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The point-to-point shortest path query is widely used in many spatial applications, e.g., navigation systems.

However, the returned shortest path minimizing only one objective fails to satisfy users’ various routing

requirements in practice. For example, the user may specify the order of using several transportation modes

in the planned route. The Label-Constrained Shortest Path (LCSP) query under regular languages is powerful

enough to express diversified routing demands in a labeled road network where each edge is associated with

a label to denote its road type. The complex routing demand can be formulated by a regular language, and
the edge labels along each path should be a word under the given regular language. Previous LCSP solutions

were either inefficient in query processing or inflexible in their use of the languages since they made some

assumptions about the given language. In this paper, we propose an efficient index-based solution called

Border-based State Move (BSM), which can answer LCSP queries quickly with flexible use of the language

constraint. Specifically, our BSM builds indexes to skip the exploration between a vertex and its border vertices
during query processing. Our experiments conducted on real road networks demonstrated the superiority of

our proposed BSM. It can reduce the query time over state-of-the-art solutions by two orders of magnitude.
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1 Introduction
The point-to-point shortest path query has been an integral part of many spatial applications, such

as navigation systems, online taxi-calling platforms, and food delivery services. Its query processing

mainly regards the road network as a weighted graph (where vertices and edges represent road

intersections and segments, respectively) and returns the path with the minimum sum of weights of

its traversed edges. However, users’ routing demands have become more diversified; they now have

more detailed requirements for their personalized routing plans before reaching their destinations

as soon as possible. The basic shortest path query fails to express these various routing demands

since it can only minimize one metric value of the path (e.g., the distance and the travel time). In

reality, the routing plan of a user going home from work may specify that s/he wants to first take a

taxi to one special road (where s/he may want to collect some mail packages at a courier station),

traverse the special road on foot, and finally take a bus or ride a bike to home. This routing plan

involves the use of several transportation modes and the traversal of a special road in a certain
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order. We thus study the Label-Constrained Shortest Path (LCSP) query under the regular language

that is powerful enough to describe these personalized routing plans [5].

LCSP queries are issued in a labeled road network where each edge is associated with an

additional label (in addition to its weight) to denote its road type. In the previous example, we may

use symbols 𝛼 , 𝛽 , 𝜃 , and 𝛾 to represent an expressway, a normal road, a bike lane, and the special

road, respectively. We can then use regular languages to describe personalized routing plans, such

as (𝛼 |𝛽)∗𝛾 (𝛽∗ |𝜃 ∗) (where “*” means that zero or more occurrences of the preceding element are

accepted and “|” means that the element either before or after “|” is accepted). A path satisfies a

regular language when the edge labels along it (also known as the path label) can be seen as a

word under the language. We are interested in the shortest path under the language constraint,

also known as the LCSP. Regular languages are powerful enough to express many practical routing

plans since we can easily specify the order and frequencies of edge labels in the resulting path.

There has been substantial effort devoted to designing efficient LCSP solutions [3–5, 11, 12, 19,

22, 31, 34, 37, 40]. Early algorithms extended some techniques of the (unconstrained) shortest path

algorithms, such as Dijkstra’s search [4, 5, 34], bidirectional and A* search [3], access nodes [11], and

landmarks [22]. However, they were inefficient in finding LCSPs and surpassed by later solutions.

Recently, a number of LCSP solutions achieved higher query efficiency by utilizing state-of-the-art

index-based techniques [12, 19, 31, 37, 40]. They mainly preprocess useful information in the

index for efficient query processing. However, they all made rigid assumptions about using regular

languages to express constraints. Some focused on the Kleene language [19, 31, 40], which is a

special case of regular languages and only allows and prohibits the use of certain labels without

caring about their orders and frequencies. For example, a user may want to first use local roads

consistently and then highways, but Kleene languages are insufficient to describe this demand, and

the returned LCSP may use highways and local roads alternately. For another example, a user may

want to go to a restaurant first and then a shopping mall, which cannot be expressed by Kleene

languages and handled by these solutions. Since a regular language can be equivalently transformed

to a deterministic finite automaton (DFA) [1] (which is often used to judge whether a path label

satisfies the regular language), one study [12] considered a specific type of DFA that assumes using

one fixed edge label among different DFA states. Its applications are limited because a user may

prefer several transportation modes (which correspond to different labels in one state). Another

study [37] assumed a known fixed regular language for all queries before query processing, which

implies that we have to rebuild the index whenever the regular language changes. For example, for

a workload of 1,000 LCSP queries with 50 different languages in New York, it needs 5,000 seconds

to rebuild the index 50 times to answer all queries [37], whereas a flexible solution can build the

index once to answer all queries.

Motivated by the above challenges, we propose a more efficient index-based solution, called

Border-based State Move (BSM), which supports flexible use of regular languages without any

assumption. It is non-trivial to design such an index-based LCSP solution. The major reason is

that the regular language of each query can be quite different, which makes it hard to preprocess

useful information. Specifically, the DFA graphs of various regular languages can have completely

different graph structures. Previous solutions made some assumptions about the DFA so that they

can preprocess information for their expected graph structures to avoid redundant search on the

DFA graph. To support regular languages of any forms, we propose BSM by noticing the necessity

of traversing the whole DFA graph during query processing and seeking efficiency optimization

between steps of the DFA graph traversal. We design several acceleration techniques, including the

initial pruning, Connected Component (CC) graph, and pruning bounds, with thorough theoretical

analyses. We conducted experiments in several large networks and verified that our BSM is con-

sistently faster than the best-known solution. This work can be further extended to applications
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Fig. 1. The labeled road network 𝐺

beyond the context of road networks. For example, in biological networks, researchers who study

a disease may need to find the shortest pathway that traverses a kinase, then several proteins,

and finally a transcription factor, denoted by labels 𝑘, 𝑝, 𝑡 , respectively. The requirement can be

expressed by 𝑘𝑝∗𝑡 . In a movie knowledge graph, where vertices include people and movies and

edges are labeled with 𝑎 for “acted” and 𝑑 for “directed” relationships. One may want to find a

list of movies acted by Leonardo and directed by James (expressed by 𝑎𝑑). We summarize our

contributions below.

• We propose an index-based solution called BSM. It can answer flexible LCSP queries under

regular languages and run faster than state-of-the-art solutions.

• We propose several speedup techniques, including (1) the initial pruning and the CC graph

(for efficient retrieval of border vertices), (2) the optimization of the weight calculation, and

(3) the pruning strategy (for faster query processing).

• We theoretically analyze the correctness and complexities of all the proposed algorithms.

• We conducted extensive experiments to demonstrate the efficiency and effectiveness of

the proposed BSM. The results show that BSM can greatly reduce the query times of the

state-of-the-art baselines by two orders of magnitude while incurring small index costs.

The remainder of the paper is organized as follows. Section 2 states the problem. Section 3

shows an overview of BSM’s indexing and query processing. Their details are given in Section 4

and Section 5. Section 6 presents our experiments. Section 7 reviews the related work. Section 8

concludes our paper.

2 Preliminaries
The labeled road network 𝐺 (𝑉 , 𝐸, Σ, 𝑙,𝑤) is an undirected weighted graph, where 𝑉 is a set of

vertices, 𝐸 is a set of edges, Σ is a set of labels, 𝑙 : 𝐸 → Σ is a function that assigns a label to each

edge, and𝑤 : 𝐸 → R+ assigns a positive weight to each edge. An 𝑠-𝑡 path 𝑝 is a finite sequence of

vertices ⟨𝑣0 = 𝑠, 𝑣1, 𝑣2, . . . , 𝑣𝑘 = 𝑡⟩ such that each 𝑒𝑖 = (𝑣𝑖−1, 𝑣𝑖 ) ∈ 𝐸 for 1 ≤ 𝑖 ≤ 𝑘 . For a path 𝑝 , its

weight is defined by𝑤 (𝑝) = ∑𝑘
𝑖=1𝑤 (𝑒𝑖 ), and its path label is defined by 𝑙 (𝑝) = 𝑙 (𝑒1) · 𝑙 (𝑒2) . . . · 𝑙 (𝑒𝑘 )

(or 𝑙 (𝑒1)𝑙 (𝑒2) . . . 𝑙 (𝑒𝑘 ) for simplicity), where “·” denotes the concatenation of two labels. The path

label 𝑙 (𝑝) is the concatenation of all edge labels along 𝑝 . The terms “weight” and “distance” can be

used interchangeably.

Example 1. Figure 1 shows a labeled road network with 12 vertices and 15 edges. The label set
Σ = {𝛼, 𝛽, 𝜃,𝛾}. For each edge 𝑒 , its label 𝑙 (𝑒) and weight𝑤 (𝑒) form a pair (𝑙 (𝑒),𝑤 (𝑒)) marked next
to each edge. For example, the label and weight of (𝑣3, 𝑣6) are 𝛾 and 2, respectively. Given a 𝑣1-𝑣12 path
𝑝 = ⟨𝑣1, 𝑣5, 𝑣6, 𝑣10, 𝑣11, 𝑣12⟩, its weight𝑤 (𝑝) = 11 and its label 𝑙 (𝑝) = 𝛼𝛽𝛽𝛽𝛽 .

To formalize the language constraint on the path, we use some notions of regular languages.

A word is the concatenation of labels 𝜎1𝜎2 . . . 𝜎𝑘 where 𝜎𝑖 ∈ Σ for 𝑖 = 1, 2, . . . , 𝑘 (i.e., a path label).
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Fig. 2. A DFA for (𝛼 |𝛽)∗𝛾 (𝛽∗ |𝜃∗)

A language L is a set of words. Each regular language L can be defined by a deterministic finite
automaton (DFA) that describes the words in L. Specifically, a DFA (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) for L includes a

state set𝑄 , the alphabet Σ, a transition function 𝛿 : 𝑄 ×Σ→ 𝑄 (which defines the next state 𝛿 (𝑞, 𝜎)
of a state 𝑞 and a label 𝜎), an initial state 𝑞0 ∈ 𝑄 , and a set of accepting or final states 𝐹 ⊆ 𝑄 . A word

𝜎1𝜎2 . . . 𝜎𝑘 belongs to a language L (i.e., 𝜎1𝜎2 . . . 𝜎𝑘 ∈ L) if and only if we can start with the initial

state 𝑞0, use the word’s label 𝜎𝑖 sequentially for transitions (i.e., 𝛿 (𝑞0, 𝜎1), 𝛿 (𝛿 (𝑞0, 𝜎1), 𝜎2), . . .), and
stop at a final state 𝑞 ∈ 𝐹 after using all labels of the word.

Each regular language can be easily expressed by a regular expression for practical use, which

uses “∗” (zero or more occurrences), “·” (concatenation), and “|” (Boolean “or”) for basic operations.

Example 2. Figure 2 presents a DFA for the regular language L represented by the expression
(𝛼 |𝛽)∗𝛾 (𝛽∗ |𝜃 ∗). Suppose that 𝛼, 𝛽, 𝜃,𝛾 represent expressways, normal roads, bike lanes, and a special
road where a courier station is located, respectively. The language L means that the path should first
traverse some normal roads and expressways, then the special road, and finally bike lanes or normal
roads consistently, corresponding to the user’s routing plan in Section 1. The state set𝑄 = {𝑞0, 𝑞1, 𝑞2, 𝑞3},
where 𝑞0 is the initial state and the final states are 𝑞1, 𝑞2, 𝑞3 ∈ 𝐹 . The arrows show the state transitions.
For example, the word 𝛼𝛽𝛾𝜃𝜃𝜃 satisfies L since the DFA can make state transitions from the initial
state 𝑞0 to a final state 𝑞3 ∈ 𝐹 .

Definition 1 (Label-Constrained Path). Given a language L, a path 𝑝 is a label-constrained
path if its label 𝑙 (𝑝) belongs to L, i.e., 𝑙 (𝑝) ∈ L.

Definition 2 (Label-Constrained Shortest Path (LCSP)). Given a language L and two
vertices 𝑠 and 𝑡 , a label-constrained shortest path (LCSP) is the 𝑠-𝑡 path 𝑝 that has the minimum weight
𝑤 (𝑝) among all label-constrained 𝑠-𝑡 paths.

Example 3. We still use the labeled road network 𝐺 and the language L represented by the
DFA in the previous examples. Let 𝑠 = 𝑣1 and 𝑡 = 𝑣12. Without the constraint, the shortest path is
⟨𝑣1, 𝑣5, 𝑣6, 𝑣10, 𝑣11, 𝑣12⟩ with its weight of 11, but its path label 𝛼𝛽𝛽𝛽𝛽 does not satisfy the language L.
Under the constraint, the label-constrained shortest path 𝑝 = ⟨𝑣1, 𝑣5, 𝑣6, 𝑣3, 𝑣8, 𝑣9, 𝑣12⟩ with its minimum
weight𝑤 (𝑝) = 12 and its label 𝑙 (𝑝) = 𝛼𝛽𝛾𝜃𝜃𝜃 accepted by the DFA from state 𝑞0 to 𝑞3 ∈ 𝐹 .

Problem Statement. Given a labeled network 𝐺 (𝑉 , 𝐸, Σ, 𝑙,𝑤), an LCSP query is defined by

(𝑠, 𝑡,L) with 𝑠, 𝑡 ∈ 𝑉 and L which is a regular language as stated before. It asks for the LCSP 𝑝𝑜𝑝𝑡

between 𝑠 and 𝑡 under the constraint of L. Our goal is to design an index based on 𝐺 to answer

each LCSP query efficiently.

Extended Dijkstra’s Algorithm [5]. It mainly runs Dijkstra’s algorithm on the product graph
made up of the labeled network 𝐺 and the DFA, which is also a graph. Specifically, in this product

graph, the “vertex” set is 𝑉 ×𝑄 , and there is an “edge” between two “vertices” (𝑣, 𝑞) and (𝑣 ′, 𝑞′)
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Algorithm 1: Extended Dijkstra’s Algorithm [5]

input :Two vertices 𝑠 and 𝑡 , a language L
output :𝑤 (𝑝𝑜𝑝𝑡 ) of LCSP

1 𝑑 [𝑣] [𝑞] ← +∞ for 𝑣 ∈ 𝑉 and 𝑞 ∈ 𝑄 , 𝑑 [𝑠] [𝑞0] ← 0

2 𝑄𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ((𝑠, 𝑞0, 0))
3 while |𝑄𝑢𝑒𝑢𝑒 | > 0 do
4 fetch (𝑣, 𝑞,𝑤) with the minimum weight𝑤 from 𝑄𝑢𝑒𝑢𝑒

5 if 𝑣 = 𝑡 and 𝑞 ∈ 𝐹 then
6 return𝑤

7 foreach (𝑣, 𝑣 ′) ∈ 𝐸 s.t. 𝛿 (𝑞, 𝑙 (𝑣, 𝑣 ′)) exists do
8 𝑞′ ← 𝛿 (𝑞, 𝑙 (𝑣, 𝑣 ′))
9 if 𝑑 [𝑣] [𝑞] +𝑤 (𝑣, 𝑣 ′) < 𝑑 [𝑣 ′] [𝑞′] then
10 𝑑 [𝑣 ′] [𝑞′] ← 𝑑 [𝑣] [𝑞] +𝑤 (𝑣, 𝑣 ′)
11 𝑄𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ((𝑣 ′, 𝑞′, 𝑑 [𝑣 ′] [𝑞′])))

if and only if (𝑣, 𝑣 ′) ∈ 𝐸 and there is a transition 𝛿 (𝑞, 𝑙 (𝑣, 𝑣 ′)) = 𝑞′. In this way, the resulting path

should satisfy the language constraint and have the minimum weight.

The product graph does not have to be built explicitly by considering the vertex-state pairs

(𝑣, 𝑞) [34], which means that we do not need to identify each edge between any two vertex-state

pairs. Algorithm 1 shows the whole procedure. As in Dijkstra’s algorithm, in Line 1, it first initializes

an array 𝑑 to maintain the minimum weight for each vertex-state pair (𝑣, 𝑞) (corresponding to an

𝑠-𝑣 path with its label accepted by the DFA from state 𝑞0 to 𝑞) and sets 𝑑 [𝑠] [𝑞0] = 0. It pushes

(𝑠, 𝑞0) with its path weight of 0 to a priority queue in Line 2. Each pair (𝑣, 𝑞) in the priority queue

represents an 𝑠-𝑣 path with its path label accepted by the DFA from the initial state 𝑞0 to 𝑞. In each

iteration, the algorithm fetches the pair (𝑣, 𝑞) with the minimum weight in the queue in Line 4.

In Lines 7–11 of expanding (𝑣, 𝑞), if there exists an adjacent edge label 𝑙 (𝑣, 𝑣 ′) for (𝑣, 𝑣 ′) ∈ 𝐸 that

can be used to make a transition (i.e., 𝛿 (𝑞, 𝑙 (𝑣, 𝑣 ′)) = 𝑞′), the algorithm pushes (𝑣 ′, 𝑞′) with its new

weight (i.e., 𝑑 [𝑣] [𝑞] +𝑤 (𝑣, 𝑣 ′)) to the queue when the new weight is smaller than the maintained

minimum weight for (𝑣 ′, 𝑞′). The algorithm stops when it fetches the pair (𝑣, 𝑞) such that 𝑣 is 𝑡

and 𝑞 ∈ 𝐹 is a final state in Lines 5–6. However, it is inefficient because it does not utilize any

index and can explore many unnecessary vertex-state pairs. Algorithm 1’s time complexity is

O(|𝐸 | |𝑄 | log( |𝑉 | |𝑄 |)) following Dijkstra’s complexity. Our solution can be much more efficient

based on the power of a preprocessed index. Algorithm 1’s space cost mainly depends on the array

𝑑 . A simple implementation uses O(|𝑉 | |𝑄 |) space. We can also use hashmap so that only visited

vertex-state pairs with updated weights (in Line 10) incur the space cost. The number of visited

vertex-state pairs is smaller than 200,000 in all experiments, which needs at most 1.6 MB.

We summarize all the main notations in Table 1.

3 Overview of BSM
Starting from the pair (𝑠, 𝑞0), the extended Dijkstra’s algorithm expands the current pair (𝑣, 𝑞) by
using an edge 𝑒 = (𝑣, 𝑣 ′) to find the next pair (𝑣 ′, 𝑞′). The DFA also makes a state transition by

using the edge label at the same time. During the process, we can observe that the state can still

be the same (i.e., 𝑞′ = 𝑞) after we use one or more edges. It actually depends on the “self-loop”

state transitions in the DFA (i.e., 𝛿 (𝑞, 𝜎) = 𝑞). We aim to improve query efficiency by avoiding the

network search on these self-loops. Given a vertex-state pair (𝑣, 𝑞), suppose that there are some
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Table 1. Summary of main notations

Symbol Meaning

𝐺 = (𝑉 , 𝐸, Σ, 𝑙,𝑤) the labeled road network

𝛼, 𝛽, 𝜃,𝛾, 𝜎 edge labels

𝑙 (𝑒),𝑤 (𝑒) the edge label and weight of 𝑒

𝑄, 𝐹 the sets of DFA states and DFA final states

𝛿 (𝑞, 𝜎) the transition function

𝐿self (𝑞), 𝐿move (𝑞) the self-loop and state-move label sets of 𝑞

𝐶𝑖
𝜎 the 𝑖-th group of {𝜎}-inner vertices

𝑁 𝑖
𝜎 the 𝑖-th set of {𝜎}-connected vertices

𝐵𝐿 (𝑣) the set of 𝑣 ’s 𝐿-border vertices

𝑅𝜎 (𝑁 ) the refined set of the node 𝑁

𝑑 [𝑣] [𝑞] the distance array for vertex-state pairs

self-loops on state 𝑞 in the DFA. The main idea of BSM is to directly find all the last pairs (𝑣 ′, 𝑞) such
that 𝑣 ′’s adjacent edges can be used to make the state 𝑞 change (which means no more self-loops

after (𝑣 ′, 𝑞)). These vertices 𝑣 ′ are also called 𝑣 ’s “border” vertices. The search between 𝑣 and 𝑣 ′ can
be preprocessed by an index (since it is a recursive process) and hence accelerated. We can imagine

that there are “super edges” (or shortcuts) between 𝑣 and 𝑣 ′. Overall, the query processing starts

from the source, then goes to the border vertices repeatedly, and finally reaches the destination. In

the meanwhile, the DFA state will always move one step forward until a final state.

According to the above process, BSM’s index maintains the set of 𝑣 ’s border vertices for each

(𝑣, 𝑞). Suppose that there is only one self-loop on state 𝑞 with label 𝜎 (i.e., 𝛿 (𝑞, 𝜎) = 𝑞). The key

observation is that 𝑣 and 𝑣 ’s border vertices should be in a connected component that only contains

edges with label 𝜎 . Therefore, BSM’s index maintains connected components w.r.t. one edge label.

However, there can be several self-loops on state 𝑞 with different labels. We extend the idea for

the case of only one self-loop to create a graph where nodes represent connected components,

called the “Connected Component (CC) graph”. It supports efficient retrieval of 𝑣 ’s border vertices

by traversing the graph nodes and fetching the corresponding border vertices in each connected

component. To avoid the search between 𝑣 and 𝑣 ’s border vertex 𝑣 ′, we use the concept of the super
edge between them. Apart from identifying 𝑣 ′ by the CC graph, we also need to find the weights

of these super edges, which can be formulated by the Kleene-language constrained shortest path

problem [19, 31, 40]. We adapt an existing solution [40] to achieve orders of magnitude speedups.

4 BSM Index Construction
For simplicity, we call the state transition 𝛿 (𝑞, 𝜎) = 𝑞′ ≠ 𝑞 a state move (since 𝑞′ ≠ 𝑞), and the

search can quickly stop if we can make a state move in each iteration of expanding (𝑣, 𝑞) because
the number of state moves between the initial state and a final state is often limited in the small

DFA graph. To support efficient state moves, BSM essentially builds indexes for the set of 𝑣 ’s border

vertices. First, we formally define the border vertices. Then, we perform an initial pruning to

identify some vertices that can never be border vertices. Next, we build a small CC graph to index

the rest vertices to support efficient retrieval of their border vertices. Finally, we adapt an existing

index to efficiently compute new weights between a vertex and its border vertex. The whole BSM

index consists of the CC graph and the adapted index for weight calculation.
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4.1 Inner and Border Vertices
For only one self-loop 𝛿 (𝑞, 𝜎) = 𝑞, expanding (𝑣, 𝑞) through several edges with the same label 𝜎

can make the state unmoved (i.e., still 𝑞). However, if there exists a label set 𝐿 such that 𝛿 (𝑞, 𝜎) = 𝑞

for each 𝜎 ∈ 𝐿, the state is unmoved after any sequence of edge labels in 𝐿. We want to skip the

exploration where the state is unmoved. Formally, we define the following two sets for each state 𝑞.

Definition 3 (Self-loop and state-move label sets). For each state 𝑞, its self-loop label

set 𝐿self (𝑞) = {𝜎 ∈ Σ|𝛿 (𝑞, 𝜎) = 𝑞}, and its state-move label set 𝐿move (𝑞) = {𝜎 ∈ Σ|𝛿 (𝑞, 𝜎) ≠ 𝑞}.
Obviously, 𝐿self (𝑞) ∩ 𝐿move (𝑞) = ∅.

We next define the inner and border vertices w.r.t. a label set 𝐿 and show that any self-loop ends

at border vertices. Our BSM essentially finds necessary border vertices that have adjacent labels in

𝐿move (𝑞) for state moves. It avoids the exploration from the current vertex to its border vertices

and jumps to them directly.

Definition 4 (𝐿-inner vertex). Given a label set 𝐿, a vertex 𝑣 is an 𝐿-inner vertex iff each of its
adjacent edge labels belongs to 𝐿, i.e., 𝑙 (𝑣, 𝑣 ′) ∈ 𝐿 for (𝑣, 𝑣 ′) ∈ 𝐸.

In particular, each adjacent edge label of a {𝜎}-inner vertex is 𝜎 .

Definition 5 (𝐿-connectivity). Given a label set 𝐿, vertices 𝑢 and 𝑣 are 𝐿-connected iff there is a
𝑢-𝑣 path that only uses labels in 𝐿.

Definition 6 (Set 𝐵𝐿 (𝑣) of 𝑣 ’s 𝐿-border vertices). Given a label set 𝐿 and two different vertices,
namely 𝑢 and 𝑣 , we say that 𝑢 is 𝑣 ’s 𝐿-border vertex iff 1) there exists at least one of 𝑢’s adjacent
edge labels not in 𝐿 (i.e., 𝑙 (𝑢,𝑢′) ∉ 𝐿) and 2) 𝑢 and 𝑣 are 𝐿-connected. Let 𝐵𝐿 (𝑣) denote the set of 𝑣 ’s
𝐿-border vertices.

Note that there are also some vertices other than the inner and border vertices. We ignore them

because we make state moves on border vertices in each iteration.

Given a pair (𝑣, 𝑞), if 𝐿self (𝑞) ≠ ∅, it can be observed that the state moves only when the search

visits one of 𝑣 ’s 𝐿self (𝑞)-border vertices 𝑢 ∈ 𝐵𝐿self (𝑞) (𝑣) since 𝑢 has adjacent edge labels not in

𝐿self (𝑞) for a state move. We can imagine that there is a “super edge” between 𝑣 and 𝑢, representing

the minimum-weight 𝑣-𝑢 path under the constraint that it only uses labels in 𝐿self (𝑞). The main

idea of BSM is to quickly retrieve the necessary border vertices from the index. A naive idea is

to precompute 𝐵𝐿 (𝑣) for each vertex 𝑣 and each subset 𝐿 ⊆ Σ. However, the indexing cost can be

extremely large since each |𝐵𝐿 (𝑣) | can be O(|𝑉 |) and the total cost is O(|𝑉 |22Σ). We focus on how

to improve the efficiency of retrieving 𝐵𝐿 (𝑣).

4.2 Initial Pruning
The initial pruning is based on two insights. The first one is that each {𝜎}-inner vertex for each
𝜎 ∈ Σ can never be border vertices of others. The second one is that for each 𝜎 ∈ Σ, some connected

{𝜎}-inner vertices have common sets of border vertices. Thus, we perform an initial pruning of

these {𝜎}-inner vertices to avoid redundant computations and focus on the rest of the vertices.

We first identify the {𝜎}-inner vertices for each 𝜎 ∈ Σ and then maintain their border vertices in

the index. The following lemma shows why we focus on the {𝜎}-inner vertices.

Lemma 1. For each 𝜎 ∈ Σ, a {𝜎}-inner vertex 𝑢 cannot be 𝑣 ’s 𝐿-border vertex for any 𝑣 ∈ 𝑉 and
𝐿 ⊆ Σ.

Proof. If 𝑢 is 𝑣 ’s 𝐿-border vertex, 𝑢 and 𝑣 are 𝐿-connected. Since 𝑢 is a {𝜎}-inner vertex, each of

𝑢’s adjacent edge labels must be 𝜎 , which indicates that 𝜎 ∈ 𝐿 because 𝑢 and 𝑣 are 𝐿-connected. But,
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Algorithm 2: Initial Pruning
input :The network 𝐺 (𝑉 , 𝐸, Σ, 𝑙,𝑤)
output :𝐶𝑖

𝜎 for each 𝜎 ∈ Σ and each 𝑖 ∈ {1, 2, . . . , 𝑘𝜎 }
1 𝑘𝜎 ← 0 for each 𝜎 ∈ Σ, 𝑉𝑟𝑒𝑠𝑡 ← 𝑉

2 foreach 𝑣 ∈ 𝑉 do
3 if there exists one 𝜎 ∈ Σ s.t. 𝑣 is a {𝜎}-inner vertex then
4 perform a BFS from 𝑣 by only using edges with 𝜎 , for each visited vertex, add

{𝜎}-inner ones into 𝐶𝑘𝜎
𝜎 , and stop expansion at non-{𝜎}-inner ones

5 𝑉𝑟𝑒𝑠𝑡 ← 𝑉𝑟𝑒𝑠𝑡 \𝐶𝑘𝜎
𝜎

6 𝑘𝜎 ← 𝑘𝜎 + 1

7 return 𝐶𝑖
𝜎 for each 𝜎 ∈ Σ and each 𝑖 ∈ {1, 2, . . . , 𝑘𝜎 }

there does not exist another 𝑢’s adjacent edge label not in 𝐿 (as required in Definition 6), which is a

contradiction. □

For all the non-{𝜎}-inner vertices, denoted by 𝑉𝑟𝑒𝑠𝑡 , we handle 𝐵𝐿 (𝑣) for 𝑣 ∈ 𝑉𝑟𝑒𝑠𝑡 in the next

section. For each {𝜎}-inner vertex 𝑣 , we find its 𝐵𝐿 (𝑣) by the following lemma and corollary, which

suggest that its 𝐵𝐿 (𝑣) can be found by 𝐵𝐿 (𝑢) for 𝑢 ∈ 𝑉𝑟𝑒𝑠𝑡 .

Lemma 2. For two {𝜎}-inner vertices 𝑣 and 𝑢, if (𝑣,𝑢) ∈ 𝐸, 𝐵𝐿 (𝑣) = 𝐵𝐿 (𝑢) for any 𝐿 ⊆ Σ.

Proof. We prove that 𝐵𝐿 (𝑣) ⊆ 𝐵𝐿 (𝑢) (which also implies the next Corollary 1), and the reverse

is true by symmetry. For one of 𝑣 ’s 𝐿-border vertex 𝑣 ′ ∈ 𝐵𝐿 (𝑣), 𝑣 ′ has at least one adjacent edge
labels not in 𝐿, and 𝑣 ′ and 𝑣 are 𝐿-connected. Since each 𝑣-𝑣 ′ path must traverse at least one of 𝑣 ’s

adjacent edges with its label 𝜎 , we know 𝜎 ∈ 𝐿, which means that 𝑣 ′ and 𝑢 are 𝐿-connected via

(𝑣,𝑢) and has at least one adjacent edge label not in 𝐿. □

Corollary 1. For a {𝜎}-inner vertex 𝑣 , if (𝑢, 𝑣) ∈ 𝐸, 𝐵𝐿 (𝑣) ⊆ 𝐵𝐿 (𝑢) for any 𝐿 ⊆ Σ. If 𝜎 ∈ 𝐿,
𝐵𝐿 (𝑣) = 𝐵𝐿 (𝑢). If 𝜎 ∉ 𝐿, 𝐵𝐿 (𝑣) = ∅.

Proof. The first part follows Lemma 2. If 𝜎 ∈ 𝐿, 𝐵𝐿 (𝑢) ⊆ 𝐵𝐿 (𝑣), for each 𝑣 ′ ∈ 𝐵𝐿 (𝑢), 𝑣 ′ and 𝑢
are 𝐿-connected. Since 𝑣 is a 𝜎-inner vertex and 𝑙 (𝑢, 𝑣) = 𝜎 ∈ 𝐿, 𝑣 ′ and 𝑣 are also 𝐿-connected. □

Lemma 2 further indicates that 𝐵𝐿 (𝑣) is the same among connected {𝜎}-inner vertices. We can

then put connected {𝜎}-inner vertices in the same group, which is easily done by breadth-first

search (BFS). For each 𝜎 ∈ Σ, suppose that there are 𝑘𝜎 groups. Let 𝐶𝑖
𝜎 denote the 𝑖-th group of

connected {𝜎}-inner vertices. The set of non-{𝜎}-inner vertices is 𝑉𝑟𝑒𝑠𝑡 = 𝑉 \⋃𝜎∈Σ
⋃𝑘𝜎

𝑖=1
𝐶𝑖
𝜎 . For

each 𝑣 ∈ 𝐶𝑖
𝜎 and any label set 𝐿, we find 𝐵𝐿 (𝑣) by using 𝐵𝐿 (𝑢) where 𝑢 ∉ 𝐶𝑖

𝜎 and (𝑢, 𝑣) ∈ 𝐸 by

Corollary 1. Section 4.3 will discuss how to retrieve these 𝐵𝐿 (𝑢) for 𝑢 ∈ 𝑉𝑟𝑒𝑠𝑡 .
Algorithm 2 summarizes the procedure of maintaining the groups 𝐶𝑖

𝜎 for {𝜎}-inner vertices.
Specifically, Line 1 initializes 𝑘𝜎 and 𝑉𝑟𝑒𝑠𝑡 . In Line 3, if 𝑣 ’s all adjacent edge labels are 𝜎 , 𝑣 is a

{𝜎}-inner vertex by Definition 4. In Line 4, we start a BFS from a {𝜎}-inner vertex by using a queue.
For each visited vertex, if it is a {𝜎}-inner vertex, we put it into the current group𝐶𝑖

𝜎 and the queue

for further expansion (i.e., visiting its neighbor vertices). Otherwise, we stop expansion at this

vertex by not putting it into the queue.

Example 4. Figure 3 shows all inner vertices (with colors) in the network 𝐺 . Algorithm 2 first visits
𝑣2 since 𝑣2 is an {𝛼}-inner vertex. It sets 𝐶1

𝛼 = {𝑣2} because 𝑣1 and 𝑣3 are non-𝛼-inner vertices. Next,
it visits the {𝛽}-inner vertex 𝑣4 and similarly sets 𝐶1

𝛽
= {𝑣4}. For the {𝜃 }-inner vertex 𝑣7, 𝐶1

𝜃
= {𝑣7}.
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𝛽

𝛽

𝜃
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(𝜃, 2)

(𝜃, 2) (𝜃, 3)

(𝛽, 1) (𝛽, 5) (𝛽, 2)
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(𝛽, 2)

𝐶𝛼
1 = 𝑣2 , 𝐶𝑢𝑡𝛼

1 = {𝑣1, 𝑣3}

𝐶𝛽
1 = 𝑣4 , 𝐶𝑢𝑡𝛽

1 = {𝑣1, 𝑣3}

𝐶𝛽
2 = 𝑣10, 𝑣11 , 𝐶𝑢𝑡𝛽

2 = {𝑣6, 𝑣12}

𝐶𝜃
1 = 𝑣7 , 𝐶𝑢𝑡𝜃

1 = {𝑣3, 𝑣12} 𝐶𝜃
2 = 𝑣8, 𝑣9 , 𝐶𝑢𝑡𝜃

2 = {𝑣3, 𝑣12}
𝑣1
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𝑣4
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Fig. 3. All {𝜎}-inner vertices for 𝜎 ∈ Σ (i.e., colorful ones)

Similarly, for 𝑣8, 𝐶2

𝜃
= {𝑣8, 𝑣9}. Finally, 𝐶2

𝛽
= {𝑣10, 𝑣11}. The rest of the vertices without colors form the

set 𝑉𝑟𝑒𝑠𝑡 , and border vertices are among them.

Theorem 1. Algorithm 2’s time complexity is O(|𝑉 | + |𝐸 |). Its space complexity is O(|𝑉 |).

Proof. The time is O(|𝑉 | + |𝐸 |) because we can perform a BFS to traverse all vertices and edges.

The space is O(|𝑉 |) because we put all vertices into different sets. □

4.3 Connected Component Graph
The goal of building the Connected Component (CC) graph is to efficiently retrieve 𝐵𝐿 (𝑣) for any
label set 𝐿 ⊆ Σ and 𝑣 ∈ 𝑉𝑟𝑒𝑠𝑡 , where 𝑉𝑟𝑒𝑠𝑡 = 𝑉 \⋃𝜎∈Σ

⋃𝑘𝜎
𝑖=1

𝐶𝑖
𝜎 is the rest of vertices after the initial

pruning. Given a vertex 𝑣 ∈ 𝑉𝑟𝑒𝑠𝑡 , we know that 𝐵𝐿 (𝑣) ⊆ 𝑉𝑟𝑒𝑠𝑡 by Lemma 1. However, it is still costly

to check each vertex in 𝑉𝑟𝑒𝑠𝑡 . We separate the task of retrieving 𝐵𝐿 (𝑣) into two steps following

Definition 6: first retrieving the set of 𝑣 ’s 𝐿-connected vertices in 𝑉𝑟𝑒𝑠𝑡 and then retaining those

that have adjacent edge labels not in 𝐿.

For the first step, we propose the CC graph that considers the {𝜎}-connected vertices for each

𝜎 ∈ Σ and combines them to form 𝐿-connected vertices in 𝑉𝑟𝑒𝑠𝑡 . The CC graph mainly includes a

set of nodes 𝑁 𝑖
𝜎 for each 𝜎 ∈ Σ, where each node 𝑁 𝑖

𝜎 is the 𝑖-th set of {𝜎}-connected vertices in

𝑉𝑟𝑒𝑠𝑡 . These nodes are helpful because any two vertices inside 𝑁 𝑖
𝜎 are 𝜎-connected, which reduces

the search space inside 𝑁 𝑖
𝜎 . We perform BFS by only using edges with label 𝜎 to find 𝑁 𝑖

𝜎 . If we visit

a vertex 𝑣 ∈ 𝑉𝑟𝑒𝑠𝑡 , we put it into 𝑁 𝑖
𝜎 . For better clarity, we use the term “node” (which represents a

set of vertices) for the CC graph and “vertex” for the road network.

We also maintain the mapping from each vertex to its CC node. For each 𝑣 ∈ 𝑉𝑟𝑒𝑠𝑡 and each 𝜎 ∈ Σ,
let 𝑁𝜎 (𝑣) be the unique CC node (which is the 𝑖-th set of {𝜎}-connected vertices 𝑁 𝑖

𝜎 ) that 𝑣 belongs

to (i.e., 𝑣 ∈ 𝑁 𝑖
𝜎 ) if it exists and null otherwise. For each 𝑣 ∉ 𝑉𝑟𝑒𝑠𝑡 , which is a {𝜎}-inner vertex,

we also assign its 𝑁𝜎 (𝑣) to better find its 𝐿-connected vertices in 𝑉𝑟𝑒𝑠𝑡 . It can be done when we

process Algorithm 2. Specifically, in Line 4 of Algorithm 2, for a {𝜎}-inner vertex 𝑣 , when we stop

expansion at some non-{𝜎}-inner ones, they and 𝑣 must belong to the same connected component

and thus, the same CC node. Thus, we can set 𝑁𝜎 (𝑣) as the CC node of those non-{𝜎}-inner ones.
For each 𝑣 ∈ 𝑉𝑟𝑒𝑠𝑡 , since any pair of 𝑣 ’s two adjacent edges with different labels are connected via 𝑣 ,

we add a link between 𝑁𝜎 (𝑣) and 𝑁𝜎 ′ (𝑣) where 𝜎 and 𝜎 ′ are two different adjacent edge labels if

the link does not exist.

For each 𝑣 ∈ 𝑉 , let N𝐿 (𝑣) be the set of nodes that 𝑣 belongs to w.r.t. all 𝜎 ∈ 𝐿 , i.e, N𝐿 (𝑣) =
{𝑁𝜎 (𝑣) |𝜎 ∈ 𝐿, 𝑁𝜎 (𝑣) ≠ null}. Let N ′

𝐿
(𝑣) be the set of nodes that are some 𝑁𝜎 for 𝜎 ∈ 𝐿 and con-

nected to those inN𝐿 (𝑣) in the CC graph, i.e.,N ′
𝐿
(𝑣) = {𝑁𝜎 |𝜎 ∈ 𝐿, 𝑁 ∈ N𝐿 (𝑣), ∃ a path between 𝑁𝜎

and 𝑁 in the CC graph}. We show how to use the CC graph by the following lemma.

Lemma 3. Given a label set 𝐿, the set of 𝑣 ’s 𝐿-connected vertices is
⋃

𝑁 ∈N𝐿 (𝑣)∪N′𝐿 (𝑣) 𝑁 .
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Algorithm 3: CC Graph Construction

input :The network 𝐺 (𝑉 , 𝐸, Σ, 𝑙,𝑤)
output :CC graph including the refined sets 𝑅𝜎 (𝑁 ) for each node 𝑁 and 𝜎 ∈ Σ

1 foreach 𝜎 ∈ Σ do
2 𝑖 ← 0,𝑉 ′ ← 𝑉

3 foreach 𝑣 ∈ 𝑉 ′ do
4 if 𝑣 has an adjacent label equal to 𝜎 then
5 perform a BFS from 𝑣 by only using edges with label 𝜎 , and for each visited

vertex 𝑢, add 𝑢 into 𝑁 𝑖
𝜎 if 𝑢 ∈ 𝑉𝑟𝑒𝑠𝑡

6 foreach 𝜎 ′ ∈ Σ\{𝜎} do
7 𝑅𝜎 ′ (𝑁 𝑖

𝜎 ) ← {𝑣 ∈ 𝑁 |∃𝑙 (𝑣, 𝑣 ′) = 𝜎 ′}
8 𝑉 ′ ← 𝑉 ′ \ 𝑁 𝑖

𝜎

9 𝑖 ← 𝑖 + 1

10 foreach 𝑣 ∈ 𝑉𝑟𝑒𝑠𝑡 do
11 for (𝑣, 𝑣 ′), (𝑣, 𝑣 ′′) ∈ 𝐸 where 𝑙 (𝑣, 𝑣 ′) ≠ 𝑙 (𝑣, 𝑣 ′′) do
12 add a link between 𝑁𝑙 (𝑣,𝑣′ ) (𝑣) and 𝑁𝑙 (𝑣,𝑣′′ ) (𝑣)

13 return the CC graph of 𝐺

Proof. For one of 𝑣 ’s 𝐿-connected vertices 𝑢, consider any 𝑣-𝑢 path ⟨𝑣0 = 𝑣, 𝑣1, 𝑣2, . . . , 𝑣𝑘 = 𝑢⟩
where each 𝑙 (𝑣𝑖−1, 𝑣𝑖 ) ∈ 𝐿 for 1 ≤ 𝑖 ≤ 𝑘 . We prove by induction that 𝑣𝑖 is in one of the nodes

𝑁 in N𝐿 (𝑣) ∪ N ′𝐿 (𝑣). First, 𝑣0 = 𝑣 ∈ 𝑁𝑙 (𝑣0,𝑣1 ) (𝑣) ∈ N𝐿 (𝑣) because 𝑙 (𝑣0, 𝑣1) ∈ 𝐿. If 𝑣𝑖 ∈ 𝑁𝜎 (𝑣𝑖 ) ∈
N𝐿 (𝑣) ∪ N ′𝐿 (𝑣) for one 𝜎 , we can get that 𝑁𝑙 (𝑣𝑖 ,𝑣𝑖+1 ) (𝑣𝑖 ) ∈ N𝐿 (𝑣) ∪ N ′𝐿 (𝑣) since 𝑙 (𝑣𝑖 , 𝑣𝑖+1) ∈ 𝐿 and

𝑁𝑙 (𝑣𝑖 ,𝑣𝑖+1 ) (𝑣𝑖 ) should be linked to 𝑁𝜎 (𝑣𝑖 ). We also know that 𝑣𝑖+1 ∈ 𝑁𝑙 (𝑣𝑖 ,𝑣𝑖+1 ) (𝑣𝑖 ) since 𝑣𝑖 and 𝑣𝑖+1 are
𝑙 (𝑣𝑖 , 𝑣𝑖+1)-connected and should belong to the same node, which shows that 𝑣𝑖+1 ∈ 𝑁𝑙 (𝑣𝑖 ,𝑣𝑖+1 ) (𝑣𝑖 ) ∈
N𝐿 (𝑣) ∪ N ′𝐿 (𝑣). For each 𝑢 ∈ ⋃

𝑁 ∈N𝐿 (𝑣)∪N′𝐿 (𝑣) 𝑁 , we first find the two nodes that contain 𝑢 and

𝑣 and then a path in the CC graph between the two nodes. Since each link (𝑁, 𝑁 ′) in this path

represents that all vertices in 𝑁 and 𝑁 ′ are 𝐿-connected, we show that 𝑢 and 𝑣 are 𝐿-connected. □

For the second step, to retain only 𝑣 ’s 𝐿-connected vertices that have adjacent labels not in 𝐿,

we can classify the vertices in each node by their adjacent labels. Specifically, for each node 𝑁 , let

𝑅𝜎 (𝑁 ) be the refined set of vertices in𝑁 that have at least one adjacent label equal to 𝜎 , i.e., 𝑅𝜎 (𝑁 ) =
{𝑣 ∈ 𝑁 |∃𝑙 (𝑣, 𝑣 ′) = 𝜎} for each 𝜎 ∈ Σ. Then, for 𝑣 ∈ 𝑉𝑟𝑒𝑠𝑡 , 𝐵𝐿 (𝑣) =

⋃
𝜎∈Σ\𝐿

⋃
𝑁 ∈N𝐿 (𝑣)∪N′𝐿 (𝑣) 𝑅𝜎 (𝑁 ).

Algorithm 3 describes the construction of the CC graph. For each label 𝜎 (Line 1), we separately

find the 𝜎-connected components to form the nodes 𝑁 𝑖
𝜎 by using BFS in Line 5. The BFS only uses

edges with label 𝜎 for expansion. We then refine the node set 𝑁 𝑖
𝜎 by assigning vertices into different

𝑅𝜎 ′ (𝑁 𝑖
𝜎 ) for 𝜎 ′ ∈ 𝐿\{𝜎} in Lines 6-7. In Lines 10-12, for each vertex, we add a link between any

pair of 𝑁𝜎 (𝑣) and 𝑁𝜎 ′ (𝑣) where 𝜎 = 𝑙 (𝑣, 𝑣 ′) and 𝜎 ′ = 𝑙 (𝑣, 𝑣 ′′) are 𝑣 ’s two adjacent labels.

Example 5. For label 𝛼 , Algorithm 3 uses BFS to find {𝑣1, 𝑣2, 𝑣3, 𝑣5}. We set 𝑁 1

𝛼 = {𝑣1, 𝑣3, 𝑣5} because
𝑣2 ∉ 𝑉𝑟𝑒𝑠𝑡 . For each label other than 𝛼 , we set 𝑅𝜃 (𝑁 1

𝛼 ) = {𝑣3} since only 𝑣3 has adjacent labels
𝑙 (𝑣3, 𝑣7) = 𝑙 (𝑣3, 𝑣8) = 𝜃 . Similarly, we can set 𝑅𝛽 (𝑁 1

𝛼 ) and 𝑅𝛾 (𝑁 1

𝛼 ). For the label 𝛽 , we can find two
connected components {𝑣1, 𝑣3, 𝑣4} and {𝑣5, 𝑣6, 𝑣10, 𝑣11, 𝑣12} by the BFS. After removing those not in𝑉𝑟𝑒𝑠𝑡 ,
we get 𝑁 1

𝛽
= {𝑣1, 𝑣3} and 𝑁 2

𝛽
= {𝑣5, 𝑣6, 𝑣12} and their refined sets 𝑅𝜎 (𝑁 ). We similarly process 𝑁 1

𝜃
and

𝑁 1

𝛾 . Next, we add links between CC nodes. For 𝑣1, 𝑙 (𝑣1, 𝑣2) = 𝛼 ≠ 𝑙 (𝑣1, 𝑣4) = 𝛽 , we add a link between
𝑁 1

𝛼 and 𝑁 1

𝛽
. Similarly, we can add links between other nodes by considering other vertices in 𝑉𝑟𝑒𝑠𝑡 .
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𝑁𝛼
1 = {𝑣1, 𝑣3, 𝑣5} 𝑅𝛽(𝑁𝛼

1) = {𝑣1, 𝑣3, 𝑣5}

𝑅𝜃(𝑁𝛼
1) = {𝑣3}

𝑅𝛾(𝑁𝛼
1) = {𝑣3}

𝑁𝛽
1 = {𝑣1, 𝑣3}

𝑅𝛼(𝑁𝛽
1) = {𝑣1, 𝑣3}

𝑅𝜃(𝑁𝛽
1) = {𝑣3}

𝑅𝛾(𝑁𝛽
1) = {𝑣3}

𝑁𝜃
1 = {𝑣3, 𝑣12}

𝑅𝛼(𝑁𝜃
1) = {𝑣3}

𝑅𝛽(𝑁𝜃
1) = {𝑣3, 𝑣12}

𝑅𝛾(𝑁𝜃
1) = {𝑣3}

𝑁𝛾
1 = {𝑣3, 𝑣6} 𝑅𝛽(𝑁𝛾

1) = {𝑣3, 𝑣6}
𝑅𝜃(𝑁𝛾

1) = {𝑣3}

𝑅𝛼(𝑁𝛾
1) = {𝑣3}

𝑁𝛽
2 = {𝑣5, 𝑣6, 𝑣12}

𝑅𝛼(𝑁𝛽
2) = {𝑣5}

𝑅𝜃(𝑁𝛽
2) = {𝑣12}

𝑅𝛾(𝑁𝛽
2) = {𝑣6}

𝛼

𝛽

𝜃

𝛾

Fig. 4. The CC graph of 𝐺

Algorithm 4: Fetching 𝐵𝐿self (𝑞) (𝑣, 𝐿move (𝑞))
input :CC graph, a vertex 𝑣 , and a state 𝑞

output :𝐵𝐿self (𝑞) (𝑣, 𝐿move (𝑞))
1 N ← ∅, 𝐵 ← ∅
2 foreach 𝜎 ∈ 𝐿self (𝑞) do
3 N ← N ∪ {𝑁𝜎 (𝑣)}
4 Perform a BFS from 𝑁𝜎 (𝑣) by using CC graph links and add each 𝑁𝜎 ′ (𝑣) in N s.t.

𝜎 ′ ∈ 𝐿self (𝑞)
5 foreach 𝜎 ∈ 𝐿move (𝑞) do
6 foreach 𝑁 ∈ N do
7 𝐵 ← 𝐵 ∪ 𝑅𝜎 (𝑁 )

8 return 𝐵

To make a state move, given the current vertex-state pair (𝑣, 𝑞), we consider the set 𝐵𝐿self (𝑞) (𝑣)
where we use 𝐿self (𝑞) to replace 𝐿. Furthermore, not all labels in Σ\𝐿 can be used for state moves,

we only need to focus on those in 𝐿move (𝑞). We focus on the set of vertices in 𝐵𝐿self (𝑣) such that

they have adjacent labels in 𝐿move (𝑞) for state moves. Thus, we define 𝐵𝐿self (𝑞) (𝑣, 𝐿move (𝑞)) where
we use 𝐿move (𝑞) to replace Σ\𝐿.

Definition 7 (The set of 𝑣 ’s 𝐿 border vertices w.r.t. the label set 𝐿𝑚𝑜𝑣𝑒 (𝑞)). At state 𝑞,
we define 𝐵𝐿self (𝑞) (𝑣, 𝐿move (𝑞)) =

⋃
𝜎∈𝐿move (𝑞)

⋃
𝑁 ∈N𝐿self (𝑞) (𝑣)∪N

′
𝐿self (𝑞)

(𝑣) 𝑅𝜎 (𝑁 ).

Algorithm 4 summarizes the procedure of fetching the set of border vertices 𝐵𝐿self (𝑞) (𝑣, 𝐿move (𝑞))
used in query processing. Specifically, in Lines 2–4, we first find the nodes in the CC graph that

are connected to 𝑁𝜎 (𝑣) for 𝜎 ∈ 𝐿self (𝑞) and put them in N . These nodes are connected by labels in

𝐿self (𝑞) according to the construction of the CC graph. To make a state move, we consider each

label 𝜎 ∈ 𝐿move (𝑞) (Line 5) and put 𝑅𝜎 (𝑁 ) for each 𝑁 ∈ N (Line 6) in the final answer since the

vertices in 𝑅𝜎 (𝑁 ) have at least one adjacent label 𝜎 for state moves.
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𝑁𝛼
1 = {𝑣1, 𝑣3, 𝑣5} 𝑅𝛽 𝑁𝛼

1 = (𝑣1, 𝑣4 , 𝑣3, 𝑣4 , (𝑣5, 𝑣6)}

𝑅𝜃(𝑁𝛼
1) = { 𝑣3, 𝑣6 , (𝑣3, 𝑣8)}

𝑅𝛾(𝑁𝛼
1) = {(𝑣3, 𝑣6)}

Fig. 5. Edge representation of the CC node 𝑁 1

𝛼

Example 6. Suppose that we want to find 𝐵𝐿self (𝑞0 ) (𝑣1, 𝐿move (𝑞0)) for (𝑣1, 𝑞0). First, since 𝐿self (𝑞0) =
{𝛼, 𝛽}, we find N𝐿self (𝑞0 ) (𝑣1) = {𝑁 1

𝛼 , 𝑁
1

𝛽
} by looking at the first row of 𝛼 where 𝑁 1

𝛼 contains 𝑣1 and
the second row of 𝛽 where 𝑁 1

𝛽
contains 𝑣1 in Figure 4. We also get N ′

𝐿self (𝑞0 ) (𝑣1) = {𝑁
2

𝛽
} because 𝑁 2

𝛽
is

connected to 𝑁 1

𝛼 . Then, N = {𝑁 1

𝛼 , 𝑁
1

𝛽
, 𝑁 2

𝛽
}. In Line 7, we can then use the union of 𝑅𝛾 (𝑁 ) for 𝑁 ∈ N

to form 𝐵 = {𝑣3, 𝑣6}.

Algorithm 4 is correct because we fetch all of 𝑣 ’s 𝐿self (𝑞)-connected vertices by Lemma 3 and

retain only those with adjacent labels in 𝐿move (𝑞) by 𝑅𝜎 (𝑁 ).
To avoid scanning the neighbors of each vertex 𝑣 in 𝑅𝜎 (𝑁 ), we can directly store 𝑣 ’s incident

edges with label 𝜎 in each CC node and form 𝐵 as a set of edges. For ease of illustration, we just

list vertices in each 𝑅𝜎 (𝑁 ) of each CC node.

Example 7. Figure 5 shows how we store the edges in the CC node 𝑁 1

𝛼 . For 𝑣3 ∈ 𝑅𝜃 (𝑁 1

𝛼 ), we can
directly store the two incident edges (𝑣3, 𝑣6) and (𝑣3, 𝑣8) with label 𝜃 . Similarly, we can process 𝑅𝛽 (𝑁 1

𝛼 )
and 𝑅𝛾 (𝑁 1

𝛼 ) to store the edges with corresponding labels.

Theorem 2. Algorithm 3’s time complexity is O(|Σ| |𝐸 | + |𝑉 |𝐷2), where 𝐷 is the average degree of
each vertex. Its space complexity is O(|Σ| |𝑉 | + |𝑉 |𝐷2).

Proof. In each iteration, the BFS takes O(|𝐸 |) time and there are |Σ| iterations. The last two
for-loops uses O(|𝑉 |𝐷2) time. Since we need to maintain the mapping from each vertex to its

unique node for each 𝜎 ∈ Σ, we use O(|Σ| |𝑉 |) space. There could be at most O(|𝑉 |𝐷2) links. □

Theorem 3. Algorithm 4’s time complexity is O(|𝐸 |).

Proof. In the worst case, the number of links in the CC graph is |𝐸 | and we perform a BFS using

O(|𝐸 |) time. □

4.4 Weight Calculation
Given a vertex-state pair (𝑣, 𝑞), if 𝐿self (𝑞) ≠ ∅, we can find one of its border vertices 𝑣 ′ ∈ 𝐵𝐿self (𝑞) (𝑣)
for a state move. We also need to calculate the minimum weight of the 𝑣-𝑣 ′ path that only uses

labels in 𝐿self (𝑞). It corresponds to the Kleene-language constrained shortest path problem, which

is widely studied [7, 19, 31, 40]. However, we note that the query efficiency of the best-known

index, called LSD [40], can be still improved since it sacrifices much query efficiency to achieve a

small index cost. We will adapt the LSD index to compute the minimum weight of the 𝑣-𝑣 ′ path
that only uses labels in a given non-empty label set 𝐿 (which is 𝐿self (𝑞) in our problem), denoted by

𝑤min

𝐿
(𝑝𝑣𝑣′ ). It is∞ if 𝑣 and 𝑣 ′ are not 𝐿-connected. Our modified LSD can be orders of magnitude

faster than the original version of LSD, as shown in our experiments.

We first introduce the original LSD. Let 𝑠 = 𝑣 and 𝑡 = 𝑣 ′. To compute 𝑤min

𝐿
(𝑝𝑠𝑡 ), LSD mainly

utilizes two concepts: vertex cuts and non-dominated paths. First, a vertex cut 𝐻 for 𝑠 and 𝑡 is

any set of vertices such that 𝑠 and 𝑡 are disconnected after the vertices in 𝐻 are removed from

the graph. It further means that any 𝑠-𝑡 path must traverse one vertex in 𝐻 and that𝑤min

𝐿
(𝑝𝑠𝑡 ) =
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minℎ∈𝐻 {𝑤min

𝐿
(𝑝𝑠ℎ) +𝑤min

𝐿
(𝑝ℎ𝑡 )} [40]. LSD mainly builds a tree decomposition [28, 32, 36], which

is a tree structure that maps each vertex 𝑣 to a tree node 𝑋 (𝑣) ⊂ 𝑉 representing a vertex set. Given

any 𝑠 and 𝑡 , we can quickly find a small vertex cut 𝐻 that is the least common ancestor (LCA)

node 𝑋LCA of 𝑋 (𝑠) and 𝑋 (𝑡). Second, to define the non-dominated path, we use a pair (𝐿𝑝 ,𝑤 (𝑝))
to represent a path 𝑝 with its path weight𝑤 (𝑝) and label set 𝐿𝑝 , made up by all edge labels along

𝑝 . A path (𝐿1,𝑤1) dominates another path (𝐿2,𝑤2) if 1) 𝐿1 ⊂ 𝐿2 and 𝑤1 ≤ 𝑤2 or 2) 𝐿1 = 𝐿2 and

𝑤1 < 𝑤2. The set S𝑠ℎ of non-dominated paths between 𝑠 and ℎ includes all the 𝑠-ℎ paths that are

not dominated by any other 𝑠-ℎ paths. Given S𝑠ℎ , we can quickly find𝑤min

𝐿
(𝑝𝑠ℎ) by returning the

minimum distance of a path 𝑝 ∈ S𝑠ℎ such that 𝐿𝑝 ⊆ 𝐿.

Given 𝑠 , 𝑡 , and a label set 𝐿, LSD first obtains a vertex cut 𝐻 from the tree decomposition. Next,

it computes 𝑤min

𝐿
(𝑝𝑠ℎ) for each ℎ ∈ 𝐻 , then 𝑤min

𝐿
(𝑝ℎ𝑡 ) for each ℎ ∈ 𝐻 similarly, and 𝑤min

𝐿
(𝑝𝑠𝑡 ) =

minℎ∈𝐻 {𝑤min

𝐿
(𝑝𝑠ℎ) +𝑤min

𝐿
(𝑝ℎ𝑡 )}. To compute𝑤min

𝐿
(𝑝𝑠ℎ) for each ℎ ∈ 𝐻 , LSD finds several sets of

vertices𝑉1,𝑉2, . . . ,𝑉𝑛 = 𝐻 from the tree decomposition in a bottom-up manner.𝑉1,𝑉2, . . .𝑉𝑛 contain

some middle vertices with distances to 𝑣 from near to far. In LSD’s index, it maintains S𝑠𝑣 for 𝑣 ∈ 𝑉1
so that𝑤min

𝐿
(𝑝𝑠𝑣) for 𝑣 ∈ 𝑉1 can be computed easily, as stated above. It also maintains some S𝑣𝑣′

for 𝑣 ∈ 𝑉𝑖 and 𝑣 ′ ∈ 𝑉𝑖+1 (for 𝑖 = 1, . . . 𝑛 − 1) to compute 𝑤min

𝐿
(𝑝𝑣𝑣′ ). In this way, it can recursively

use𝑤min

𝐿
(𝑝𝑠𝑣) for 𝑣 ∈ 𝑉𝑖 to compute𝑤min

𝐿
(𝑝𝑠𝑣) for 𝑣 ∈ 𝑉𝑖+1 until 𝑉𝑖+1 = 𝐻 .

We can find that the original LSD needs to recursively compute the distances 𝑤min

𝐿
(𝑝𝑠𝑣) for

𝑣 ∈ 𝑉1,𝑉2, . . . , 𝐻 from near to far. To improve its efficiency, we adapt LSD by directly preprocessing

non-dominated path sets S𝑠ℎ and Sℎ𝑡 for each ℎ ∈ 𝐻 in the index. By directly looking up the sets in

the index, we can compute𝑤min

𝐿
(𝑝𝑠ℎ) and𝑤min

𝐿
(𝑝ℎ𝑡 ) more efficiently. It actually suggests that we

preprocess the recursive computations during index construction. Though the indexing time and

space costs of the adapted version can be much larger than the original one, its query efficiency

can be orders of magnitude higher. Since 𝑠 and 𝑡 can be different in query processing, we need

to consider all possible vertex cuts. Specifically, the vertex cut can only be the LCA node 𝑋lca of

𝑋 (𝑠) and 𝑋 (𝑡), which means that we only need to consider the branching nodes that have at least

two child nodes. There is also a useful property that for each 𝑣 ∈ 𝑋lca, 𝑋 (𝑣) is an ancestor of both

𝑋 (𝑠) and 𝑋 (𝑡). Therefore, we maintain S𝑣𝑢 in the index whenever 𝑋 (𝑣) is an ancestor of 𝑋 (𝑢). The
adapted index can be built recursively in a top-down manner, similar to [28].

Note that any faster Kleene-language constrained shortest path solutions can replace this weight

calculationmodule. A trivial speedup technique is to precompute some Kleene-language constrained

distances between vertices and their border ones. We directly use LSD since the weight calculation

is not our focus.

5 BSMQuery Processing
The query processing algorithm efficiently searches the graph by utilizing goal-directed priority

values, state-move expansion, and pruning bounds. First, we use the CC graph to obtain the border

vertices to make state moves in each iteration of expansion, which helps us to quickly reach the

final states in the DFA graph. Second, we follow the idea of A* search [18, 22], which uses a priority

queue that tends to first fetch the vertex-state pair closer to the destination for expansion. We

utilize a lower bound for the priority values of vertex-state pairs [22]. Third, we prune unnecessary

searches by using the lower and upper bounds of the path weight.

BSM query processing mainly utilizes the CC graph to obtain border vertices for state moves.

Given the current vertex-state pair (𝑣, 𝑞), if 𝐿self (𝑞) exists, we can directly find its border vertices

𝐵𝐿self (𝑞) (𝑣, 𝐿move (𝑞)) by Algorithm 4. This can be imagined as using some “super edges” (which

represents paths) between 𝑣 and each 𝑢 ∈ 𝐵𝐿self (𝑞) (𝑣, 𝐿move (𝑞)) for expansion. We avoid searching

the vertices along the corresponding 𝑣-𝑢 path. Similar to Algorithm 1, we use the array 𝑑 to
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maintain the minimum weight for each vertex-state pair (𝑣, 𝑞), corresponding to an 𝑠-𝑣 path with

its label accepted by the DFA from state 𝑞0 to 𝑞. We use one of the super edges for expansion

when 𝑑 [𝑢] [𝑞] is larger than 𝑑 [𝑣] [𝑞] +𝑤𝐿self (𝑞)min (𝑝𝑣𝑢), which means that the 𝑠-𝑣 path concatenated

with the super edge between 𝑣 and 𝑢 is better than the previously seen 𝑠-𝑢 paths. Furthermore,

𝑢 ∈ 𝐵𝐿self (𝑞) (𝑣, 𝐿move (𝑞)) has at least one incident edge with its label used for state moves.

The extended Dijkstra’s algorithm uses a priority queue with the current weight 𝑑 [𝑣] [𝑞] as the
priority value of each vertex-state pair (𝑣, 𝑞), whereas A* search uses 𝑓 (𝑣, 𝑞) = 𝑑 (𝑣, 𝑞) + 𝑙𝑏 (𝑣, 𝑞),
where 𝑙𝑏 (𝑣, 𝑞) denotes a lower bound of the minimum weight of the path from (𝑣, 𝑞) to (𝑡, 𝑞𝑓 ) for
one 𝑞𝑓 ∈ 𝐹 to ensure the correctness. A simple way to set 𝑙𝑏 (𝑣, 𝑞) is to use 𝑣 and 𝑡 ’s coordinates to

compute the Euclidean distance between 𝑣 and 𝑡 . Noticing that any unconstrained shortest distance

between 𝑣 and 𝑡 is also a lower bound, [22] chooses a set 𝑆𝑙𝑚 of vertices, called landmarks, and

precomputes the unconstrained distances between each vertex 𝑣 and 𝑢 ∈ 𝑆𝑙𝑚 . Note that the original

idea comes from ALT for unconstrained shortest paths [16]. Then, the absolute value between the

𝑣-𝑢 and 𝑡-𝑢 distances for each 𝑢 ∈ 𝑆𝑙𝑚 can be a lower bound 𝑙𝑏 (𝑣, 𝑞) due to the triangle inequality.

We can use the maximal lower bound among all landmarks since it can prune more search space.

We can also use the upper bound of the optimal LCSP for pruning. For the upper bound of

𝑤 (𝑝𝑜𝑝𝑡 ) of LCSP, denoted by𝑤𝑢𝑏
, the weight of any label-constrained 𝑠-𝑡 path is an upper bound.

Each time we visit the pair (𝑡, 𝑞) for each 𝑞 ∈ 𝐹 , we maintain the minimal upper bound if 𝑑 [𝑡] [𝑞] is
smaller than the current𝑤𝑢𝑏

. Given the current pair (𝑣, 𝑞), there are two places where we can use

the upper bound for pruning. First, after we fetch one of 𝑣 ’s border vertices𝑢 ∈ 𝐵𝐿self (𝑞) (𝑣, 𝐿move (𝑞)),
the lower bound of the path weight via 𝑢 is 𝑑 [𝑣] [𝑞] +𝑤min

𝐿self (𝑞) (𝑝𝑣𝑢) + 𝑙𝑏 (𝑢, 𝑞), where the three terms

represent the weights of 𝑠-𝑣 , 𝑣-𝑢, and 𝑢-𝑡 subpaths, respectively. We then prune a border vertex 𝑢

if the lower bound is no smaller than the current upper bound𝑤𝑢𝑏
. Second, we can prune a pair

(𝑣 ′, 𝑞′) for expansion when the lower bound 𝑑 [𝑣 ′] [𝑞′] + 𝑙𝑏 (𝑣 ′, 𝑞′) is no smaller than𝑤𝑢𝑏
because

the real weight of the path via 𝑣 ′ should be at least the lower bound and thus𝑤𝑢𝑏
, which means

that we cannot find the LCSP by expanding (𝑣 ′, 𝑞′). Note that𝑤𝑢𝑏
is designed to maintain the upper

bound of the optimal weight 𝑤 (𝑝𝑜𝑝𝑡 ) w.r.t. any 𝑞 ∈ 𝐹 , whereas 𝑑 [𝑡] [𝑞] maintain the minimum

weight for 𝑞.

Algorithm 5 summarizes the whole procedure of query processing. In Line 1, we initialize the

array 𝑑 , the upper bound𝑤𝑢𝑏
, and the priority queue 𝑄𝑢𝑒𝑢𝑒 . Each quadruple in 𝑄𝑢𝑒𝑢𝑒 includes its

priority value 𝑓 (𝑣, 𝑞), vertex 𝑣 , state 𝑞, and the current weight𝑤 . In Lines 4–11, we handle the case

where 𝑞 is a final state. Specifically, in Lines 7–11, we check if there is a “super edge” between 𝑣 and

𝑡 by using 𝐿self (𝑞) and this supper edge gives a better 𝑠-𝑡 path from state 𝑞0 to 𝑞. Let 𝑋 be the set of

vertices to be expanded. We initially put 𝑣 into 𝑋 in Line 12. In Lines 13–17, we check the “super

edge” between 𝑣 and each of the border vertices from the CC graph. Specifically, we prune a border

vertex 𝑢 if the lower bound 𝑑 [𝑣] [𝑞] + 𝑤min

𝐿self (𝑞) (𝑝𝑣𝑢) + 𝑙𝑏 (𝑢, 𝑞) > 𝑤𝑢𝑏
. We also check if we have

visited a better path to (𝑢, 𝑞). In Lines 18–24, we perform the expansion for each vertex 𝑢 ∈ 𝑋 . We

only consider each of 𝑢’s adjacent labels 𝑙 (𝑢, 𝑣 ′) that makes a state move to 𝛿 (𝑞, 𝑙 (𝑢, 𝑣 ′)) = 𝑞′ ≠ 𝑞.

In Lines 23–24, we prune (𝑣, 𝑞) if its lower bound 𝑑 [𝑣 ′] [𝑞′] + 𝑙𝑏 (𝑣 ′, 𝑞′) is no smaller than𝑤𝑢𝑏
.

Example 8. We still use the same Example 3 and simply assume that all the lower bounds 𝑙𝑏 (𝑣, 𝑞) = 0.
Initially, we fetch (0, 𝑣1, 𝑞0, 0) from 𝑄𝑢𝑒𝑢𝑒 . Since 𝑞0 ∉ 𝐹 and 𝐿self (𝑞0) = {𝛼, 𝛽} ≠ ∅, in Line 14,
we consider the set 𝐵𝐿self (𝑞0 ) (𝑣1, 𝐿move (𝑞0)) = {𝑣3, 𝑣6} as detailed in Example 6. For 𝑣3, we update
𝑑 [𝑣3] [𝑞0] = 𝑑 [𝑣1] [𝑞0] +𝑤min

𝐿self (𝑞0 ) (𝑝𝑣1𝑣3 ) = 0 + 4 = 4 and put 𝑣3 in 𝑋 . For 𝑣6, we update 𝑑 [𝑣6] [𝑞0] =
𝑑 [𝑣1] [𝑞0] +𝑤min

𝐿self (𝑞0 ) (𝑝𝑣1𝑣6 ) = 0 + 3 = 3 and put 𝑣6 in 𝑋 . In Line 19, since 𝑞′ = 𝛿 (𝑞0, 𝛾) = 𝑞1 ≠ 𝑞, we
can only use the label 𝛾 for expansion. For 𝑣3, we update 𝑑 [𝑣6] [𝑞1] = 6 and put (6, 𝑣6, 𝑞1, 6) in 𝑄𝑢𝑒𝑢𝑒 .
Similarly, we update 𝑑 [𝑣3] [𝑞1] = 5 and put (5, 𝑣3, 𝑞1, 5) in 𝑄𝑢𝑒𝑢𝑒 . We next fetch (5, 𝑣3, 𝑞1, 5) from
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Algorithm 5: BSM Query Processing

input :Two vertices 𝑠 and 𝑡 , L, and BSM index

output :𝑤 (𝑝𝑜𝑝𝑡 ) of LCSP
1 𝑑 [𝑣] [𝑞] ← +∞ for 𝑣 ∈ 𝑉 and 𝑞 ∈ 𝑄 , 𝑑 [𝑠] [𝑞0] ← 0,𝑤𝑢𝑏 ← +∞, 𝑄𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ((0, 𝑠, 𝑞0, 0))
2 while |𝑄𝑢𝑒𝑢𝑒 | > 0 do
3 fetch (𝑓 , 𝑣, 𝑞,𝑤) with the minimum 𝑓 from 𝑄𝑢𝑒𝑢𝑒

4 if 𝑞 ∈ 𝐹 then
5 if 𝑣 = 𝑡 then
6 return𝑤

7 else if 𝐿self (𝑞) ≠ ∅ and 𝑑 [𝑡] [𝑞] > 𝑑 [𝑣] [𝑞] +𝑤min

𝐿self (𝑞) (𝑝𝑣𝑡 ) then
8 𝑑 [𝑡] [𝑞] ← 𝑑 [𝑣] [𝑞] +𝑤min

𝐿self (𝑞) (𝑝𝑣𝑡 )
9 if 𝑑 [𝑡] [𝑞] < 𝑤𝑢𝑏 then
10 𝑤𝑢𝑏 ← 𝑑 [𝑡] [𝑞]
11 𝑄𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ((𝑑 [𝑡] [𝑞], 𝑡, 𝑞, 𝑑 [𝑡] [𝑞]))

12 𝑋 ← {𝑣}
13 if 𝐿self (𝑞) ≠ ∅ then
14 foreach 𝑢 ∈ 𝐵𝐿self (𝑞) (𝑣, 𝐿move (𝑞)) (Algorithm 4) do
15 if 𝑤𝑢𝑏 ≥ 𝑑 [𝑣] [𝑞] +𝑤min

𝐿self (𝑞) (𝑝𝑣𝑢) + 𝑙𝑏 (𝑢, 𝑞) and
𝑑 [𝑢] [𝑞] ≥ 𝑑 [𝑣] [𝑞] +𝑤min

𝐿self (𝑞) (𝑝𝑣𝑢) then
16 𝑑 [𝑢] [𝑞] ← 𝑑 [𝑣] [𝑞] +𝑤min

𝐿self (𝑞) (𝑝𝑣𝑢)
17 𝑋 ← 𝑋 ∪ {𝑢}

18 foreach 𝑢 ∈ 𝑋 do
19 foreach (𝑢, 𝑣 ′) ∈ 𝐸 s.t. 𝛿 (𝑞, 𝑙 (𝑢, 𝑣 ′)) ∈ 𝐿move (𝑞) do
20 𝑞′ ← 𝛿 (𝑞, 𝑙 (𝑢, 𝑣 ′))
21 if 𝑑 [𝑣 ′] [𝑞′] > 𝑑 [𝑢] [𝑞] +𝑤 (𝑢, 𝑣 ′) then
22 𝑑 [𝑣 ′] [𝑞′] ← 𝑑 [𝑢] [𝑞] +𝑤 (𝑢, 𝑣 ′)
23 if 𝑑 [𝑣 ′] [𝑞′] + 𝑙𝑏 (𝑣 ′, 𝑞′) < 𝑤𝑢𝑏 then
24 𝑄𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ((𝑑 [𝑣 ′] [𝑞′] + 𝑙𝑏 (𝑣 ′, 𝑞′), 𝑣 ′, 𝑞, 𝑑 [𝑣 ′] [𝑞′]))

𝑄𝑢𝑒𝑢𝑒 . Since 𝑞1 ∈ 𝐹 , 𝑣3 ≠ 𝑡 , and 𝐿self (𝑞1) = ∅, we directly put expand (𝑣3, 𝑞1) in Line 18–24. We update
𝑑 [𝑣4] [𝑞2] = 7 and put (7, 𝑣4, 𝑞2, 7) in𝑄𝑢𝑒𝑢𝑒 , update 𝑑 [𝑣7] [𝑞3] = 9 and put (9, 𝑣7, 𝑞3, 9) in𝑄𝑢𝑒𝑢𝑒 , and
update 𝑑 [𝑣8] [𝑞3] = 7 and put (7, 𝑣8, 𝑞3, 7) in 𝑄𝑢𝑒𝑢𝑒 . Suppose that we next fetch (7, 𝑣8, 𝑞3, 7). Since
𝑞3 ∈ 𝐹 and 𝐿self (𝑞3) = {𝜃 }, in Line 8, we update 𝑑 [𝑣12] [𝑞3] = 7 + 5 = 12 and𝑤𝑢𝑏 = 𝑑 [𝑣12] [𝑞3] = 12.
We put (12, 𝑣12, 𝑞3, 12) in 𝑄𝑢𝑒𝑢𝑒 and fetch it from 𝑄𝑢𝑒𝑢𝑒 in the later iteration. After some similar
steps, when we visit 𝑣12, we can return the answer𝑤 (𝑝𝑜𝑝𝑡 ) = 12.

Theorem 4. Algorithm 5 is guaranteed to find the LCSP.

Proof. We mainly follow the framework of Algorithm 1. The difference is that we add some

“super edges” between (𝑣, 𝑞) and (𝑢, 𝑞) such that 𝑢 is a 𝐿self (𝑞)-border vertex. Consider the graph
𝐺 with these “super edges”. We additionally explore these super edges with weights𝑤min

𝐿self (𝑞) (𝑝𝑣𝑢).
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They do not affect the correctness since each LCSP in the original graph 𝐺 still has the same path

weight in the new graph. □

Theorem 5. Algorithm 5 uses O(|𝐸 | |𝑄 | log( |𝑉 | |𝑄 |)) time.

Proof. In the worst case, we have a DFA where 𝐿self (𝑞) = ∅ for each 𝑞 ∈ 𝑄 . There can be |𝐸 | |𝑄 |
“push” operations, and each “fetch” operation takes O(log( |𝑉 | |𝑄 |)) time. □

Though theworst-case time complexity does not improve, the query efficiency can be significantly

higher since we use border vertices to reduce search space. The space cost of Algorithm 5 is similar

to that of Algorithm 1, as discussed in Section 2.

Path retrieval. The procedure uses the same idea of Dijkstra’s algorithm. We maintain an array

𝑝𝑟𝑒𝑣 that stores the previous pair of (𝑣, 𝑞) and update it as the array 𝑑 is updated. When we return

the answer in Line 5, we start with the last pair (𝑡, 𝑞) and use the array 𝑝𝑟𝑒𝑣 to find previous

vertex-state pair repeatedly until we find (𝑠, 𝑞0). Note that if the array 𝑑 is updated in Lines 15–16

of Algorithm 5, we restore the path by querying the index of the weight calculation component.

Practical implementation. First, we can transform Algorithm 5 to a bidirectional algorithm

that searches from both 𝑠 and 𝑡 to reduce the search space. We need to maintain two distance arrays

𝑑 𝑓 [𝑣] [𝑞] and 𝑑𝑏 [𝑣] [𝑞] for the forward and backward searches.

Second, the time-consuming part of Algorithm 5 lies in querying the LSD index [40] to obtain

the distances𝑤min

𝐿self (𝑞) (𝑝𝑣𝑢) between 𝑣 and its border vertex 𝑢. A potential speedup technique is to

preprocess some unconstrained distances for vertices and their border vertices. The unconstrained

distance between 𝑣 and 𝑢 is denoted by𝑤min

Σ (𝑝𝑣𝑢) and always a lower bound of𝑤min

𝐿self (𝑞) (𝑝𝑣𝑢) for
any 𝐿self (𝑞) ⊆ Σ. With these lower bounds, we can prune a border vertex 𝑢 by the condition

𝑤𝑢𝑏 < 𝑑 [𝑣] [𝑞] +𝑤min

Σ (𝑝𝑣𝑢) + 𝑙𝑏 (𝑢, 𝑞) before querying LSD in Line 15.

Third, noticing that some Kleene-language constrained shortest distances𝑤min

𝐿self (𝑞) (𝑝𝑣𝑡 ) in Line 7

can be infinity, which means that 𝑣 and 𝑡 are not 𝐿self (𝑞)-connected, we can perform a label-

constrained reachability check before Line 7. Specifically, we do not query LSD if 𝑣 and 𝑡 are not

𝐿self (𝑞)-connected. There have been many efficient solutions [21, 30, 35, 44] since this problem is

irrelevant to edge weights and thus much easier. The state-of-the-art solution P2H [30] can answer

a label-constrained reachability query in several microseconds on a large graph. Note that we do

not have to perform the label-constrained reachability check before Line 15 since 𝑣 and 𝑢 must be

𝐿self (𝑞)-connected by the correctness of the CC graph and Algorithm 3.

6 Experimental Evaluation
In this section, we evaluate the performance of our proposed BSM on four common real road

network datasets. We first introduce the experimental setup in Section 6.1, present the results by

considering the query and index efficiencies in Section 6.2, and summarize our finding in Section 6.3.

6.1 Experimental Setup
We implemented all algorithms in C++ and compiled themwith GNU C++ compiler. All experiments

were performed on one machine with Intel Xeon Processor E5-2650 v4 (30M Cache, 2.20 GHz) and

512 GB DDR4 RAM.

Datasets and Workloads. Following existing studies [37, 40], we considered four real road

networks obtained from DIMACS
1
. Their statistics were summarized in Table 2. The weight𝑤 (𝑒)

and label 𝑙 (𝑒) of each edge were set to its spatial distance and road category. Specifically, each

road category was represented by a two-digit code. The description of DIMACS stated that the

1
http://www.dis.uniroma1.it/challenge9/download.shtml
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Table 2. Dataset Statistics

Dataset Region |𝑉 | |𝐸 | Storage

NY New York City 264,346 733,846 17.9 MB

BAY San Francisco Bay 321,270 800,172 19.6 MB

COL Colorado 435,666 1,057,066 26.4 MB

FLA Florida 1,070,376 2,712,798 68.5 MB

first digit is used to denote four main road types: 1) A, Primary Highway With Limited Access

(e.g. interstates); 2) B, Primary Road Without Limited Access (e.g. US highways); 3) C, Secondary
and Connecting Road (e.g. state highways); and 4) D, Local, Neighborhood, and Rural Road. The

second digit ranging from 1 to 5 represents a finer level of roads. For example, the most frequent

code is “D1”, which means that the road with this label is a local road with level 1.

We generated each workload by specifying the source 𝑠 , destination 𝑡 , and regular language L
of each query 𝑞 = (𝑠, 𝑡,L). Specifically, following existing studies [37, 40], for each road network,

we first found the maximum unconstrained distance 𝐷𝑚𝑎𝑥 between any two vertices (set to an

approximate value for efficiency) and created 10 workloads, called 𝐷1, 𝐷2, . . . , 𝐷10 [37, 40]. Each

workload is formed by 1,000 queries. For all queries in 𝐷𝑖 , the unconstrained distances between

sources and destinations lie in (𝑥𝑖−1𝐷𝑚𝑖𝑛, 𝑥
𝑖𝐷𝑚𝑖𝑛) for 1 ≤ 𝑖 ≤ 10, where 𝐷𝑚𝑖𝑛 = 1, 000 and

𝑥 = (𝐷𝑚𝑎𝑥/𝐷𝑚𝑖𝑛)1/10. In this way, the maximum distance in 𝐷10 is 𝑥
10𝐷𝑚𝑖𝑛 = 𝐷𝑚𝑎𝑥 . For regular

languages, we mainly follow the settings of [37, 40]. The label set Σ = {A1,A2, . . . ,D5}. We sort

them in the descending order of their frequencies among all edges. Let Σ𝑖 be the set of top-𝑖 frequent
labels. To make LSD capable of handling the language constraint, we set the default language

L = (∪𝜎∈Σ10𝜎)∗, which only allows the use of the top-10 frequent labels in the LCSP. It further

means that L prohibits the use of labels in Σ\Σ10, corresponding to some routing preferences on

certain types of roads. To test the effect of the DFA, we also conduct experiments about more

complex types of languages, including the linear and the composite forms, which should cover

most routing demands in real scenarios.

Compared Algorithms.We compared the following four solutions in experiments.

• ExtDijkstra [5]: the extended Dijkstra’s algorithm as illustrated in Algorithm 1.

• SDALT [22]: a search-based algorithm that uses some landmark vertices to provide lower

bounds of distances to direct the search and allows the flexible use of regular languages.

• LSD [40]: the state-of-the-art solution for Kleene languages that reduces the search space by

the tree decomposition.

• BSM: our proposed index-based solution that prunes the search between each vertex and its

border vertices.

Note that we use 32 landmarks following the default setting in [22]. Besides, note that we would

omit LSD if the experiments considered more general constraints that can only be expressed by

regular languages but not Kleene ones.

6.2 Experiment Results
6.2.1 Query Efficiency.
Exp-1: Query efficiency for different query distances 𝐷𝑖 . We test the effect of the query

distance while fixing the language as the default one. The results for the four datasets are shown in

Figure 6. It can be observed that the query times of all algorithms increase when the query distance

is larger, which is mainly due to the expansion of the search range. For the performance, BSM is

the fastest one among all algorithms in all datasets. The Extended Dijkstra’s algorithm has the
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Fig. 6. Query processing times (on a log-10 scale) for different query distances 𝐷𝑖
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Fig. 7. Query processing times for different numbers of labels |Σ𝑖 |
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Fig. 8. Query processing times for different numbers of states |𝑄 |

largest query time because it utilizes no speedup technique. SDALT is faster than ExtDijkstra since

it uses landmarks to guide the search, but it cannot handle queries with long distances in larger

road networks efficiently. LSD performs well for longer query distances because it uses the tree

decomposition to reduce the search space.

Exp-2: Query efficiency for different numbers of labels |Σ𝑖 |. We also study the effect of

the number of labels by varying Σ𝑖 and using the workload 𝐷10 with the same query distance.

Specifically, for Σ𝑖 , we set the regular language as 𝐿 = (∪𝜎∈Σ𝑖𝜎)∗. We summarize the results in

Figure 7. It can be seen from the four figures that BSM is always the most efficient one in all

settings. Since Σ𝑖 with a larger 𝑖 indicates that the constraint allows more labels, ExtDijkstra has to

check more labels during the search, resulting in more time cost. However, when the constraint

allows more edges, it becomes looser since in the extreme case, there is no constraint when all

labels are allowed (i.e., Σ20). As 𝑖 in Σ𝑖 increases, the lower bounds used in SDALT are closer to

the actual label-constrained distances, which are more precise and can guide the search quickly to

the destination. We can observe that SDALT’s time cost gradually decreases when the constraint

is looser. LSD tends to have smaller query times because it checks fewer non-dominated paths

since the constraint is looser. However, BSM is still the best one and outperforms SDALT by a large

margin.

Exp-3: Query efficiency for different numbers of states |𝑄 |. Since the number of states |𝑄 |
is an important factor that determines the cost for state transitions, we vary it by considering the

regular language L𝑖 = 𝜎∗
1
𝜎∗
2
. . . 𝜎∗𝑖 where 𝜎𝑖 is the 𝑖-th top frequent label. Here, we use the top-10
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Fig. 9. More labels on NY
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Fig. 10. Stricter language constraints on NY

frequent labels in Σ10 sequentially and still consider the workload 𝐷10. Note that we omit LSD

because it cannot handle this type of language. Figure 8 presents the query processing times of

different |𝑄 |. We can see that BSM outperforms the other two algorithms in all cases. Since the

number of states increases, all algorithms take more time cost because they all need to check more

vertices and states during the search. The increasing trend slows down mainly because the less

frequent labels (e.g., 𝜎10) rarely appear in the LCSP and the search can quickly prune them.

Exp-4: Query efficiency for more labels.We use more labels than those in previous experi-

ments and show the results on NY data in Figure 9. Specifically, in Figure 9a, we use 𝐷10 dataset and

𝐿 = (∪𝜎∈Σ𝑖𝜎)∗ where 𝑖 = 11, . . . , 20. In Figure 9b, we use 𝐿 = (∪𝜎∈Σ20𝜎)∗ and vary𝐷𝑖 from𝐷1 to𝐷10.

The flat lines are consistent with those in Figure 7a after Σ8. This is mainly because we use labels

from frequent to less frequent ones and the frequencies follow the power law distribution. Suppose

that all 20 labels are denoted as 𝜎1, 𝜎2, . . . , 𝜎20 in the descending order of their frequencies. The

difference between Σ11 = {𝜎1, 𝜎2, . . . , 𝜎11} and Σ12 is 𝜎12, which is a rare label and has less influence

on the query time. We can obtain similar findings that BSM outperforms the other baselines by at

least two orders of magnitude.

Exp-5: Query efficiency for stricter language constraints. Figure 10 shows the comparison

for two stricter languages constraints. The first one uses the same form as the one in Section 1,

and the second one indicates that the returned LCSP should first use highways, then a special

road, and finally local roads. Note that we use the road type D (for local roads) because using

other types (e.g., type A for highways) may not result in any label-constrained path between

the source and destination. It can be found that ExtDijkstra and SDALT have worse performance

than that in Figure 6 for Exp-1 because Exp-1 uses looser constraint with L = (∪𝜎∈Σ10𝜎)∗. Even
if the unconstrained distance between the source and destination increases from 𝐷1 to 𝐷10, the

label-constrained distances can be long and irrelevant to the unconstrained ones (e.g., the path

should traverse a special road). However, we can observe that BSM outperforms others by orders

of magnitude and can answer each query in less than one microseconds.

Exp-6: Query efficiency for more complex languages.We also evaluate the performance for

more complex languages. Following [3, 37], we consider two types of languages: (1) highway usage

𝐿1 = (∪𝜎∈ΣC∪ΣD𝜎)∗ (∪𝜎∈ΣA∪ΣB𝜎)∗ (∪𝜎∈ΣC∪ΣD𝜎)∗ and (2) regional transfer 𝐿2 = (∪𝜎∈ΣB∪ΣC∪ΣD𝜎)∗,
where ΣA, ΣB, ΣC, ΣD represent the label sets containing four types of labels, respectively. Figure 11

gives the results when we increase the number of distinct labels in the language. We can draw a

similar conclusion that BSM is still the most efficient one among all algorithms.

6.2.2 Index Efficiency.
Index construction time.We record the index construction time for each algorithm and dataset

in Table 3. It can be noticed that all the algorithms tend to incur larger time costs when the road

network is larger. We can also find that SDALT takes the longest time among all algorithms. This is

because it has to precompute the distances between each vertex and each landmark, which can be

time-consuming since the number of pre-computed distances is large. LSD takes acceptable time to
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Fig. 11. More complex languages on NY
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Fig. 12. Statistics of BSM index

Table 3. Index construction time

Dataset SDALT LSD Alg. 2 Alg. 3 Total BSM

NY 3,616s 52s 0.06s 0.17s 585.23s

BAY 4,416s 14s 0.06s 0.15s 280.21s

COL 6,016s 102s 0.08s 0.25s 1,244.33s

FLA 14,720s 545s 0.28s 0.79s 7,838.07s

Table 4. Index storage size

Data SDALT LSD CC Graph Total BSM

NY 67.7 MB 34.2 MB 4.7 MB 5.1 GB

BAY 82.3 MB 27.8 MB 5.7 MB 3.9 GB

COL 111.6 MB 40.2 MB 7.5 MB 13.4 GB

FLA 274.1 MB 108.9 MB 22.5 MB 50.2 GB

build its index, but its query efficiency can be low as shown in previous experiments, and it cannot

support regular languages. BSM’s total precomputation time includes Algorithms 2 and 3 and the

time of building the weight calculation index (i.e., our adapted LSD). Algorithms 2 and 3 runs fast

because both of them mainly scan the network once by using BFS. Though the time of building

the adapted LSD index can be long, we only need to build it once to support any forms of regular

languages, and its query time can be orders of magnitude faster than that of the original LSD. Any

state-of-the-art solution for the Kleene-language constrained distance can be easily plugged in

since we could regard this component as a black box.

Index storage size. The storage sizes of all indexes are listed in Table 4. Since the road network

has more vertices and edges, all the indexes consume larger space. The whole BSM index consists of

the CC graph and the adapted LSD index for weight calculation. It can be found that the CC Graph

built by our BSM uses less than 30 MB in all datasets. Though the total index size of BSM is large,

it allows flexible use of regular languages and can answer each LCSP query orders of magnitude

faster than other competitors.

Statistics of BSM index Figure 12 shows some key variables in Algorithms 2 and 3 in detail.

Specifically, Figure 12a gives the numbers of {𝜎}-inner vertices and non-{𝜎}-inner vertices for
each dataset. The {𝜎}-inner vertices occupy a large part of the whole vertices, which further

demonstrates the necessity of performing an initial pruning procedure on the original graph since

there are many {𝜎}-inner vertices with common border vertices. Figure 12b presents the average

size of the CC nodes |𝑁 | and the average refined set size |𝑅𝜎 (𝑁 ) |. The former is actually the

number of non-{𝜎}-inner vertices in a connected component, while the latter refines the vertices
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by retaining those with at least one adjacent label 𝜎 . The two numbers are all smaller than 20,

which indicates that the number of border vertices for the next state move is limited and efficient.

Note that we directly count the number of edges with adjacent label 𝜎 as |𝑅𝜎 (𝑁 ) |, which makes

its average value a bit larger than that of |𝑁 |. When the road network is larger, the two numbers

become smaller, which is due to the increase in the number of CC nodes as shown in Table 4.

6.3 Summary
(1) Our proposed BSM can answer the flexible LCSP query without any assumption on the

language type. It can outperform the state-of-the-art baselines by two orders of magnitude in terms

of query processing time.

(2) The BSM index can be built efficiently with acceptable time and space consumption.

(3) BSM can easily handle problem instances with more labels and complex languages.

7 Related Work
This section discusses related work from the unconstrained shortest path (Section 7.1) and the label-
constrained shortest path (Section 7.2). The former one can be basically classified into index-free and
index-based solutions. For the latter one, some build no indexes and thus, allow the flexible use of

regular languages, and others make assumptions on the languages and preprocess some indexes.

7.1 Unconstrained Shortest Path
The shortest path problem has been widely studied since Dijkstra’s algorithm [14]. To improve its

efficiency, early solutions extended Dijkstra’s idea by performing the bidirectional search (which

runs two simultaneous Dijkstra’s algorithms from both the source and destination) [10] and goal-

directed A* search (which uses a priority values that prefer vertices close to the destination) [18].

However, they are all index-free methods and inefficient in large networks because they have to

search the network from scratch.

Later solutions preprocessed useful network information in the index to achieve high query

efficiency. These solutions included ALT (which uses pre-computed distances to provide better

priority values in A* search) [16],Arc Flags (whichmarks unnecessary edges during query processing

in advance) [20], Transit Nodes (which pre-computes pairwise distances among a set of vertices) [6],

and Reach (which prunes vertices based on pre-computed distances) [17]. Recent indexes could

be classified into two categories: some mainly prune Dijkstra’s search space [8, 13, 15, 29, 33, 39],
and others precompute distances stored in hash tables [2, 9, 23–25, 28, 41–43]. The methods in the

second category could run faster than those in the first one but have larger space consumption.

Specifically, the classical method in the first category is contraction hierarchy [15], which creates

some additional “shortcut” edges to represent a long path and uses a vertex hierarchy to efficiently

search the path made up by shortcut edges. The state-of-the-art H2H [28] in the second category

first finds a set of vertices from the tree decomposition, also called the hoplink, such that any 𝑠-𝑡

path must traverse at least one hoplink, then concatenates the paths from sources and destinations

to these hoplinks, and finally finds the shortest path among all concatenated paths. However, LCSP

is completely different from the shortest path since LCSP involves the label constraint.

7.2 Label-Constrained Shortest Path
The seminal work [27] considered finding simple paths with labels accepted by regular languages in

graph databases. The following work studied some variants of LCSP w.r.t. different types of formal

languages and also proposed the first polynomial LCSP algorithm (i.e., the extended Dijkstra’s

algorithm) for regular langauges [5]. It was later analyzed and implemented in a system called

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 153. Publication date: June 2025.



153:22 Libin Wang and Raymond Chi-Wing Wong

TRANSIMS [4]. To further improve its efficiency, early solutions extended some ideas of uncon-

strained shortest path algorithms, such as bidirectional and A* search [3], Transit Nodes [11], and
ALT [22]. Approximate solutions were also proposed to accelerate the query processing [7, 26]. In

sum, they made no assumption on the regular languages, but their solutions, which were non-index

approaches, were inefficient in answering LCSP queries in large road networks.

Recent index-based solutions assumed some special cases of regular languages so that they

could preprocess some information and achieve much higher query efficiency [12, 19, 31, 37,

40]. [12, 31] utilized the idea of contraction hierarchy to prune the search space. Specifically,

for Kleene languages, which are special cases of regular languages, [31] proposed CHLR that

additionally creates some “shortcut” edges between vertex pairs to allow efficient retrieval of some

sub-LCSPs. [12] assumed that the transformed DFA should have a certain pattern and built UCCH

that preprocesses “shortcut” edges for paths with the same labels (different from CHLR since the

shortcuts in CHLR could use different labels). Following [31] for Kleene languages, [19] presented

EDP that partitions the graph according to edge labels and preprocessed some LCSPs in each

partition. Its query processing then links the LCSPs among necessary partitions. EDP also uses

the idea of connected components and bridge vertices. However, for the set of 𝐿-border vertices, it

actually considers the trivial case where the label set 𝐿 includes only one label and thus, cannot

handle regular languages. In contrast, our BSM builds the CC graph to handle more labels in 𝐿 and

can answer more general queries under regular languages. The other study similarly utilized the

partition and boundary vertices [38], but its problem does not involve labels and its partition is

generated by unlabeled graphs. Based on the tree decomposition technique, LSD finds the LCSP

by searching the tree decomposition in a bottom-up manner [40]. The currently fastest-known

solution was PCSP proposed by [37]. It mainly returns the LCSP by concatenating two sub-LCSPs

in the index, where one has a label accepted by the DFA from the initial state to a middle state and

the other has a label accepted by the DFA from the middle state to a final state. It could outperform

previous ones by orders of magnitude in terms of query efficiency. We admit that PCSP could

run faster than our BSM, but it has to rebuild its index for different regular languages and does

not support the flexible setting of the language constraint, which limits its application. In sum,

they all made assumptions on the regular languages. [19, 31, 40] considered the Kleene language

that specifies a label set and only allows the use of edge labels in it. It is a special case of regular

languages and it is hard to express various routing requirements in practice. [12] also focused on a

special case of regular languages where the corresponding DFA is restricted such that each state has

only one self-loop transition and there is only one link label between different states. [37] assumes

the prior knowledge of the regular languages before query processing. Its solution has to rebuild its

index several times when handling different regular languages in a workload. In contrast, we do not

make any assumptions on the regular languages used in query processing. We only need to build

the index once to answer queries with different languages, which is more flexible and efficient.

8 Conclusion
In this work, we study how to efficiently answer Label-Constrained Shortest Path (LCSP) queries

with flexible use of regular languages as constraints. Specifically, we allow any different forms of

regular languages for each query. Noticing that the time-consuming part of query processing lies

in the self-loop of DFA states, which makes the DFA state unchanged, we propose an index-based

solution called BSM that uses border vertices to skip the exploration in the network and make the

state change in each iteration. Our experiments conducted on real road networks show that our

BSM can significantly outperform other competitors and support more flexible use of languages.

For future work, we may study more general languages (e.g., context-free and context-sensitive

languages) and other types of networks (e.g., biological and social networks).
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