c

d
e

Key Value
⟨a, b⟩ Π∗(a, b|C)
⟨a, c⟩ Π∗(a, c|C)
⟨a, d⟩ Π∗(a, d|C)
⟨a, e⟩ Π∗(a, e|C)
⟨b, c⟩ Π∗(b, c|C)
… …

MpathKey Value
b a
d c Mend

Construction phase Shortest path
query phase

(a) (b) (c) (d) (e) (f)

a
b

c

d
e

a
b

c

d
e

x

y

a
b

c

d
e

a
b

c

d
e

Fig. 3. RC-Oracle framework overview

4.1.1 Components of RC-Oracle. There are two components, i.e., the path map table and the

endpoint map table.
(1) The path map table𝑀path is a hash table [17] that stores a set of key-value pairs. For each

key-value pair, it stores a pair of endpoints (i.e., POIs)𝑢 and 𝑣 , as a key ⟨𝑢, 𝑣⟩, and the corresponding
exact shortest path Π∗ (𝑢, 𝑣 |𝐶) passing on 𝐶 , as a value. 𝑀path needs linear space in terms of the

number of paths to be stored. Given a pair of endpoints (i.e., POIs) 𝑢 and 𝑣 , 𝑀path can return the

associated exact shortest path Π∗ (𝑢, 𝑣 |𝐶) passing on 𝐶 in 𝑂 (1) time. In Figure 3 (d), there are 7

exact shortest paths passing on𝐶 , and they are stored in𝑀path in Figure 3 (e). For the exact shortest

paths passing on 𝐶 between 𝑏 and 𝑐 ,𝑀path stores ⟨𝑏, 𝑐⟩ as a key and Π∗ (𝑏, 𝑐 |𝐶) as a value.
(2) The endpoint map table𝑀end is a hash table that stores a set of key-value pairs. For each

key-value pair, it stores an endpoint (i.e., a POI) 𝑢 as a key (such that we do not store all the

exact shortest paths passing on 𝐶 in𝑀path from 𝑢 to other non-processed endpoints), and another

endpoint (i.e., a POI) 𝑣 as a value (such that 𝑣 is close to 𝑢, and we concatenate Π∗ (𝑢, 𝑣 |𝐶) and the

exact shortest paths passing on 𝐶 with 𝑣 as a source, to approximate the shortest paths passing on

𝐶 with 𝑢 as a source). The space consumption and query time of𝑀end is similar to𝑀path. In Figure 3

(d), 𝑎 is close to 𝑏, we concatenate Π∗ (𝑏, 𝑎 |𝐶) and the exact shortest paths passing on 𝐶 with 𝑎 as a

source, to approximate the shortest paths passing on 𝐶 with 𝑏 as a source, so we store 𝑏 as a key

and 𝑎 as a value in𝑀end in Figure 3 (e).

4.1.2 Phases of RC-Oracle. There are two phases, i.e., construction phase and shortest path query
phase (see Figure 3). (1) In the construction phase, given a point cloud 𝐶 and a set of POIs 𝑃 , we

pre-compute the exact shortest paths passing on𝐶 between some selected pairs of POIs, store them

in𝑀path, and store the non-selected POIs and their corresponding selected POIs in𝑀end. (2) In the

shortest path query phase, given a pair of POIs,𝑀path and𝑀end, we answer the path results between

this pair of POIs efficiently.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

ProximityQueries on Point Clouds using Rapid Construction Path Oracle 6:11

4.2 Key Idea of RC-Oracle
4.2.1 Small oracle construction time. We give the reason why RC-Oracle has a small oracle

construction time.

(1) Rapid point cloud on-the-fly shortest path querying by algorithm FastFly: When

constructing RC-Oracle, given a point cloud 𝐶 and a pair of POIs 𝑠 and 𝑡 on 𝐶 , we use algorithm

FastFly (a Dijkstra’s algorithm [23]) to directly calculate the exact shortest path passing on the

conceptual graph of𝐶 between 𝑠 and 𝑡 . Figure 4 (a) shows the shortest path passing on a point cloud

calculated by algorithm FastFly, and Figure 4 (b) (resp. Figure 4 (c)) shows the shortest surface (resp.
network) path passing on a TIN calculated by algorithm CH-Adapt (resp. Dijk-Adapt) of Mount

Rainier in an area of 20km × 20km. The path in Figures 4 (a) and (b) are similar, but calculating the

former path is much faster than the latter path, since the query region of the former path is smaller

than the latter path. The path in Figure 4 (c) has a larger error than the path in Figure 4 (a). Thus,

we use algorithm FastFly as the on-the-fly algorithm for constructing RC-Oracle.

(a) (b)

s

t

s

t

s

t
(c)

Fig. 4. (a) The shortest path passing on a point cloud, the shortest
(b) surface and (c) network path passing on a TIN

a
b

c

d
e

D

Fig. 5. SE-Oracle-Adapt

(2) Rapid oracle construction: When constructing RC-Oracle, we regard each POI as a source

and use algorithm FastFly, i.e., a SSAD algorithm, for 𝑛 times for oracle construction, and we assign

a different earlier termination criteria for each POI to terminate the SSAD algorithm earlier for time-

saving. There are two versions of a SSAD algorithm. (i) Given a source POI and a set of destination

POIs, the SSAD algorithm can terminate earlier if it has visited all destination POIs. (ii) Given a

source POI and a termination distance (denoted by 𝐷), the SSAD algorithm can terminate earlier if

the searching distance from the source POI is larger than 𝐷 . We use the first version. For each POI,

by considering more geometry information of the point cloud, including the Euclidean distance

and the distance of the previously calculated shortest paths, we use different earlier termination

criteria to calculate the corresponding destination POIs, such that the number of destination POIs

is minimized, and these destination POIs are closer to the source POI compared with other POIs.

We use an example for illustration. In Figure 3 (a), we have a set of POIs 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 . In Figure 3

(b) - (d), we process these POIs based on their 𝑦-coordinate, i.e., we process them in the order of

𝑎, 𝑏, 𝑐, 𝑑, 𝑒 . In Figure 3 (b), for 𝑎, we use the SSAD algorithm (i.e., FastFly) to calculate the shortest

paths passing on 𝐶 from 𝑎 to all other POIs. We store the paths in 𝑀path. In Figure 3 (c), for 𝑏, if

𝑏 is close to 𝑎, i.e., judged using the previously calculated |Π∗ (𝑎, 𝑏 |𝐶) |, and 𝑏 is far away from 𝑑

(resp. 𝑒), i.e., judged using the Euclidean distance 𝑑𝐸 (𝑏, 𝑑) (resp. 𝑑𝐸 (𝑏, 𝑒)), we can use Π∗ (𝑏, 𝑎 |𝐶)
and Π∗ (𝑎, 𝑑 |𝐶) (resp. Π∗ (𝑏, 𝑎 |𝐶) and Π∗ (𝑎, 𝑒 |𝐶)) to approximate Π∗ (𝑏, 𝑑 |𝐶) (resp. Π∗ (𝑏, 𝑒 |𝐶)). Thus,
we just need to use the SSAD algorithm with 𝑏 as a source, and terminate earlier when it has visited

𝑐 . We store the path in𝑀path, and 𝑏 as key and 𝑎 as value in𝑀end. In Figure 3 (d), for 𝑐 , we repeat

the process as of for 𝑎. We store the paths in𝑀path. Similarly, for 𝑑 , we use |Π∗ (𝑐, 𝑑 |𝐶) | and 𝑑𝐸 (𝑐, 𝑒)
to determine whether we can terminate the SSAD algorithm earlier with 𝑑 as a source. We found

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

6:12 Yinzhao Yan & Raymond Chi-Wing Wong

that there is even no need to use the SSAD algorithm with 𝑑 as the source. For different POIs 𝑏 and

𝑑 , we use different termination criteria (i.e., |Π∗ (𝑎, 𝑏 |𝐶) | and 𝑑𝐸 (𝑏, 𝑑) for 𝑏, |Π∗ (𝑐, 𝑑 |𝐶) | and 𝑑𝐸 (𝑐, 𝑒)
for 𝑑) to calculate a different set of destination POIs for time-saving. We store 𝑑 as key and 𝑐 as

value in𝑀end. In Figure 3 (e), we have𝑀path and𝑀end.

However, in SE-Oracle-Adapt, it has the bad criterion for algorithm earlier termination drawback.

After the construction of the compressed partition tree, it pre-computes the shortest surface paths

passing on 𝑇 using the SSAD algorithm (i.e., CH-Adapt) with each POI as a source for 𝑛 times, to

construct the well-separated node pair sets. It uses the second version of the SSAD algorithm and

sets termination distance 𝐷 = 8𝑟
𝜖
+ 10𝑟 , where 𝑟 is the radius of the source POI in the compressed

partition tree. Given two POIs 𝑎 and 𝑏 in the same level of the tree, their termination distances

are the same (suppose that the value is 𝑑1). However, for 𝑎, it is enough to terminate the SSAD
algorithm when the searching distance from 𝑎 is larger than 𝑑2, where 𝑑2 < 𝑑1. This results in a

large oracle construction time. In Figure 5, when processing 𝑑 , suppose that 𝑏 and 𝑑 are in the same

level of the tree, and they use the same termination criteria to get the same termination distance 𝐷 .

Since |Π∗ (𝑑, 𝑒 |𝐶) | < 𝐷 , for 𝑑 , it cannot terminate the SSAD algorithm earlier until 𝑒 is visited. The

two versions of the SSAD algorithm are similar, we achieve a small oracle construction time mainly

by using different termination criteria for different POIs, unlike using the same termination criteria

for different POIs in SE-Oracle-Adapt.

4.2.2 Small oracle size. We introduce the reason why RC-Oracle has a small oracle size. We only

store a small number of paths in RC-Oracle, i.e., we do not store the paths between any pairs of

POIs. In Figure 3 (d), for a pair of POIs 𝑏 and 𝑑 , we use Π∗ (𝑏, 𝑎 |𝐶) and Π∗ (𝑎, 𝑑 |𝐶) to approximate

Π∗ (𝑏, 𝑑 |𝐶), i.e., we will not store Π∗ (𝑏, 𝑑 |𝐶) in𝑀path for memory saving.

4.2.3 Small shortest path query time. We use an example to introduce the reason why RC-
Oracle has a small shortest path query time. In Figure 3 (f), in the shortest path query phase of

RC-Oracle, we need to query the shortest path passing on 𝐶 (1) between 𝑎 and 𝑑 , and (2) between 𝑏

and 𝑑 . (1) For 𝑎 and 𝑑 , since ⟨𝑎, 𝑑⟩ ∈ 𝑀path.key, we can directly return Π∗ (𝑎, 𝑑 |𝐶). (2) For 𝑏 and 𝑑 ,

since ⟨𝑏, 𝑑⟩ ∉ 𝑀path .key, 𝑏 and 𝑑 are both keys in𝑀end, we use the key 𝑏 with a smaller 𝑦-coordinate

value to retrieve the value 𝑎 in 𝑀end, then in 𝑀path, we use ⟨𝑏, 𝑎⟩ and ⟨𝑎, 𝑑⟩ to retrieve Π∗ (𝑏, 𝑎 |𝐶)
and Π∗ (𝑎, 𝑑 |𝐶), for approximating Π∗ (𝑏, 𝑑 |𝐶).

4.3 Implementation Details of RC-Oracle
4.3.1 Construction Phase. Given a point cloud 𝐶 and a set of POIs 𝑃 , RC-Oracle pre-computes

the exact shortest paths passing on 𝐶 between some selected pairs of POIs, stores them in𝑀path,

and stores the non-selected POIs and their corresponding POIs in𝑀end.

Notation: Let 𝑃remain = {𝑝1, 𝑝2, . . . } be a set of remaining POIs of 𝑃 that we have not used

algorithm FastFly to calculate the exact shortest paths passing on 𝐶 with 𝑝𝑖 ∈ 𝑃remain as a source.

𝑃remain is initialized to be 𝑃 . Given a POI 𝑞, let 𝑃dest (𝑞) = {𝑝1, 𝑝2, . . . } be a set of POIs of 𝑃 that

we need to use FastFly to calculate the exact shortest paths passing on 𝐶 from 𝑞 to 𝑝𝑖 ∈ 𝑃dest (𝑞).
𝑃dest (𝑞) is empty at the beginning. In Figure 3 (c), 𝑃remain = {𝑐, 𝑑, 𝑒} since we have not used FastFly
to calculate the exact shortest paths with 𝑐 , 𝑑 , 𝑒 as source, 𝑃dest (𝑏) = {𝑐} since we need to use

FastFly to calculate the exact shortest path from 𝑏 to 𝑐 .

Detail and example: Algorithm 1 shows the construction phase in detail, and the following

illustrates it with an example.

(1) POIs sort (lines 2-3): In Figure 3 (b), since 𝐿𝑥 < 𝐿𝑦 , the sorted POIs are 𝑎, 𝑏, 𝑐 , 𝑑 , 𝑒 .

(2) Shortest paths calculation (lines 4-20): There are two steps.

(i) Exact shortest paths calculation (lines 5-9): In Figure 3 (b), 𝑎 has the smallest 𝑦-coordinate based

on the sorted POIs in 𝑃remain, we delete 𝑎 from 𝑃remain (so 𝑃remain = 𝑃 ′remain = {𝑏, 𝑐, 𝑑, 𝑒}), calculate

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

ProximityQueries on Point Clouds using Rapid Construction Path Oracle 6:13

Algorithm 1 Construction (𝐶, 𝑃)

Input: a point cloud 𝐶 and a set of POIs 𝑃

Output: a path map table𝑀path and an endpoint map table𝑀end
1: 𝑃remain ← 𝑃,𝑀path ← ∅, 𝑀end ← ∅
2: if 𝐿𝑥 ≥ 𝐿𝑦 (resp. 𝐿𝑥 < 𝐿𝑦) then
3: sort POIs in 𝑃remain in ascending order using 𝑥-coordinate (resp. 𝑦-coordinate)

4: while 𝑃remain is not empty do
5: 𝑢 ← a POI in 𝑃remain with the smallest 𝑥-coordinate / 𝑦-coordinate

6: 𝑃remain ← 𝑃remain − {𝑢}, 𝑃 ′remain ← 𝑃remain
7: calculate the exact shortest paths passing on 𝐶 from 𝑢 to each POI in 𝑃 ′remain simultaneously using

algorithm FastFly
8: for each POI 𝑣 ∈ 𝑃 ′remain do
9: key← ⟨𝑢, 𝑣⟩, value← Π∗ (𝑢, 𝑣 |𝐶),𝑀path ← 𝑀path ∪ {key, value}
10: sort POIs in 𝑃 ′remain in ascending order using the exact distance on 𝐶 between 𝑢 and each 𝑣 ∈ 𝑃remain,

i.e., |Π∗ (𝑢, 𝑣 |𝐶) |
11: for each sorted POI 𝑣 ∈ 𝑃 ′remain such that |Π∗ (𝑢, 𝑣 |𝐶) | ≤ 𝜖𝐿 do
12: 𝑃remain ← 𝑃remain − {𝑣}, 𝑃 ′remain ← 𝑃 ′remain − {𝑣}, 𝑃dest (𝑣) ← ∅
13: for each POI𝑤 ∈ 𝑃 ′remain do
14: if 𝑑𝐸 (𝑣,𝑤) > 2

𝜖 · |Π
∗ (𝑢, 𝑣 |𝐶) | and 𝑣 ∉ 𝑀end .key then

15: key← 𝑣 , value← 𝑢,𝑀end ← 𝑀end ∪ {key, value}
16: else if 𝑑𝐸 (𝑣,𝑤) ≤ 2

𝜖 · |Π
∗ (𝑢, 𝑣 |𝐶) | then

17: 𝑃dest (𝑣) ← 𝑃dest (𝑣) ∪ {𝑤}
18: calculate the exact shortest paths passing on 𝐶 from 𝑣 to each POI in 𝑃dest (𝑣) simultaneously using

algorithm FastFly
19: for each POI𝑤 ∈ 𝑃dest (𝑣) do
20: key← ⟨𝑣,𝑤⟩, value← Π∗ (𝑣,𝑤 |𝐶),𝑀path ← 𝑀path ∪ {key, value}
21: return 𝑀path and𝑀end

the exact shortest paths passing on 𝐶 from 𝑎 to 𝑏, 𝑐 , 𝑑 , 𝑒 (in purple lines) using algorithm FastFly,
and store each POIs pair as a key and the corresponding path as a value in𝑀path.

(ii) Shortest paths approximation (lines 10-20): In Figure 3 (c), 𝑏 is the POI in 𝑃 ′remain closest to 𝑎, 𝑐

is the POI in 𝑃 ′remain second closest to 𝑎, so the following order is 𝑏, 𝑐, There are two cases:

• Approximation loop start (lines 11-20): In Figure 3 (c), we first select 𝑎’s closest POI in 𝑃 ′remain, i.e.,

𝑏, since 𝑑𝐸 (𝑎, 𝑏) ≤ 𝜖𝐿, it means 𝑎 and 𝑏 are not far away, we start the approximation loop, delete

𝑏 from 𝑃remain and 𝑃
′
remain, so 𝑃remain = 𝑃 ′remain = {𝑐, 𝑑, 𝑒}. There are three steps:

– Far away POIs selection (lines 13-15): In Figure 3 (c), 𝑑𝐸 (𝑏, 𝑑) > 2

𝜖
· |Π∗ (𝑎, 𝑏 |𝐶) |, 𝑑𝐸 (𝑏, 𝑒) >

2

𝜖
· |Π∗ (𝑎, 𝑏 |𝐶) |, 𝑑 ∉ 𝑀end.key and 𝑒 ∉ 𝑀end.key, it means 𝑑 and 𝑒 are far away from 𝑏, we can use

Π∗ (𝑏, 𝑎 |𝐶) and Π∗ (𝑎, 𝑑 |𝐶) that we have already calculated before to approximate Π∗ (𝑏, 𝑑 |𝐶),
and use Π∗ (𝑏, 𝑎 |𝐶) and Π∗ (𝑎, 𝑒 |𝐶) that we have already calculated before to approximate

Π∗ (𝑏, 𝑒 |𝐶), so we get Π(𝑏, 𝑑 |𝐶) by concatenating Π∗ (𝑏, 𝑎 |𝐶) and Π∗ (𝑎, 𝑑 |𝐶), and get Π(𝑏, 𝑒 |𝐶)
by concatenating Π∗ (𝑏, 𝑎 |𝐶) and Π∗ (𝑎, 𝑒 |𝐶), we store 𝑏 as key and 𝑎 as value in𝑀end.

– Close POIs selection (line 13 and lines 16-17): In Figure 3 (c), 𝑑𝐸 (𝑏, 𝑐) ≤ 2

𝜖
· |Π∗ (𝑎, 𝑏 |𝐶) |, it means

𝑐 is close to 𝑏, so we cannot use any existing exact shortest paths passing on𝐶 to approximate

Π∗ (𝑏, 𝑐 |𝐶), then we store 𝑐 into 𝑃dest (𝑏).
– Selected exact shortest paths calculation (lines 18-20): In Figure 3 (c), when we have processed all

POIs in 𝑃 ′remain with 𝑏 as a source, we have 𝑃dest (𝑏) = {𝑐}, we use algorithm FastFly to calculate

the exact shortest path passing on 𝐶 between 𝑏 and 𝑐 , i.e., Π∗ (𝑏, 𝑐 |𝐶) (in green line), and store

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

6:14 Yinzhao Yan & Raymond Chi-Wing Wong

⟨𝑏, 𝑐⟩ as a key and Π∗ (𝑏, 𝑐 |𝐶) as a value in𝑀path. Note that we can terminate algorithm FastFly
earlier since we just need to visit POIs that are close to 𝑏, and we do not need to visit 𝑑 and 𝑒 .

• Approximation loop end (line 11): In Figure 3 (c), since we have processed 𝑏, and 𝑃 ′remain = {𝑐, 𝑑, 𝑒},
we select 𝑎’s closest POI in 𝑃 ′remain, i.e., 𝑐 , since 𝑑𝐸 (𝑎, 𝑐) > 𝜖𝐿, it means 𝑎 and 𝑐 are far away, and

it is unlikely to have a POI𝑚 that satisfies 𝑑𝐸 (𝑐,𝑚) > 2

𝜖
· |Π∗ (𝑎, 𝑐 |𝐶) |, we end the approximation

loop and terminate the iteration.

(3) Shortest paths calculation iteration (lines 4-20): In Figure 3 (d), we repeat the iteration, and

calculate the exact shortest paths passing on 𝐶 with 𝑐 as a source (in orange lines).

4.3.2 Shortest PathQuery Phase. Given a pair of POIs 𝑠 and 𝑡 in 𝑃 ,𝑀path and𝑀end, RC-Oracle ef-
ficiently answers the associated shortest pathΠ(𝑠, 𝑡 |𝐶) passing on𝐶 , which is a (1+𝜖)-approximated

exact shortest path of Π∗ (𝑠, 𝑡 |𝐶) in 𝑂 (1) time. Given a pair of POIs 𝑠 and 𝑡 , there are two cases (𝑠

and 𝑡 are interchangeable, i.e., ⟨𝑠, 𝑡⟩ = ⟨𝑡, 𝑠⟩):
(1) Exact shortest path retrieval: If ⟨𝑠, 𝑡⟩ ∈ 𝑀path .key, we retrieve Π∗ (𝑠, 𝑡 |𝐶) using ⟨𝑠, 𝑡⟩ in 𝑂 (1)

time (in Figures 3 (d) and (e), given 𝑎 and 𝑑 , since ⟨𝑎, 𝑑⟩ ∈ 𝑀path.key, we retrieve Π∗ (𝑎, 𝑑 |𝐶)).
(2) Approximate shortest path retrieval: If ⟨𝑠, 𝑡⟩ ∉ 𝑀path .key, it means Π∗ (𝑠, 𝑡 |𝐶) is approximated

by two exact shortest paths passing on 𝐶 in𝑀path, and (i) either 𝑠 or 𝑡 is a key in𝑀end, or (ii) both

𝑠 and 𝑡 are keys in𝑀end. Without loss of generality, suppose that (i) 𝑠 exists in𝑀end if either 𝑠 or

𝑡 is a key in 𝑀end, or (ii) the 𝑥- (resp. 𝑦-) coordinate of 𝑠 is smaller than 𝑡 when 𝐿𝑥 ≥ 𝐿𝑦 (resp.

𝐿𝑥 < 𝐿𝑦) if both 𝑠 and 𝑡 are keys in𝑀end. For both of two cases, we retrieve the value 𝑠′ using the
key 𝑠 from𝑀end in 𝑂 (1) time, then retrieve Π∗ (𝑠, 𝑠′ |𝐶) and Π∗ (𝑠′, 𝑡 |𝐶) from𝑀path using ⟨𝑠, 𝑠′⟩ and
⟨𝑠′, 𝑡⟩ in𝑂 (1) time, and use Π∗ (𝑠, 𝑠′ |𝐶) and Π∗ (𝑠′, 𝑡 |𝐶) to approximate Π∗ (𝑠, 𝑡 |𝐶) ((i) in Figures 3 (d)

and (e), given 𝑏 and 𝑒 , since ⟨𝑏, 𝑒⟩ ∉ 𝑀path .key, 𝑏 is a key in𝑀end, so we retrieve the value 𝑎 using

the key 𝑏 in 𝑀end, then in 𝑀path, we use ⟨𝑏, 𝑎⟩ and ⟨𝑎, 𝑒⟩ to retrieve Π∗ (𝑏, 𝑎 |𝐶) and Π∗ (𝑎, 𝑒 |𝐶), for
approximating Π∗ (𝑏, 𝑒 |𝐶), or (ii) in Figure 3 (d), (e) and (f), given 𝑏 and 𝑑 , since ⟨𝑏, 𝑑⟩ ∉ 𝑀path .key,
𝑏 and 𝑑 are both keys in 𝑀end, and 𝐿𝑥 < 𝐿𝑦 , we use the key 𝑏 with a smaller 𝑦-coordinate value

to retrieve the value 𝑎 in 𝑀end, then in 𝑀path, we use ⟨𝑏, 𝑎⟩ and ⟨𝑎, 𝑑⟩ to retrieve Π∗ (𝑏, 𝑎 |𝐶) and
Π∗ (𝑎, 𝑑 |𝐶), for approximating Π∗ (𝑏, 𝑑 |𝐶)).

4.4 Adaption to RC-Oracle-A2A
We can adapt RC-Oracle (that answers the P2P query) to be RC-Oracle-A2A (that answers the A2A

query) on a point cloud, by simply creating POIs that have the same coordinate values as all points

in the point cloud. We just need to pre-compute the exact shortest paths passing on the point cloud

between some selected pairs of points on the point cloud (not all pairs of points on the point cloud),

so RC-Oracle-A2A also has a small oracle construction time, small oracle size and small shortest

path query time.

4.5 ProximityQuery Algorithms
Given a point cloud 𝐶 , a set of 𝑛′ objects 𝑂 on 𝐶 , a query object 𝑞 ∈ 𝑂 , a user parameter 𝑘 and a

range value 𝑟 , we can answer other proximity queries, i.e., the kNN and range query using RC-Oracle
and RC-Oracle-A2A. In the P2P query (resp. A2A query), these objects are POIs in 𝑃 (resp. any

points on𝐶). A naive algorithm is to perform a linear scan using the shortest path query results. We

propose an efficient algorithm for it. Intuitively, when constructing RC-Oracle or RC-Oracle-A2A,
we have used the SSAD algorithm to calculate the shortest paths passing on 𝐶 with 𝑞 as a source

and sorted these paths in ascending order based on their distance in𝑀path (we can use an additional

table to store these sorted paths). For these paths, we do not need to perform linear scans over all

of them in proximity queries for time-saving. Since the proximity query algorithms for RC-Oracle
and RC-Oracle-A2A are similar, we use RC-Oracle as an example for illustration.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

ProximityQueries on Point Clouds using Rapid Construction Path Oracle 6:15

Detail and example: There are two cases. For both two cases, we can then return the corre-

sponding kNN and range query results.

(1) Approximation needed in direct result return: If 𝑞 ∈ 𝑀end.key, it means we need to use two

paths in𝑀path to approximate some other paths in a later stage, we retrieve the value 𝑞′ using the

key 𝑞 from𝑀end (in Figures 3 (d) and (e), 𝑏 ∈ 𝑀end.key, we retrieve the value 𝑎 using the key 𝑏 from

𝑀end), there are two more cases:

(i) Linear scan: For objects with a smaller 𝑥- (resp. 𝑦-) coordinate compared with 𝑞′ when 𝐿𝑥 ≥ 𝐿𝑦
(resp. 𝐿𝑥 < 𝐿𝑦), we perform a linear scan on the shortest path query result between 𝑞 and these

objects (in Figures 3 (d) and (e), since 𝐿𝑥 < 𝐿𝑦 , there is no POI with a smaller𝑦-coordinate compared

with 𝑎).

(ii)Direct result return: For objects (not including𝑞) with a larger 𝑥- (resp.𝑦-) coordinate compared

with 𝑞′ when 𝐿𝑥 ≥ 𝐿𝑦 (resp. 𝐿𝑥 < 𝐿𝑦) (in Figures 3 (d) and (e), since 𝐿𝑥 < 𝐿𝑦 , the POIs with a larger

𝑦-coordinate compared with 𝑎 are {𝑐, 𝑑, 𝑒}), there are further more two cases:

• Direct result return without approximation: If the endpoint pairs of 𝑞 and these objects are keys in

𝑀path, it means that we have used the SSAD algorithm with 𝑞 as a source for such objects and

we have already sorted such paths in order, so we can directly return the corresponding result

(in Figures 3 (d) and (e), since ⟨𝑏, 𝑐⟩ ∈ 𝑀path .key, we know that |Π∗ (𝑏, 𝑐 |𝐶) | is sorted in order, but

since there is only one distance, it does not matter whether itself is sorted in order or not).

• Direct result return with approximation: If the endpoint pairs of 𝑞 and these objects are not keys in

𝑀path, it means that we have used the SSAD algorithm with 𝑞′ as a source for such objects and we

have already sort such paths in order, we just need to use the exact distance between 𝑞′ and these
objects plus |Π∗ (𝑞′, 𝑞 |𝐶) |, to get the approximate distance between 𝑞 and 𝑜 in sorted order, so we

can directly return the corresponding result (in Figures 3 (d) and (e), since ⟨𝑏, 𝑑⟩ ∉ 𝑀path .key and

⟨𝑏, 𝑒⟩ ∉ 𝑀path .key, we know that |Π∗ (𝑎, 𝑑 |𝐶) | and |Π∗ (𝑎, 𝑒 |𝐶) | are sorted in order, so |Π(𝑏, 𝑑 |𝐶) |
and |Π(𝑏, 𝑒 |𝐶) | are also sorted in order).

(2) Approximation not needed in direct result return: If 𝑞 ∉ 𝑀end.key, it means we do need to

use two paths in 𝑀path to approximate all other paths in a later stage (in Figures 3 (d) and (e),

𝑐 ∉ 𝑀end .key), there are two more cases:

(i) Linear scan: For objects with a smaller 𝑥- (resp. 𝑦-) coordinate compared with 𝑞 when 𝐿𝑥 ≥ 𝐿𝑦
(resp. 𝐿𝑥 < 𝐿𝑦), we perform a linear scan on the shortest path query result between 𝑞 and these

objects (in Figures 3 (d) and (e), since 𝐿𝑥 < 𝐿𝑦 , the POIs with a smaller 𝑦-coordinate compared with

𝑐 are {𝑎, 𝑏}, we perform a linear scan on the shortest path query result between 𝑐 and {𝑎, 𝑏}).
(ii) Direct result return: For objects with a larger 𝑥- (resp. 𝑦-) coordinate compared with 𝑞 when

𝐿𝑥 ≥ 𝐿𝑦 (resp. 𝐿𝑥 < 𝐿𝑦), we have used the SSAD algorithm with 𝑞 as a source for such objects and

we have already sorted such paths in order, so we can directly return the corresponding result (in

Figures 3 (d) and (e), since 𝐿𝑥 < 𝐿𝑦 , the POIs with a larger 𝑦-coordinate compared with 𝑐 are {𝑑, 𝑒},
we know that |Π∗ (𝑐, 𝑑 |𝐶) | and |Π∗ (𝑐, 𝑒 |𝐶) | are sorted in order).

4.6 Theoretical Analysis
4.6.1 Algorithm FastFly, RC-Oracle and RC-Oracle-A2A. The analysis of Algorithm FastFly
is in Theorem 4.1, and the analysis of RC-Oracle and RC-Oracle-A2A are Theorem 4.2.

Theorem 4.1. The shortest path query time and memory consumption of algorithm FastFly are
𝑂 (𝑁 log𝑁) and 𝑂 (𝑁). Algorithm FastFly returns the exact shortest path passing on the point cloud.

Proof. Since algorithm FastFly is a Dijkstra algorithm and there are total 𝑁 points, we obtain

the shortest path query time and memory consumption. Since Dijkstra algorithm is guaranteed to

return the exact shortest path, algorithm FastFly returns the exact shortest path passing on the

point cloud. □

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

6:16 Yinzhao Yan & Raymond Chi-Wing Wong

Theorem 4.2. The oracle construction time, oracle size and shortest path query time of (1) RC-Oracle
are𝑂 (𝑁 log𝑁

𝜖
+𝑛 log𝑛),𝑂 (𝑛

𝜖
),𝑂 (1) and (2) RC-Oracle-A2A are𝑂 (𝑁 log𝑁

𝜖
),𝑂 (𝑁

𝜖
),𝑂 (1), respectively.

RC-Oracle always have |Π(𝑠, 𝑡 |𝐶) | ≤ (1 + 𝜖) |Π∗ (𝑠, 𝑡 |𝐶) | for any pairs of POIs 𝑠 and 𝑡 in 𝑃 , and RC-
Oracle-A2A always have |ΠRC-Oracle-A2A (𝑠, 𝑡 |𝐶) | ≤ (1 + 𝜖) |Π∗ (𝑠, 𝑡 |𝐶) | for any pairs of points 𝑠 and 𝑡
on 𝐶 , where ΠRC-Oracle-A2A (𝑠, 𝑡 |𝐶) is the shortest path of RC-Oracle-A2A passing on 𝐶 between 𝑠 and 𝑡 .

Proof. We give the proof for RC-Oracle as follows.
Firstly, we show the oracle construction time. (1) In POIs sort step, it needs 𝑂 (𝑛 log𝑛) time. Since

there are 𝑛 POIs, and we use the quick sort for sorting. (2) In shortest paths calculation step, it needs

𝑂 (𝑁 log𝑁

𝜖
+ 𝑛) time. (i) It needs to use 𝑂 (1

𝜖
) POIs as a source to run algorithm FastFly for the exact

shortest paths calculation according to standard packing property [27], and each algorithm FastFly
needs𝑂 (𝑁 log𝑁) time. (ii) For other𝑂 (𝑛) POIs that there is no need to use them as a source to run

algorithm FastFly, we just calculate the Euclidean distance from these POIs to other POIs in 𝑂 (1)
time for the shortest paths approximation. (3) So the oracle construction time is𝑂 (𝑁 log𝑁

𝜖
+𝑛 log𝑛).

Secondly, we show the oracle size. (1) For 𝑀end, its size is 𝑂 (𝑛) since there are 𝑛 POIs. (2) For

𝑀path, its size is 𝑂 (𝑛𝜖). We store (i) 𝑂 (𝑛
𝜖
) exact shortest paths passing on 𝐶 from 𝑂 (1

𝜖
) POIs (that

uses algorithm FastFly as a source and cover all other POIs) to other 𝑂 (𝑛) POIs, and (ii) 𝑂 (𝑛) exact
shortest paths passing on𝐶 from𝑂 (𝑛) POIs (that uses algorithm FastFly as a source and cover only

some of POIs) to other 𝑂 (1) POIs. (3) So the oracle size is 𝑂 (𝑛
𝜖
).

Thirdly, we show the shortest path query time. (1) If Π∗ (𝑠, 𝑡 |𝐶) ∈ 𝑀path, the shortest path query

time is 𝑂 (1). (2) If Π∗ (𝑠, 𝑡 |𝐶) ∉ 𝑀path, we need to retrieve 𝑠′ from 𝑀end using 𝑠 in 𝑂 (1) time, and

retrieve Π∗ (𝑠, 𝑠′ |𝐶) and Π∗ (𝑠′, 𝑡 |𝐶) from𝑀path using ⟨𝑠, 𝑠′⟩ and ⟨𝑠′, 𝑡⟩ in 𝑂 (1) time, so the shortest

path query time is still 𝑂 (1). Thus, the shortest path query time of RC-Oracle is 𝑂 (1).
Fourthly, we show the error bound. Given a pair of POIs 𝑠 and 𝑡 , if Π∗ (𝑠, 𝑡 |𝐶) exists in 𝑀path,

then there is no error. Thus, we only consider the case that Π∗ (𝑠, 𝑡 |𝐶) does not exist in 𝑀path.

Suppose that 𝑢 is a POI close to 𝑠 , such that Π(𝑠, 𝑡 |𝐶) is calculated by concatenating Π∗ (𝑠,𝑢 |𝐶)
and Π∗ (𝑢, 𝑡 |𝐶). This means that 𝑑𝐸 (𝑠, 𝑡) > 2

𝜖
· Π∗ (𝑢, 𝑠 |𝐶). So we have |Π∗ (𝑠,𝑢 |𝐶) | + |Π∗ (𝑢, 𝑡 |𝐶) | <

|Π∗ (𝑠,𝑢 |𝐶) | + |Π∗ (𝑢, 𝑠 |𝐶) | + |Π∗ (𝑠, 𝑡 |𝐶) | = |Π∗ (𝑠, 𝑡 |𝐶) | + 2 · |Π∗ (𝑢, 𝑠 |𝐶) | < |Π∗ (𝑠, 𝑡 |𝐶) | + 𝜖 ·𝑑𝐸 (𝑠, 𝑡) ≤
|Π∗ (𝑠, 𝑡 |𝐶) | + 𝜖 · |Π∗ (𝑠, 𝑡 |𝐶) | = (1 + 𝜖) |Π∗ (𝑠, 𝑡 |𝐶) |. The first inequality is due to triangle inequality.

The second equation is because |Π∗ (𝑢, 𝑠 |𝐶) | = |Π∗ (𝑠,𝑢 |𝐶) |. The third inequality is because we have

𝑑𝐸 (𝑠, 𝑡) > 2

𝜖
· Π∗ (𝑢, 𝑠 |𝐶). The fourth inequality is because the Euclidean distance between two

points is no larger than the distance of the shortest path passing on the point cloud between the

same two points.

We give the proof for RC-Oracle-A2A as follows. We need to change (1) 𝑛 to 𝑁 in the oracle

construction time and oracle size, and (2) any pairs of POIs in 𝑃 to any pairs of points on 𝐶 in the

error bound. □

4.6.2 The shortest path passing on a point cloud and the shortest surface or network
path passing on a TIN. We show the relationship of |Π∗ (𝑠, 𝑡 |𝐶) | with |Π𝑁 (𝑠, 𝑡 |𝑇) | and |Π∗ (𝑠, 𝑡 |𝑇) |
in Lemma 4.3.

Lemma 4.3. Given a pair of points 𝑠 and 𝑡 on 𝐶 , we have (1) |Π∗ (𝑠, 𝑡 |𝐶) | ≤ |Π𝑁 (𝑠, 𝑡 |𝑇) | and (2)
|Π∗ (𝑠, 𝑡 |𝐶) | ≤ 𝑘 · |Π∗ (𝑠, 𝑡 |𝑇) |, where 𝑘 = max{ 2

sin𝜃
, 1

sin𝜃 cos𝜃
}.

Proof. (1) In Figure 2 (a), given a green point 𝑞 on 𝐶 , it can connect with one of its 8 neighbor

points (7 blue points and 1 red point 𝑠). In Figure 2 (b), given a green vertex𝑞 on𝑇 , it can only connect

with one of its 6 blue neighbor vertices. So |Π∗ (𝑠, 𝑡 |𝐶) | ≤ |Π𝑁 (𝑠, 𝑡 |𝑇) |. (2) We let Π𝐸 (𝑠, 𝑡 |𝑇) be the
shortest path passing on the edges of𝑇 (where these edges belong to the faces that Π∗ (𝑠, 𝑡 |𝑇) passes)
between 𝑠 and 𝑡 . According to left hand side equation in Lemma 2 of [31], we have |Π𝐸 (𝑠, 𝑡 |𝑇) | ≤

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

ProximityQueries on Point Clouds using Rapid Construction Path Oracle 6:17

𝑘 · |Π∗ (𝑠, 𝑡 |𝑇) |. Since Π𝑁 (𝑠, 𝑡 |𝑇) considers all the edges on 𝑇 , |Π𝑁 (𝑠, 𝑡 |𝑇) | ≤ |Π𝐸 (𝑠, 𝑡 |𝑇) |. Thus, we
finish the proof by combining these inequalities. □

4.6.3 Proximity query algorithms. We provide analysis on the proximity query algorithms

using RC-Oracle and RC-Oracle-A2A. For the kNN and range query, both of them return a set of

objects. Given a query object 𝑞, we let 𝑣 𝑓 (resp. 𝑣
′
𝑓
) be the furthest object to 𝑞 among the returned

objects calculated using the exact distance on 𝐶 (resp. the approximated distance on 𝐶 returned

by RC-Oracle). In Figure 1 (a), suppose that the exact 𝑘 nearest POIs (𝑘 = 2) of 𝑎 is 𝑐 , 𝑑 . And 𝑑 is

the furthest POI to 𝑎 in these two POIs, i.e., 𝑣 𝑓 = 𝑑 . Suppose that our kNN query algorithm finds

the 𝑘 nearest POIs (𝑘 = 2) of 𝑎 is 𝑏, 𝑐 . And 𝑏 is the furthest POI to 𝑎 in these two POIs, i.e., 𝑣 ′
𝑓
= 𝑏.

We define the error rate of the kNN and range query to be

|Π∗ (𝑞,𝑣′
𝑓
|𝐶) |

|Π∗ (𝑞,𝑣𝑓 |𝐶) | , which is a real number no

smaller than 1. In Figure 1 (a), the error rate is
|Π∗ (𝑎,𝑏 |𝐶) |
|Π∗ (𝑎,𝑑 |𝐶) | . Then, we show the query time and error

rate of kNN and range query using RC-Oracle and RC-Oracle-A2A in Theorem 4.4.

Theorem 4.4. The query time and error rate of both the kNN and range query by using RC-Oracle
and RC-Oracle-A2A are both 𝑂 (𝑛′) and 1 + 𝜖 , respectively.

Proof Sketch. The query time is due to the usages of the shortest path query phase of RC-Oracle
and RC-Oracle-A2A for 𝑛′ times in the worst case. The error rate is due to its definition and the

error of RC-Oracle and RC-Oracle-A2A. The detailed proof appears in our technical report [61]. □

5 EMPIRICAL STUDIES
5.1 Experimental Setup
We conducted our experiments on a Linux machine with 2.2 GHz CPU and 512GB memory. All

algorithms were implemented in C++. Our experimental setup generally follows the setups in

the literature [30, 31, 39, 55, 56]. We conducted experiments with point clouds and TIN s as input,

separately.

Datasets: (1) Point cloud datasets: We conducted our experiment based on 34 real point cloud

datasets in Table 3, where the subscript 𝑝 means a point cloud. For BH𝑝 and EP𝑝 datasets, they

are represented as a point cloud with 8km × 6km covered region. For GF𝑝 , LM𝑝 and RM𝑝 , we first

obtained the satellite map from Google Earth [2] with 8km × 6km covered region, and then used

Blender [1] to generate the point cloud. These five original datasets have a resolution of 10m ×
10m [20, 39, 51, 55, 56]. We extracted 500 POIs using OpenStreetMap [55, 56] for these datasets in

the P2P query. For small-version datasets, we use the same region of the original datasets with a

(lower) resolution of 70m × 70m and the dataset generation procedure in [39, 55, 56] to generate

them. This procedure can be found in our technical report [61]. In addition, we have six sets

of multi-resolution datasets with different numbers of points generated using the original and

small-version datasets with the same procedure. (2) TIN datasets: Based on the 34 point cloud

datasets, we triangulate [46] them and generate another 34 TIN datasets, and use 𝑡 as the subscript.

For example, BH𝑡 means a TIN dataset generated using the BH𝑝 point cloud dataset.

Algorithms: (1) Algorithms that support the shortest path query (and also other proximity

queries) on a point cloud (i.e., algorithms for solving the problem studied in this paper): We adapted

existing algorithms, originally designed for the problem on TIN s, for our problem on point clouds

by performing the triangulation approach on the point cloud to obtain a TIN [46] (i.e., we store

the TIN as a data structure in the memory and clear the given point cloud from the memory) so

that the existing algorithm could be used. Their algorithm names are appended by “-Adapt”. We

have four on-the-fly algorithms, i.e., (i) CH-Adapt [15], (ii) Kaul-Adapt [30], (iii) Dijk-Adapt [31],
and (iv) FastFly: our algorithm. We have four oracles, i.e., (v) SE-Oracle-Adapt: the best-known

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

6:18 Yinzhao Yan & Raymond Chi-Wing Wong

Table 3. Point cloud datasets

Name |𝑵 |

Original dataset
BearHead (BH𝑝) [5, 55, 56] 0.5M

EaglePeak (EP𝑝) [5, 55, 56] 0.5M

GunnisonForest (GF𝑝) [7] 0.5M

LaramieMount (LM𝑝) [8] 0.5M

RobinsonMount (RM𝑝) [3] 0.5M

Small-version dataset
BH𝑝 -small 10k

EP𝑝 -small 10k

GF𝑝 -small 10k

LM𝑝 -small 10k

RM𝑝 -small 10k

Multi-resolution dataset
BH𝑝 multi-resolution 1M, 1.5M, 2M, 2.5M

EP𝑝 multi-resolution 1M, 1.5M, 2M, 2.5M

GF𝑝 multi-resolution 1M, 1.5M, 2M, 2.5M

LM𝑝 multi-resolution 1M, 1.5M, 2M, 2.5M

RM𝑝 multi-resolution 1M, 1.5M, 2M, 2.5M

EP𝑝 -small multi-resolution 20k, 30k, 40k, 50k

oracle [55, 56] for the P2P query on a point cloud, (vi) EAR-Oracle-Adapt: the best-known oracle [28]
for the A2A query on a point cloud, (vii) RC-Oracle-Naive: the naive version of our oracle RC-Oracle
without shortest paths approximation step, and (viii) RC-Oracle: our oracle.

(2) Algorithms that support the shortest path query (and also other proximity queries) on a TIN
(i.e., algorithms for solving the problem studied by previous studies [28, 55, 56]): Similarly, we

have four on-the-fly algorithms, i.e., (i) CH [15], (ii) Kaul [30], (iii) Dijk [31], (iv) FastFly-Adapt:
our adapted algorithm (for the queries on a TIN) that calculates the shortest path passing on a

conceptual graph of a TIN, where the vertices of this conceptual graph are formed by the vertices

of the given TIN, and the edges of this graph are formed by adding edges between each vertex and

its 8 neighbor vertices (this conceptual graph is similar to the one in Figure 2 (c), we store it as a

data structure in the memory and clear the given TIN from the memory). We have four oracles, i.e.,

(v) SE-Oracle [55, 56], (vi) EAR-Oracle [28], (vii) RC-Oracle-Naive-Adapt: the adapted naive version

of our oracle without shortest paths approximation step that calculates the shortest path passing

on a conceptual graph of a TIN, and (viii) RC-Oracle-Adapt: our adapted oracle that calculates the

shortest path passing on a conceptual graph of a TIN.
Query Generation: We conducted all proximity queries, i.e., (1) shortest path query, (2) all

objects kNN query, and (3) all objects range query. (1) For the shortest path query, we issued 100

query instances where for each instance, we randomly chose two points (i) in 𝑃 for the P2P query

on a point cloud or a TIN, or (ii) on the point cloud (resp. TIN) for the A2A query on a point cloud

(resp. the AR2AR query on a TIN), one as a source and the other as a destination. The average,

minimum and maximum results were reported. In the experimental result figures, the vertical bar

and the points mean the minimum, maximum and average results. (2 & 3) For all objects kNN query

and range query, we perform the proximity query algorithm for RC-Oracle in Section 4.5 and a

linear scan for other baselines (as described in [56]) using all objects as query objects. In the P2P

query on a point cloud or a TIN, these objects are POIs in 𝑃 . In the A2A query on a point cloud

(resp. the AR2AR query on a TIN), we randomly select 2500 points on the point cloud (resp. TIN)

as objects. Since we perform linear scans or use the sorted distance stored in𝑀path for proximity

query algorithms, the value of 𝑘 and 𝑟 will not affect their query time, we set 𝑘 = 3 and 𝑟 = 1km.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

ProximityQueries on Point Clouds using Rapid Construction Path Oracle 6:19

Factors and Measurements: We studied three factors for the P2P query, namely (1) 𝜖 (i.e., the

error parameter), (2) 𝑛 (i.e., the number of POIs), and (3) 𝑁 (i.e., the number of points in a point

cloud dataset or the number of vertices in a TIN dataset). We studied one factor 𝜖 for the A2A

query. In addition, we used nine measurements to evaluate the algorithm performance, namely (1)

oracle construction time, (2) memory consumption (i.e., the space consumption when running the

algorithm), (3) oracle size, (4) query time (i.e., the shortest path query time), (5) kNN query time (i.e.,
all objects kNN query time), (6) range query time (i.e., all objects range query time), (7) distance
error (i.e., the error of the distance returned by the algorithm compared with the exact distance), (8)

kNN query error (i.e., the error rate of the kNN query defined in Section 4.6.3), and (9) range query
error (i.e., the error rate of the range query defined in Section 4.6.3).

5.2 Experimental Results for TINs
We first study proximity queries on TIN s (studied by previous studies [28, 55, 56]) to justify why

our proximity queries on point clouds are useful in practice. We have the following settings. (1) The

distance of the path calculated by CH is used for distance error calculation since the path is the exact

shortest surface path passing on the TIN. (2) SE-Oracle, EAR-Oracle and RC-Oracle-Naive-Adapt are
not feasible on large-version datasets due to their expensive oracle construction time (more than

24 hours), so we (i) compared SE-Oracle, EAR-Oracle, RC-Oracle-Naive-Adapt, RC-Oracle-Adapt, CH,
Kaul, Dijk and FastFly-Adapt on small-version datasets (with default 50 POIs for the P2P query),

and (ii) compared RC-Oracle-Adapt, CH, Kaul, Dijk and FastFly-Adapt on large-version datasets

(with default 500 POIs for the P2P query). (3) The transformation time from a TIN to the conceptual

graph of FastFly-Adapt, RC-Oracle-Naive-Adapt and RC-Oracle-Adapt is only counted once (i) in the

shortest path query time, the kNN and range query time for FastFly-Adapt, and (ii) in the oracle

construction time for RC-Oracle-Adapt and RC-Oracle-Naive-Adapt. (4) The transformation time

from a TIN to the conceptual graph of Dijk is also only counted once in its shortest path query

time, the kNN and range query time.

5.2.1 Baseline comparisons. We study the effect of 𝜖 and 𝑛 for the P2P query on a TIN in this

subsection. We study the effect of 𝑁 for the P2P query, and the comparisons for the AR2AR query

on a TIN in our technical report [61].

Effect of 𝜖 for the P2P query on a TIN . In Figure 6, we tested 6 values of 𝜖 from {0.05, 0.1, 0.25,
0.5, 0.75, 1} on BH𝑝 -small dataset by setting 𝑁 to be 10k and 𝑛 to be 50 for baseline comparisons.

Although a TIN is given as input, RC-Oracle-Adapt performs better than SE-Oracle, EAR-Oracle and
RC-Oracle-Naive-Adapt in terms of the oracle construction time, oracle size and shortest path query

time. The shortest path query time of FastFly-Adapt is 100 times smaller than that of CH (although

FastFly-Adapt needs to construct a conceptual graph from the given TIN, and there is no other

additional steps for CH), since the query region of the path calculated by FastFly-Adapt is smaller

than that of CH. The distance error of FastFly-Adapt (i.e., 0.008) is very small compared with that of

CH (i.e., without error), and much much smaller than that of Dijk (i.e., 0.1). This motivates us to

conduct experiments on point clouds. The kNN query error and range query error are all equal to

0 (due to the small distance error), so their results are omitted.

Effect of 𝑛 for the P2P query on a TIN . In Figure 7, we tested 5 values of 𝑛 from {50, 100,
150, 200, 250} on EP𝑡 dataset by setting 𝑁 to be 10k and 𝜖 to be 0.1 for baseline comparisons. In

Figure 7 (a), when 𝑛 increases, the construction time of all oracles increases. In Figure 7 (b), when 𝑛

increases, the memory consumption of RC-Oracle-Adapt exceeds that of Dijk and FastFly-Adapt.
This is because (1) RC-Oracle-Adapt is an oracle which is affected by 𝑛, it needs more memory

consumption during the oracle construction phase to calculate more shortest paths among these

POIs when 𝑛 increases, but (2) Dijk and FastFly-Adapt are on-the-fly algorithms which are not

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

6:20 Yinzhao Yan & Raymond Chi-Wing Wong

affected by 𝑛, their memory consumption only measure the space consumption for calculating one

shortest path.

SE-Oracle
EAR-Oracle

RC-Oracle-Naive-Adapt

RC-Oracle-Adapt
CH

Kaul

Dijk
FastFly-Adapt

10
-2

10
-1

10
0

10
1

10
2

10
3

0
0.

2
0.

4
0.

6
0.

8 1

(a)

C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

ε

10
-1

10
0

10
1

10
2

10
3

0
0.

2
0.

4
0.

6
0.

8 1

(b)

M
e

m
o

ry
 (

M
B

)

ε

10
-1

10
0

10
1

10
2

0
0.

2
0.

4
0.

6
0.

8 1

(c)

S
iz

e
 (

M
B

)

ε

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

0
0.

2
0.

4
0.

6
0.

8 1

(d)

Q
u

e
ry

 T
im

e
 (

m
s
)

ε

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

0
0.

2
0.

4
0.

6
0.

8 1

(e)

D
is

ta
n

c
e

 E
rr

o
r

ε

Fig. 6. Baseline comparisons (effect of 𝜖 on BH𝑡 -small TIN dataset for the P2P query)

SE-Oracle
EAR-Oracle

RC-Oracle-Naive-Adapt

RC-Oracle-Adapt
CH

Kaul

Dijk
FastFly-Adapt

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

50 10
0

15
0

20
0

25
0

(a)

C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

POI number

10
-1

10
0

10
1

10
2

10
3

50 10
0

15
0

20
0

25
0

(b)

M
e

m
o

ry
 (

M
B

)

POI number

10
-1

10
0

10
1

10
2

50 10
0

15
0

20
0

25
0

(c)

S
iz

e
 (

M
B

)

POI number

10
0

10
1

10
2

10
3

10
4

10
5

10
6

50 10
0

15
0

20
0

25
0

(d)

k
N

N
 Q

u
e

ry
 T

im
e

 (
m

s
)

POI number

0

0.02

0.04

0.06

0.08

0.1

0.12

50 10
0

15
0

20
0

25
0

(e)

D
is

ta
n

c
e

 E
rr

o
r

POI number

Fig. 7. Baseline comparisons (effect of 𝑛 on EP𝑡 -small TIN dataset for the P2P query)

5.3 Experimental Results for Point Clouds
Now, we understand the effectiveness of proximity queries on point clouds. In this section, we then

study proximity queries on point clouds using the algorithms in Table 2. We have the following

setting. (1) The distance of the path calculated by FastFly is used for distance error calculation since

the path is the exact shortest path passing on the point cloud. (2) SE-Oracle-Adapt, EAR-Oracle-
Adapt and RC-Oracle-Naive are not feasible on large-version datasets due to their expensive oracle

construction time (more than 24 hours), so we (i) compared SE-Oracle-Adapt, EAR-Oracle-Adapt, RC-
Oracle-Naive, RC-Oracle, CH-Adapt, Kaul-Adapt, Dijk-Adapt and FastFly on small-version datasets

(with default 50 POIs for the P2P query), and (ii) compared RC-Oracle, CH-Adapt, Kaul-Adapt,
Dijk-Adapt and FastFly on large-version datasets (with default 500 POIs for the P2P query). (3) Since

algorithm FastFly uses the Dijkstra algorithm on the conceptual graph of a point cloud, it is the same

as the shortest path algorithm on a general graph (constructed by the given point cloud), we do not

(and there is no need to) compare them in the experiment. But, there is no existing work discussing

how to build a conceptual graph from a point cloud. We fill this gap by proposing algorithm FastFly.
(4) The transformation time from a point cloud to the conceptual graph of FastFly, RC-Oracle-Naive
and RC-Oracle is only counted once (i) in the shortest path query time, the kNN and range query

time for FastFly, and (ii) in the oracle construction time for RC-Oracle and RC-Oracle-Naive. (5) The
transformation time from a point cloud to a TIN is also only counted once (i) in the shortest path

query time, the kNN and range query time for CH-Adapt and Kaul-Adapt, and (ii) in the oracle

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

ProximityQueries on Point Clouds using Rapid Construction Path Oracle 6:21

construction time for SE-Oracle-Adapt and EAR-Oracle-Adapt. (6) The transformation time from a

point cloud to a TIN, and then to the conceptual graph of Dijk-Adapt is also only counted once in

its shortest path query time, the kNN and range query time.

5.3.1 Baseline comparisons. We study the effect of 𝜖 , 𝑛 and 𝑁 for the P2P query on a point

cloud, and the comparisons for the A2A query on a point cloud in this subsection.

Effect of 𝜖 for the P2P query on a point cloud. In Figure 8, we tested 6 values of 𝜖 from

{0.05, 0.1, 0.25, 0.5, 0.75, 1} on EP𝑝 -small dataset by setting 𝑁 to be 10k and 𝑛 to be 50 for baseline

comparisons. (1) For RC-Oracle and the best-known oracle SE-Oracle-Adapt, (i) the oracle construc-
tion time and memory consumption, (ii) oracle size, and (iii) shortest path query time of RC-Oracle
are all smaller than SE-Oracle-Adapt, since (i) SE-Oracle-Adapt has the bad criterion for algorithm
earlier termination drawback, it cannot terminate the SSAD algorithm earlier, so it requires more

time and memory, (ii) RC-Oracle can terminate the SSAD algorithm earlier and store fewer paths,

(iii) RC-Oracle’s shortest path query time is 𝑂 (1), while the time is 𝑂 (ℎ2) for SE-Oracle-Adapt. (2)
RC-Oracle performs better than other on-the-fly algorithms in terms of the shortest path query

time since it is an oracle. (3) Algorithm FastFly performs better than other on-the-fly algorithms in

terms of the shortest path query time since it calculates the shortest path passing on a point cloud.

(4) In Figures 8 (a) & (b), regarding the oracle construction time and memory consumption, the

variation of 𝜖 (i) has a large effect on RC-Oracle, but due to the log scale used in the experimental

figures, the effect is not obvious (e.g., the oracle construction time and memory consumption of

RC-Oracle with 𝜖 = 1 are both up to 5 times smaller than that of the case when 𝜖 = 0.05), (ii) has a

small effect on SE-Oracle-Adapt and EAR-Oracle-Adapt, because even when 𝜖 is large, they cannot

terminate the SSAD algorithm earlier for most of the cases due to their bad criterion for algorithm
earlier termination drawback, and (iii) has no effect on RC-Oracle-Naive since it is independent of 𝜖 .
(5) The kNN and range query time of RC-Oracle are much smaller than the on-the-fly algorithms.

(6) The distance error of RC-Oracle is close to 0.

Effect of 𝑛 for the P2P query on a point cloud. In Figure 9, we tested 5 values of 𝑛 from

{500, 1000, 1500, 2000, 2500} on GF𝑝 dataset by setting 𝑁 to be 0.5M and 𝜖 to be 0.25 for baseline

comparisons. Since RC-Oracle is an oracle, its shortest path query time is smaller than on-the-fly

algorithms.

Effect of 𝑁 (scalability test) for the P2P query on a point cloud. In Figure 10, we tested 5

values of 𝑁 from {0.5M, 1M, 1.5M, 2M, 2.5M} on LM𝑝 dataset by setting 𝑛 to be 500 and 𝜖 to be

0.25 for baseline comparisons. The oracle construction time of RC-Oracle is only 200s ≈ 3.2 min for

a point cloud with 2.5M points and 500 POIs, this shows the scalable of RC-Oracle. The range query
time of RC-Oracle is the smallest.

A2A query on a point cloud. In Figure 11, we tested the A2A query by varying 𝜖 from {0.05,
0.1, 0.25, 0.5, 0.75, 1} and setting 𝑁 to be 10k on a small-version of EP𝑝 dataset. We adapt SE-Oracle-
Adapt (resp. RC-Oracle-Naive) to be SE-Oracle-Adapt-A2A (resp. RC-Oracle-Naive-A2A) in a similar

way to RC-Oracle-A2A. Although EAR-Oracle-Adapt is regarded as the best-known oracle in the

A2A query on a point cloud, RC-Oracle-A2A still performs more efficiently than it due to the bad
criterion for algorithm earlier termination drawback of EAR-Oracle-Adapt.

5.3.2 Ablation study for the P2P query on a point cloud. We denote SE-Oracle-FastFly-Adapt
(resp. EAR-Oracle-FastFly-Adapt) to be another adapted oracle of SE-Oracle-Adapt (resp. EAR-Oracle-
Adapt) that uses algorithm FastFly to directly calculate the shortest path passing on a point cloud

without constructing a TIN. In Figure 12, we tested 6 values of 𝜖 from {0.05, 0.1, 0.25, 0.5, 0.75,
1} on RM𝑝 dataset by setting 𝑁 to be 0.5M and 𝑛 to be 500 for ablation study among SE-Oracle-
FastFly-Adapt, EAR-Oracle-FastFly-Adapt and RC-Oracle, such that they only differ by the oracle

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

6:22 Yinzhao Yan & Raymond Chi-Wing Wong

construction. The oracle construction time, oracle size and shortest path query time of RC-Oracle
perform better than the two baselines.

SE-Oracle-Adapt
EAR-Oracle-Adapt

RC-Oracle-Naive
RC-Oracle

CH-Adapt
Kaul-Adapt

Dijk-Adapt
FastFly

10
-2

10
-1

10
0

10
1

10
2

10
3

0
0.

2
0.

4
0.

6
0.

8 1

(a)

C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

ε

10
-1

10
0

10
1

10
2

10
3

0
0.

2
0.

4
0.

6
0.

8 1

(b)

M
e

m
o

ry
 (

M
B

)

ε

10
-1

10
0

10
1

10
2

0
0.

2
0.

4
0.

6
0.

8 1

(c)

S
iz

e
 (

M
B

)
ε

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

0
0.

2
0.

4
0.

6
0.

8 1

(d)

Q
u

e
ry

 T
im

e
 (

m
s
)

ε

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14

0
0.

2
0.

4
0.

6
0.

8 1

(e)

D
is

ta
n

c
e

 E
rr

o
r

ε

Fig. 8. Baseline comparisons (effect of 𝜖 on EP𝑝 -small point cloud dataset for the P2P query)

RC-Oracle CH-Adapt Kaul-Adapt Dijk-Adapt FastFly

0

50

100

150

200

0.5 1 1.5 2 2.5

(a)

C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

POI number (k)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0.5 1 1.5 2 2.5

(b)

Q
u

e
ry

 T
im

e
 (

m
s
)

POI number (k)

Fig. 9. Baseline comparisons (effect of𝑛 on
GF𝑝 point cloud dataset for the P2P query)

0

20

40

60

80

100

0.5 1 1.5 2 2.5

(a)

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

s
)

Dataset size (M)

0
20
40
60
80

100
120
140

0.5 1 1.5 2 2.5

(b)

S
iz

e
 (

M
B

)

Dataset size (M)

10
4

10
5

10
6

10
7

10
8

10
9

0.5 1 1.5 2 2.5

(c)

k
N

N
 Q

u
e
ry

 T
im

e
 (

m
s
)

Dataset size (M)

Fig. 10. Baseline comparisons (effect of 𝑁 on LM𝑝 point cloud
dataset for the P2P query)

SE-Oracle-Adapt-A2A
EAR-Oracle-Adapt

RC-Oracle-Naive-A2A
RC-Oracle-A2A

CH-Adapt
Kaul-Adapt
Dijk-Adapt

FastFly

10
0

10
1

10
2

10
3

10
4

0
0.

2
0.

4
0.

6
0.

8 1

(a)

C
o

n
s
tr

u
c
ti
o

n
 T

im
e

 (
s
)

ε

10
0

10
1

10
2

10
3

10
4

10
5

0
0.

2
0.

4
0.

6
0.

8 1

(b)

R
a

n
g

e
 Q

u
e

ry
 T

im
e

 (
m

s
)

ε

Fig. 11. Baseline comparisons on EP𝑝 point
cloud dataset for the A2A query

SE-Oracle-FastFly-Adapt
EAR-Oracle-FastFly-Adapt

RC-Oracle

10
1

10
2

10
3

10
4

0
0.

2
0.

4
0.

6
0.

8 1

(a)

C
o
n
s
tr

u
c
ti
o
n
 T

im
e
 (

s
)

ε

10
1

10
2

10
3

10
4

0
0.

2
0.

4
0.

6
0.

8 1

(b)

S
iz

e
 (

M
B

)

ε

10
-1

10
0

10
1

10
2

0
0.

2
0.

4
0.

6
0.

8 1

(c)

Q
u
e
ry

 T
im

e
 (

m
s
)

ε

Fig. 12. Ablation study on RM𝑝 point cloud dataset for the P2P
query

5.3.3 Comparisons with other proximity queries oracle and algorithm on a point cloud.
We compared RC-Oracle using our efficient proximity query algorithm with SU-Oracle-Adapt (i.e.,
the oracle designed for the kNN query) and RC-Oracle using the naive proximity query algorithm

in our technical report [61]. For a point cloud with 2.5M points and 500 objects, the kNN query

time of RC-Oracle using our efficient proximity query algorithm is 12.5s, but the time is 1520s ≈ 25

mins for SU-Oracle-Adapt, and 25s for RC-Oracle using the naive proximity query algorithm (since

the shortest path query time of RC-Oracle is𝑂 (1), and we do not need to perform linear scans over

all the objects in our efficient proximity query algorithm).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

ProximityQueries on Point Clouds using Rapid Construction Path Oracle 6:23

5.3.4 Case study. We conducted a case study on an evacuation simulation in Mount Rainier [47]

due to the frequent heavy snowfall [48]. The blizzard wreaking havoc across the USA in December

2022 killed more than 60 lives [10] and one may be dead due to asphyxiation [34] if s/he gets

buried in the snow. In the case of snowfall, staffs will evacuate tourists in the mountain to the

closest hotels immediately for tourists’ safety. The time of a human being buried in the snow is

expected to be 2.4 hours
1
. The average distance between the viewing platforms and hotels in Mount

Rainier National Park is 11.2km [6], and the average human walking speed is 5.1 km/h [9], so the

evacuation (i.e., the time of human’s walking from the viewing platform to hotels) can be finished in

2.2 (= 11.2km
5.1km/h) hours. Thus, the calculation of the shortest paths is expected to be finished within 12

min (= 2.4 − 2.2 hours). Our experimental results show that for a point cloud with 2.5M points and

500 POIs (250 viewing platforms and 250 hotels), (1) the oracle construction time for (i) RC-Oracle
is 200s ≈ 3.2 min and (ii) the best-known oracle SE-Oracle-Adapt is 78,000s ≈ 21.7 hours, and (2) the

query time for calculating 10 nearest hotels of each viewing platform for (i) RC-Oracle is 6s, (ii)
SE-Oracle-Adapt is 75s, and (iii) the best-known on-the-fly approximate shortest surface path query

algorithm Kaul-Adapt is 80,500s ≈ 22.5 hours. Thus, RC-Oracle is the best one in the evacuation

since 3.2 min + 6s ≤ 12 min. RC-Oracle also supports real-time responses, i.e., it can construct the

oracle in 0.4s and answer the kNN query and range query in both 7 ms on a point cloud with 10k

points and 250 POIs.

5.3.5 Summary. In terms of the oracle construction time, oracle size and shortest path query

time, RC-Oracle is up to 390 times, 30 times and 6 times better than the best-known oracle SE-
Oracle-Adapt for the P2P query on a point cloud, and up to 500 times, 140 times and 50 times

better than the best-known oracle EAR-Oracle-Adapt for the A2A query on a point cloud. With the

assistance of RC-Oracle, our algorithms for the kNN and range query are both up to 6 times faster

than SE-Oracle-Adapt and up to 100 times faster than EAR-Oracle-Adapt. For the P2P query on a

point cloud with 2.5M points and 500 POIs, the oracle construction time, oracle size and all POIs

kNN query time for RC-Oracle is 200s ≈ 3.2 min, 50MB and 12.5s, but the values are 78,000s ≈ 21.7

hours, 1.5GB and 150s for the best-known oracle SE-Oracle-Adapt, respectively. For the A2A query

on a point cloud with 100k points and 5000 objects, the oracle construction time, oracle size and all

POIs kNN query time for RC-Oracle-A2A is 100s ≈ 1.6 min, 150MB and 0.25s, but the values are

50,000s ≈ 13.9 hours, 21GB and 25s for the best-known oracle EAR-Oracle-Adapt, respectively.

6 CONCLUSION
In our paper, we propose an efficient (1 + 𝜖)-approximate shortest path oracle on a point cloud

called RC-Oracle, which has a good performance (in terms of the oracle construction time, oracle

size and shortest path query time) compared with the best-known oracle. With the assistance of

RC-Oracle, we propose algorithms for answering other proximity queries, i.e., the kNN and range

query. For the future work, we can explore how to build a novel index designed for the kNN and

range query for better performance.

ACKNOWLEDGEMENTS
We are grateful to the anonymous reviewers for their constructive comments on this paper. The

research of Yinzhao Yan and Raymond Chi-Wing Wong is supported by GZSTI16EG24.

1
The time of a human being buried is calculated as 2.4 hours which is computed by

10centimeters×24hours
1meter

, since the maximum

snowfall rate (which is defined to be the maximum amount of snow accumulates in depth during a given time [16, 50]) in

Mount Rainier is 1 meter per 24 hours [49], and it becomes difficult to walk, easy to lose the trail and get buried in the snow

if the snow is deeper than 10 centimeters [26].

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

6:24 Yinzhao Yan & Raymond Chi-Wing Wong

REFERENCES
[1] 2022. Blender. https://www.blender.org

[2] 2022. Google Earth. https://earth.google.com/web

[3] 2022. Robinson Mountain. https://www.mountaineers.org/activities/routes-places/robinson-mountain

[4] 2023. Cyberpunk 2077. https://www.cyberpunk.net

[5] 2023. Data Geocomm. http://data.geocomm.com/

[6] 2023. Google Map. https://www.google.com/maps

[7] 2023. Gunnison National Forest. https://gunnisoncrestedbutte.com/visit/places-to-go/parks-and-outdoors/gunnison-

national-forest/

[8] 2023. Laramie Mountain. https://www.britannica.com/place/Laramie-Mountains

[9] 2023. Preferred walking speed. https://en.wikipedia.org/wiki/Preferred_walking_speed

[10] Mithil Aggarwal. 2022. More than 60 killed in blizzard wreaking havoc across U.S. https://www.cnbc.com/2022/12/26/

death-toll-rises-to-at-least-55-as-freezing-temperatures-and-heavy-snow-wallop-swaths-of-us.html

[11] Gergana Antova. 2019. Application of areal change detection methods using point clouds data. In IOP Conference
Series: Earth and Environmental Science, Vol. 221. IOP Publishing, 012082.

[12] Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo, Vinicius B Cardoso, Avelino Forechi,

Luan Jesus, Rodrigo Berriel, Thiago M Paixao, Filipe Mutz, et al. 2021. Self-driving cars: A survey. Expert Systems with
Applications 165 (2021), 113816.

[13] Paul B Callahan and S Rao Kosaraju. 1995. A decomposition of multidimensional point sets with applications to

k-nearest-neighbors and n-body potential fields. Journal of the ACM (JACM) 42, 1 (1995), 67–90.
[14] Joseph Carsten, Arturo Rankin, Dave Ferguson, and Anthony Stentz. 2007. Global path planning on board the mars

exploration rovers. In 2007 IEEE Aerospace Conference. IEEE, 1–11.
[15] Jindong Chen and Yijie Han. 1990. Shortest Paths on a Polyhedron. In SOCG. New York, NY, USA, 360–369.

[16] The Conversation. 2022. How is snowfall measured? A meteorologist explains how volunteers tally up winter
storms. https://theconversation.com/how-is-snowfall-measured-a-meteorologist-explains-how-volunteers-tally-up-

winter-storms-175628

[17] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022. Introduction to algorithms. MIT

press.

[18] Yaodong Cui, Ren Chen, Wenbo Chu, Long Chen, Daxin Tian, Ying Li, and Dongpu Cao. 2021. Deep learning for image

and point cloud fusion in autonomous driving: A review. IEEE Transactions on Intelligent Transportation Systems 23, 2
(2021), 722–739.

[19] Ke Deng, Heng Tao Shen, Kai Xu, and Xuemin Lin. 2006. Surface k-NN query processing. In 22nd International
Conference on Data Engineering (ICDE’06). IEEE, 78–78.

[20] Ke Deng and Xiaofang Zhou. 2004. Expansion-based algorithms for finding single pair shortest path on surface. In

International Workshop on Web and Wireless Geographical Information Systems. Springer, 151–166.
[21] Ke Deng, Xiaofang Zhou, Heng Tao Shen, Qing Liu, Kai Xu, and Xuemin Lin. 2008. A multi-resolution surface distance

model for k-nn query processing. The VLDB Journal 17, 5 (2008), 1101–1119.
[22] Brett G Dickson and P Beier. 2007. Quantifying the influence of topographic position on cougar (Puma concolor)

movement in southern California, USA. Journal of Zoology 271, 3 (2007), 270–277.

[23] Edsger W Dijkstra. 1959. A note on two problems in connexion with graphs. Numerische mathematik 1, 1 (1959),

269–271.

[24] David Eriksson and Evan Shellshear. 2014. Approximate distance queries for path-planning in massive point clouds. In

2014 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO), Vol. 2. IEEE, 20–28.
[25] David Eriksson and Evan Shellshear. 2016. Fast exact shortest distance queries for massive point clouds. Graphical

Models 84 (2016), 28–37.
[26] Fresh Off The Grid. 2022. Winter Hiking 101: Everything you need to know about hiking in snow. https://www.

freshoffthegrid.com/winter-hiking-101-hiking-in-snow/

[27] Anupam Gupta, Robert Krauthgamer, and James R Lee. 2003. Bounded geometries, fractals, and low-distortion

embeddings. In 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings. IEEE, 534–543.
[28] Bo Huang, Victor Junqiu Wei, Raymond Chi-Wing Wong, and Bo Tang. 2023. EAR-Oracle: on efficient indexing for

distance queries between arbitrary points on terrain surface. Proceedings of the ACM on Management of Data (SIGMOD)
1, 1 (2023), 1–26.

[29] GreenValley International. 2023. 3D Point Cloud Data and the Production of Digital Terrain Models. https://geo-

matching.com/content/3d-point-cloud-data-and-the-production-of-digital-terrain-models

[30] Manohar Kaul, Raymond Chi-Wing Wong, and Christian S Jensen. 2015. New lower and upper bounds for shortest

distance queries on terrains. Proceedings of the VLDB Endowment 9, 3 (2015), 168–179.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

https://www.blender.org
https://earth.google.com/web
https://www.mountaineers.org/activities/routes-places/robinson-mountain
https://www.cyberpunk.net
http://data.geocomm.com/
https://www.google.com/maps
https://gunnisoncrestedbutte.com/visit/places-to-go/parks-and-outdoors/gunnison-national-forest/
https://gunnisoncrestedbutte.com/visit/places-to-go/parks-and-outdoors/gunnison-national-forest/
https://www.britannica.com/place/Laramie-Mountains
https://en.wikipedia.org/wiki/Preferred_walking_speed
https://www.cnbc.com/2022/12/26/death-toll-rises-to-at-least-55-as-freezing-temperatures-and-heavy-snow-wallop-swaths-of-us.html
https://www.cnbc.com/2022/12/26/death-toll-rises-to-at-least-55-as-freezing-temperatures-and-heavy-snow-wallop-swaths-of-us.html
https://theconversation.com/how-is-snowfall-measured-a-meteorologist-explains-how-volunteers-tally-up-winter-storms-175628
https://theconversation.com/how-is-snowfall-measured-a-meteorologist-explains-how-volunteers-tally-up-winter-storms-175628
https://www.freshoffthegrid.com/winter-hiking-101-hiking-in-snow/
https://www.freshoffthegrid.com/winter-hiking-101-hiking-in-snow/
https://geo-matching.com/content/3d-point-cloud-data-and-the-production-of-digital-terrain-models
https://geo-matching.com/content/3d-point-cloud-data-and-the-production-of-digital-terrain-models

ProximityQueries on Point Clouds using Rapid Construction Path Oracle 6:25

[31] Manohar Kaul, Raymond Chi-Wing Wong, Bin Yang, and Christian S Jensen. 2013. Finding shortest paths on terrains

by killing two birds with one stone. Proceedings of the VLDB Endowment 7, 1 (2013), 73–84.
[32] Marcel Körtgen, Gil-Joo Park, Marcin Novotni, and Reinhard Klein. 2003. 3D shape matching with 3D shape contexts.

In The 7th central European seminar on computer graphics, Vol. 3. Citeseer, 5–17.
[33] Baki Koyuncu and Erkan Bostancı. 2009. 3D battlefield modeling and simulation of war games. Communications and

Information Technology proceedings (2009).
[34] Russell LaDuca. 2020. What would happen to me if I was buried under snow? https://qr.ae/prt6zQ

[35] Mark Lanthier, Anil Maheshwari, and J-R Sack. 2001. Approximating shortest paths on weighted polyhedral surfaces.

Algorithmica 30, 4 (2001), 527–562.
[36] Lik-Hang Lee, Tristan Braud, Pengyuan Zhou, Lin Wang, Dianlei Xu, Zijun Lin, Abhishek Kumar, Carlos Bermejo,

and Pan Hui. 2021. All one needs to know about metaverse: A complete survey on technological singularity, virtual

ecosystem, and research agenda. arXiv preprint arXiv:2110.05352 (2021).
[37] Lik-Hang Lee, Zijun Lin, Rui Hu, Zhengya Gong, Abhishek Kumar, Tangyao Li, Sijia Li, and Pan Hui. 2021. When

creators meet the metaverse: A survey on computational arts. arXiv preprint arXiv:2111.13486 (2021).
[38] Ying Li, Lingfei Ma, Zilong Zhong, Fei Liu, Michael A Chapman, Dongpu Cao, and Jonathan Li. 2020. Deep learning

for lidar point clouds in autonomous driving: A review. IEEE Transactions on Neural Networks and Learning Systems 32,
8 (2020), 3412–3432.

[39] Lian Liu and Raymond Chi-Wing Wong. 2011. Finding shortest path on land surface. In Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data. 433–444.

[40] Anders Mårell, John P Ball, and Annika Hofgaard. 2002. Foraging and movement paths of female reindeer: insights

from fractal analysis, correlated random walks, and Lévy flights. Canadian Journal of Zoology 80, 5 (2002), 854–865.

[41] Joseph SB Mitchell, David M Mount, and Christos H Papadimitriou. 1987. The discrete geodesic problem. SIAM J.
Comput. 16, 4 (1987), 647–668.

[42] Geo Week News. 2022. Tesla using radar to generate point clouds for autonomous driving. https://www.geoweeknews.

com/news/tesla-using-radar-generate-point-clouds-autonomous-driving

[43] Hoong Kee Ng, Hon Wai Leong, and Ngai Lam Ho. 2004. Efficient algorithm for path-based range query in spatial

databases. In Proceedings. International Database Engineering and Applications Symposium, 2004. IDEAS’04. IEEE,
334–343.

[44] Janet E Nichol, Ahmed Shaker, and Man-Sing Wong. 2006. Application of high-resolution stereo satellite images to

detailed landslide hazard assessment. Geomorphology 76, 1-2 (2006), 68–75.

[45] Sebastian Pütz, Thomas Wiemann, Jochen Sprickerhof, and Joachim Hertzberg. 2016. 3d navigation mesh generation

for path planning in uneven terrain. IFAC-PapersOnLine 49, 15 (2016), 212–217.
[46] Fabio Remondino. 2003. From point cloud to surface: the modeling and visualization problem. International Archives of

the Photogrammetry, Remote Sensing and Spatial Information Sciences 34 (2003).
[47] National Park Service. 2022. Mount Rainier. https://www.nps.gov/mora/index.htm

[48] National Park Service. 2022. Mount Rainier Annual Snowfall Totals. https://www.nps.gov/mora/planyourvisit/annual-

snowfall-totals.htm

[49] National Park Service. 2022. Mount Rainier Frequently Asked Questionss. https://www.nps.gov/mora/faqs.htm

[50] National Weather Service. 2023. Measuring Snow. https://www.weather.gov/dvn/snowmeasure

[51] Cyrus Shahabi, Lu-An Tang, and Songhua Xing. 2008. Indexing land surface for efficient knn query. Proceedings of the
VLDB Endowment 1, 1 (2008), 1020–1031.

[52] Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. 2006. Textonboost: Joint appearance, shape and

context modeling for multi-class object recognition and segmentation. In European conference on computer vision.
Springer, 1–15.

[53] Barak Sober, Robert Ravier, and Ingrid Daubechies. 2020. Approximating the riemannian metric from point clouds via

manifold moving least squares. arXiv preprint arXiv:2007.09885 (2020).
[54] Spatial. 2022. LiDAR Scanning with Spatial’s iOS App. https://support.spatial.io/hc/en-us/articles/360057387631-LiDAR-

Scanning-with-Spatial-s-iOS-App

[55] Victor Junqiu Wei, Raymond Chi-Wing Wong, Cheng Long, and David M. Mount. 2017. Distance oracle on terrain

surface. In Proceedings of the 2017 ACM SIGMOD International Conference on Management of Data. 1211–1226.
[56] Victor Junqiu Wei, Raymond Chi-Wing Wong, Cheng Long, David M Mount, and Hanan Samet. 2022. Proximity

queries on terrain surface. ACM Transactions on Database Systems (TODS) (2022).
[57] Shi-Qing Xin and Guo-Jin Wang. 2009. Improving Chen and Han’s algorithm on the discrete geodesic problem. ACM

Transactions on Graphics 28, 4 (2009), 1–8.
[58] Songhua Xing, Cyrus Shahabi, and Bei Pan. 2009. Continuous monitoring of nearest neighbors on land surface.

Proceedings of the VLDB Endowment 2, 1 (2009), 1114–1125.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

https://qr.ae/prt6zQ
https://www.geoweeknews.com/news/tesla-using-radar-generate-point-clouds-autonomous-driving
https://www.geoweeknews.com/news/tesla-using-radar-generate-point-clouds-autonomous-driving
https://www.nps.gov/mora/index.htm
https://www.nps.gov/mora/planyourvisit/annual-snowfall-totals.htm
https://www.nps.gov/mora/planyourvisit/annual-snowfall-totals.htm
https://www.nps.gov/mora/faqs.htm
https://www.weather.gov/dvn/snowmeasure
https://support.spatial.io/hc/en-us/articles/360057387631-LiDAR-Scanning-with-Spatial-s-iOS-App
https://support.spatial.io/hc/en-us/articles/360057387631-LiDAR-Scanning-with-Spatial-s-iOS-App

6:26 Yinzhao Yan & Raymond Chi-Wing Wong

[59] Da Yan, Zhou Zhao, and Wilfred Ng. 2012. Monochromatic and bichromatic reverse nearest neighbor queries on land

surfaces. In Proceedings of the 21st ACM international conference on Information and knowledge management. 942–951.
[60] Yinzhao Yan and Raymond Chi-Wing Wong. 2021. Path Advisor: a multi-functional campus map tool for shortest path.

Proceedings of the VLDB Endowment 14, 12 (2021), 2683–2686.
[61] Yinzhao Yan and Raymond Chi-Wing Wong. 2023. Proximity queries on point cloud using rapid construction path

oracle (technical report). https://github.com/yanyinzhao/PointCloudPathCode/blob/master/TechnicalReport.pdf

[62] Hongchuan Yu, Jian J Zhang, and Zheng Jiao. 2014. Geodesics on point clouds. Mathematical Problems in Engineering
2014 (2014).

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 6. Publication date: February 2024.

https://github.com/yanyinzhao/PointCloudPathCode/blob/master/TechnicalReport.pdf

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Challenges
	1.3 Our Oracle and Proximity Query Algorithms
	1.4 Contributions and Organization

	2 Problem Definition
	2.1 Notations and Definitions
	2.2 Problem

	3 Related Work
	3.1 On-the-fly Algorithms
	3.2 Oracles for the shortest path query
	3.3 Oracles for other proximity queries
	3.4 Comparisons

	4 Methodology
	4.1 Overview of RC-Oracle
	4.2 Key Idea of RC-Oracle
	4.3 Implementation Details of RC-Oracle
	4.4 Adaption to RC-Oracle-A2A
	4.5 Proximity Query Algorithms
	4.6 Theoretical Analysis

	5 Empirical Studies
	5.1 Experimental Setup
	5.2 Experimental Results for TINs
	5.3 Experimental Results for Point Clouds

	6 Conclusion
	References

