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Abstract. With the proliferation of spatial-textual data such as location-based
services and geo-tagged websites, spatial keyword queries become popular in the
literature. One example of these queries is the collective spatial keyword query
(CoSKQ) which is to find a set of objects in the database such that it covers a
given set of query keywords collectively and has the smallest cost. Some exist-
ing cost functions were proposed in the literature, which capture different aspects
of the distances among the objects in the set and the query. However, we observe
that in some applications, each object has an inherent cost (e.g., workers have
monetary costs) which are not captured by any of the existing cost functions. Mo-
tivated by this, in this paper, we propose a new cost function called the maximum
dot size cost which captures both the distances among objects in a set and a query
as existing cost functions do and the inherent costs of the objects. We prove that
the CoSKQ problem with the new cost function is NP-hard and develop two al-
gorithms for the problem. One is an exact algorithm which is based on a novel
search strategy and employs a few pruning techniques and the other is an approx-
imate algorithm which provides a ln |q.ψ| approximation factor, where |q.ψ| de-
notes the number of query keywords. We conducted extensive experiments based
on both real datasets and synthetic datasets, which verified our theoretical results
and efficiency of our algorithms.

1 Introduction

Nowadays, geo-textual data which refers to data with both spatial and textual infor-
mation is ubiquitous. Some examples of geo-textual data include the spatial points of
interest with textual description, geo-tagged web objects (e.g., webpages and photos
at Flicker), and also geo-social networking data (e.g., users of FourSquare have their
check-in histories which are spatial and also profiles which are textual).

Collective Spatial Keyword Query (CoSKQ) [3,18,2] is a query type recently pro-
posed on geo-textual data which is described as follows. LetO be a set of objects. Each
object o ∈ O is associated with a spatial location, denoted by o.λ, and a set of key-
words, denoted by o.ψ. Given a query q with a location q.λ and a set of keywords q.ψ,
CoSKQ is to find a set S of objects such that S covers q.ψ, i.e., q.ψ ⊆ ∪o∈So.ψ, and the
cost of S, denoted by cost(S), is minimized. CoSKQ is useful in applications where
a user wants to find a set of objects to collectively satisfy his/her needs. One example
is that a tourist wants to find some points-of-interest to do sight-seeing, shopping and
dining, where the user’s needs could be captured by the query keywords of a CoSKQ



query. Another example is that a manager wants to finds some workers, collectively of-
fering a set of skills, to set up a project.

One key component of the CoSKQ problem is the cost function that measures the
cost of a set of objects S wrt the query q, i.e., cost(S). In the literature, five different
cost functions have been proposed for cost(S) [3,18,2]. Each of these cost functions is
based on one or a few of the following distances: (D1) the sum of the distances between
the objects in S and q, (D2) the min of the distances between the objects in S and q,
(D3) the max of the distances between the objects in S and q, and (D4) the max of the
distances between two objects in S. Specifically, (1) the sum cost function [3,2] defines
cost(S) as D1, (2) the maximum sum cost function [3,18,2] defines cost(S) as D3 +
D4, (3) the diameter cost function [18] defines cost(S) as max{D1, D2}, (4) the sum
max cost function [2] defines cost(S) as D1 + D4, and (5) the min max cost function [2]
defines cost(S) as D2 + D4.

These cost functions are suitable in applications where the cost of a set of objects
could be captured well by the spatial distances among the objects and the query only.
For example, in the application where a tourist wants to find a set of points-of-interest,
the cost is due to the distances to travel among the points-of-interest and the query.
However, in some other applications, each object has an inherent cost and thus the cost
of a set of objects would be better captured by both the distances among the objects
and the query and the inherent costs of the objects. In the application where a manager
wants to find a group of workers, each worker is associated with some monetary cost.
Another example is that a tourist wants to visit some POIs (e.g, museums, parks), each
POI is associated with an admission fee. Motivated by this, in this paper, we propose
a new cost function called maximum dot size function which captures both some spa-
tial distances between objects and a query and the inherent costs of the objects. Specif-
ically, the maximum dot size function defines the cost of a set S of objects, denoted by
costMaxDotSize(S), as the multiplication between the maximum distance between the
objects in S and q and the sum of the inherent costs of objects in S.

The CoSKQ problem with the maximum dot size function is proven to be NP-hard
and an exact algorithm would run in exponential time where the exponent is equal to the
number of query keywords. We design an exact algorithm called MaxDotSize-E, which
adopts a novel strategy of traversing possible sets of objects so that only a small frac-
tion of the search space is traversed (which is achieved by designing effective pruning
techniques which are made possible due to the search strategy). For better efficiency,
we also design an approximate algorithm called MaxDotSize-A for the problem. Specif-
ically, our main contribution is summarized as follows.

– Firstly, we propose a new cost function costMaxDotSize, which captures both the
spatial distances between the objects and the query, and the inherent costs of the
objects.

– Secondly, we prove the NP-hardness of MaxDotSize-CoSKQ and design two algo-
rithms, namely MaxDotSize-E and MaxDotSize-A. MaxDotSize-E is an exact algo-
rithm and runs faster than an adapted algorithm in the literature [3]. MaxDotSize-A
gives a solution set S with a ln |q.ψ|-factor approximation. In particular, if |S| ≤ 3
it is guaranteed that S is an optimal solution.



– Thirdly, we conducted extensive experiments on both real and synthetic datasets,
which verified our theoretical results and the efficiency of our algorithms.

The rest of this paper is organized as follows. Section 2 gives the related work. Sec-
tion 3 defines the problem and discusses its hardness. Section 4 presents our proposed
algorithms. Section 5 gives the empirical study. Section 6 concludes the paper.

2 Related Work

Many existing studies on spatial keyword queries focus on retrieving a single object
that is close to the query location and relevant to the query keywords.

A boolean kNN query [13,5,25,30] finds a list of k objects each covering all speci-
fied query keywords. The objects in the list are ranked based on their spatial proximity
to the query location.

A top-k kNN query [9,19,16,20,21,10,26] adopts the ranking function considering
both the spatial proximity and the textual relevance of the objects and returns top-k ob-
jects based on the ranking function. This type of queries has been studied on Euclidean
space [9,19,16], road network databases [20], trajectory databases [21,10] and moving
object databases [26]. Usually, the methods for this kind of queries adopt an index struc-
ture called the IR-tree [9,24] capturing both the spatial proximity and the textual infor-
mation of the objects to speed up the keyword-based nearest neighbor (NN) queries and
range queries. In this paper, we also adopt the IR-tree as an index structure.

Some other studies on spatial keyword queries focus on finding an object set as
a solution. Among them, some [3,18,2] studied the collective spatial keyword queries
(CoSKQ). These studies on CoSKQ adopted a few cost functions which capture the
spatial distances among the objects and the query only and thus they are not suitable in
applications where objects are associated with inherent costs.

Another query that is similar to CoSKQ is the mCK query [28,29,15] which takes a
set of m keywords as input and finds m objects with the minimum diameter that cover
the m keywords specified in the query. In the existing studies of mCK queries, it is
usually assumed that each object contains a single keyword. There are some variants of
the mCK query, including the SK-COVER [8] and the BKC query [11]. These queries
are similar to the CoSKQ problem in that they also return an object set that covers the
query keywords, but they only take a set of keywords as input.

There are also some other studies on spatial keyword queries, including [22] which
finds top-k groups of objects with the ranking function considering the spatial proximity
and textual relevance of the groups, [17] which takes a set of keywords and a clue as
inputs, and returns k objects with highest similarities against the clue, [14,23] which
finds an object set in the road network, [4,12] which finds a region as a solution and
[1,27] which finds a route as a solution.

3 Problem Definition

Let O be a set of objects. Each object o ∈ O is associated with a location denoted by
o.λ, a set of keywords denoted by o.ψ and an inherent cost denoted by o.cost. Given



two objects o and o′, we denote by d(o, o′) the Euclidean distance between o.λ and o′.λ.
Given a query q which consists of a location q.λ and a set of keywords q.ψ, an object is
said to be relevant if it contains at least one keyword in q.ψ, and we denote by Oq the
set containing all relevant objects and say a set of objects is feasible if it covers q.ψ.

Problem Definition [3]. Given a query q = (q.λ, q.ψ), the Collective Spatial Keyword
Query (CoSKQ) problem is to find a set S of objects in O such that S covers q.ψ and
the cost of S is minimized.

In this paper, we propose a new cost function called maximum dot size which defines
the cost of a set S of objects, denoted by costMaxDotSize(S), as the multiplication of
the maximum distance between objects in S and q and the sum of the inherent costs of
objects in S, i.e.,

costMaxDotSize(S) = max
o∈S

d(o, q) ·
∑
o∈S

o.cost (1)

For simplicity, we assume that each object has a unit cost and thus the overall inherent
cost of a set of objects corresponds to the size of this set and costMaxDotSize(S) cor-
responds to maxo∈S d(o, q) · |S|. However, the exact algorithm and the approximate al-
gorithm developed in this paper could also be applied to the general case with arbitrary
costs, while all theoretical results (e.g., approximation ratio) remain applicable (details
could be found in Section 4.4).

We define the maximum dot size function with distance D3 (i.e., maxo∈S d(o, q))
because D3 is the distance traveled to the most far-away object, and it is able to cap-
ture other distances (e.g., 2maxo∈S d(o, q) ≤ maxo1,o2∈S d(o1, o2)). We use a simple
product to combine the two factors (distance and inherent cost) such that it remains ap-
plicable and meaningful when the object inherent costs are unavailable. Note that we
discarded the normalization term maxo∈O d(o, q) · |q.ψ| ·maxo∈O o.cost, which does
not affect the applicability of the cost function.

The CoSKQ problem with the maximum dot size function is denoted as
MaxDotSize-CoSKQ. In the following, if there is no ambiguity, we write
costMaxDotSize(·) as cost(·) for simplicity.

Intractability. The following lemma shows the NP-hardness of MaxDotSize-CoSKQ.

Lemma 1. MaxDotSize-CoSKQ is NP-hard.

Proof: We prove by transforming the set cover problem which is known to be NP-
Complete to the MaxDotSize-CoSKQ problem. The description of the MaxDotSize-
CoSKQ problem is given as follows. Given a set O of spatial objects, each o ∈ O is
associated with a location o.λ and a set of keywords o.ψ, a query q consisting of a
query location q.λ and a set of query keywords q.ψ, and a real number C, the problem
is to determine whether there exists a set S of objects inO such that S covers the query
keywords and cost(S) is at most C.

The description of the set cover problem is given as follows. Given a universe
set U = {e1, e2, ..., en} of n elements and a collection of m subsets of U , V =
{V1, V2, ..., Vm}, and a number k, the problem is to determine whether there exists a set
T ⊆ V such that T covers all the elements in U and |T | ≤ k.



We transform a set cover problem instance to a MaxDotSize-CoSKQ problem in-
stance as follows. We construct a query q by setting q.λ to be an arbitrary location in
the space and q.ψ to be a set of n keywords each corresponding to an element in U . We
construct a set O such that O contains m objects each corresponding to a subset in V .
For each object o in O, we set o.λ to be any location at the boundary of the disk which
is centered at q.λ and has the radius equal to 1, set o.ψ be a set of keywords correspond-
ing to the elements in the subset in V that o is corresponding to and set o.cost = 1.
Note that for any o ∈ O, we have d(o, q) = 1 and the MaxDotSize cost of any set of
objects is exactly equal to the size of the set. Besides, we set C to be equal to k. Clearly,
the above transformation can be done in polynomial time.

The equivalence between the set cover problem instance and the corresponding
MaxDotSize-CoSKQ problem instance could be verified easily since if there exists a
set T such that T cover all the elements in U and |T | ≤ k, the set of objects corre-
sponding the subsets in T cover all the query keywords in q.ψ and has the MaxDotSize
cost at most C and vice versa.

4 Algorithms for MaxDotSize-CoSKQ

4.1 An Exact Algorithm

In this section, we present our exact method called MaxDotSize-E for MaxDotSize-
CoSKQ. Before we present the algorithm, we first introduce some notations. Given
a query q and a non-negative real number r, we denote the circle or the disk cen-
tered at q.λ with radius r by D(q, r). Given a feasible set S, the query distance
owner of S is defined to be the object o ∈ S that is most far away from q.λ (i.e.,
o = argmaxo∈S d(o, q)). Given a query q and a keyword t, the t-keyword nearest
neighbor of q, denoted by NN(q, t), is defined to be the nearest neighbor (NN) of q
containing keyword t. Besides, we define the nearest neighbor set of q, denoted by
N(q), to be the set containing q’s t-keyword nearest neighbor for each t ∈ q.ψ, i.e.,
N(q) = ∪t∈q.ψNN(q, t). Note that N(q) is a feasible set.

The MaxDotSize-E algorithm is presented in Algorithm 1. At the beginning, it main-
tains an object set S for storing the best-known solution found so far, which is initialized
toN(q). Then, it performs an iterative process where each iteration involves three steps.

1. Step 1 (Query Distance Owner Finding): It picks one relevant object o following
an ascending order of d(o, q).

2. Step 2 (Feasible Set Construction): It constructs the best feasible set S′ with
object o as the query distance owner via a procedure called “findBestFeasibleSet”.

3. Step 3 (Optimal Set Updating): It then updates S to S′ if cost(S′) < cost(S).

The iterative process continues with the next relevant object until all relevant objects
have been processed.

One remaining issue in Algorithm 1 is the “findBestFeasibleSet” procedure which
is shown in Algorithm 2.

First, it maintains a variable ψ, denoting the set of keywords in q.ψ not covered
by o yet, which is initialized as q.ψ − o.ψ. If ψ = ∅, then it returns {o} immedi-
ately since we know that it is the best feasible set. Otherwise, it proceeds to retrieve the



Algorithm 1 Algorithm MaxDotSize-E
Input: A query q and a set O of objects
Output: A feasible set S with the smallest cost
1: S ← N(q)
2: // Step 1 (Query Distance Owner Finding)
3: for each relevant object o in ascending order of d(o, q) do
4: // Step 2 (Feasible Set Construction)
5: S′ ← findBestFeasibleSet(o)
6: // Step 3 (Optimal Set Updating)
7: if S′ 6= ∅ and cost(S′) < cost(S) then
8: S ← S′

9: return S

Algorithm 2 Algorithm for finding the best feasible set with object o as the query
distance owner (findBestFeasibleSet(o))
Input: An object o
Output: The best feasible set with o as the query distance owner (if any)
1: ψ ← q.ψ − o.ψ
2: if ψ = ∅ then
3: return {o}
4: O′ ← a set of all relevant objects in D(q, d(o, q))
5: if O′ does not cover ψ then
6: return ∅
7: for each subset S′′ ofO′ with size at most min{|ψ|, cost(S)

d(o,q)
− 1} in ascending order of |S′′|

do
8: if S′′ covers ψ then
9: return S′′ ∪ {o}

10: return ∅

set O′ of all relevant objects in D(q, d(o, q)). If O′ does not cover ψ, it returns ∅ im-
mediately. Otherwise, it enumerates each possible subset S′′ of O′ with size at most
min{|ψ|, cost(S)d(o,q) − 1} in ascending order of |S′′| (by utilizing the inverted lists main-
tained for each keyword in ψ), and checks whether S′′ covers ψ (note that |S′′| is at
most cost(S)d(o,q) − 1 because otherwise it cannot contribute to a better solution). If yes, it
returns S′′∪{o} immediately since it is the best feasible set inO′. Otherwise, it checks
the next subset of O′. When all subsets of O′ have been processed and there is no fea-
sible set found, it returns ∅.

To further improve the efficiency of the MaxDotSize-E algorithm, we develop some
pruning techniques in both Step 1 and Step 2.

4.1.1 Pruning in Step 1
The major idea is that not each object o ∈ Oq is necessary to be considered as a query
distance owner of S′ to be constructed and thus some can be pruned. Specifically, we
have the following lemmas.



q
dLB dUBo1 o6

o7

o4

o2
o3

o5

Fig. 1. Distance constraint for query distance owners

Lemma 2 (Distance Constraint). Let So be the optimal set and o be the query distance
owner of So. Then, we have dLB ≤ d(o, q) ≤ dUB , where dLB = maxo∈N(q) d(o, q)
and dUB = cost(S), where S is an arbitrary feasible set.

Proof: First, we prove dLB ≤ d(o, q) by contradiction. Assume d(o, q) < dLB . Let
of be the farthest object from q in N(q), i.e., dLB = d(q, of ). There exists a keyword
tf ∈ of .ψ ∩ q.ψ such that tf is not contained by any object that is closer to q than of
since otherwise of 6∈ N(q). This leads to a contradiction since there exists an object
o′ ∈ So which covers tf and d(o′, q) ≤ d(o, q) < dLB .

Second, we prove d(o, q) ≤ dUB also by contradiction. Assume d(o, q) > dUB .
Then cost(So) = d(o, q) · |So| > dUB · |So| > cost(S) which contradict the fact that
So is the optimal set.

Figure 1 shows the distance constraint. We only need to consider the relevant objects
inside the gray area (i.e., o2, o3 and o5) to be the query distance owners.

Lemma 3 (Keyword Constraint). Let o be the query distance owner of the set S′ to
be constructed. If d(o, q) > dLB and |o.ψ ∩ q.ψ| < 2, there exist a feasible set S′′ s.t.
cost(S′′) ≤ cost(S′).

Proof: Given the set S′, we can construct the feasible set S′′ as follows. Consider the
following two cases. Case 1. d(o, q) > dLB and |o.ψ ∩ q.ψ| = 0. In this case, we can
construct S′′ = S′ \ {o} be the feasible set with lower cost. Case 2. d(o, q) > dLB
and |o.ψ ∩ q.ψ| = 1. Let the keyword t = o.ψ ∩ q.ψ. We know that o 6∈ N(q) because
d(o, q) > dLB . Note that there exist an object o′ ∈ N(q) that contains t. Thus, we can
construct S′′ = S′ \ {o} ∪ {o′} be the feasible set with cost(S′′) ≤ cost(S′).

The above two lemmas suggest that an object o could be pruned if any of the fol-
lowing two conditions is not satisfied.

1. (Condition 1): dLB ≤ d(o, q) ≤ dUB ; and
2. (Condition 2): (d(o, q) = dLB) or (d(o, q) > dLB and |o.ψ ∩ q.ψ| ≥ 2)



4.1.2 Pruning in Step 2
The major idea is that not each object o′ ∈ O′ is necessary to be enumerated when
finding the best feasible set S′ with the query distance owner o. We first introduce a
concept called dominance. Given a set of keywords ψ, a set of objects O′, two objects
o1 and o2 inO′, we say that o1 dominates o2 wrt ψ if all keywords in ψ that are covered
by o2 can be covered by o1 and there exists a keyword in ψ that is covered by o1 but not
by o2 (i.e., o2.ψ ∩ ψ ⊂ o1.ψ ∩ ψ). An object that is not dominated by another object
is said to be a dominant object. Then, it could be verified easily that only those objects
that are dominant ones need to be considered in Step 2.

4.1.3 Correctness and Time Complexity
Based on the description of the MaxDotSize-E algorithm, it is easy to verify that
MaxDotSize-E is an exact algorithm.

Theorem 1. MaxDotSize-E returns a feasible set with the smallest cost for
MaxDotSize-CoSKQ.

Time Complexity. We use the IR-tree built on O to support the range query operations
involved in the algorithm.

Let n1 be the number of iterations (lines 3-8) MaxDotSize-E and β be the cost of
executing one iteration. The time complexity of MaxDotSize-E isO(n1 ·β). In practice,
we have n1 << |Oq| since n1 is equal to the number of relevant objects satisfying the
two conditions.

Consider β. It is dominated by the cost of executing the “findBestFeasibleSet” pro-
cedure with Algorithm 2 (line 5 of Algorithm 1). We analyze the cost of Algorithm 2
as follows. The cost of lines 1-3 is dominated by that of the remaining parts in the al-
gorithm. Line 4 could be finished by performing a range query with an additional con-
straint that the object is relevant, which incurs the cost of O(log |O| + |O′|) [7]. Note
that |O′| corresponds to the number of objects returned by the range query. Lines 5-
6 could be finished simply by traversing for each object in O′ the set of keywords as-
sociated with it and thus the cost is O(

∑
o∈O′ |o.ψ|). Lines 7-9 could be finished by

enumerating all possible subsets of O′ with size at most min{|ψ|, cost(S)d(o,q) − 1} in as-
cending order of size and for each subset, checking whether it covers ψ, and thus the
cost is bounded by O(|O′||ψ|

∑
o∈O′ |o.ψ|) (since there are at most |O′||ψ| subsets to

be checked and the cost of checking each subset is bounded by
∑
o∈O′ |o.ψ|). Over-

all, we know that the time complexity of MaxDotSize-E is O(n1 · (log |O| + |O′| +∑
o∈O′ |o.ψ|+|O′||ψ|

∑
o∈O′ |o.ψ|)) = O(n1 ·(log |O|+|O′||ψ|

∑
o∈O′ |o.ψ|)), where

we have n1 << |Oq|, |O′| ≤ |Oq|, and |ψ| < |q.ψ|.

4.2 An Approximate Algorithm

In this section, we introduce an approximate algorithm called MaxDotSize-A for
MaxDotSize-CoSKQ, which gives a ln |q.ψ|-factor approximation.

MaxDotSize-A is exactly the same as the MaxDotSize-E except that it replaces the
“findBestFeasibleSet” procedure which is an expensive exhaustive search process with



a greedy process which is much cheaper. Specifically, the greedy process first initial-
izes the set to be returned to {o} and then iteratively selects an object in the disk
D(q, d(o, q)) which has the greatest number of uncovered keywords and inserts it into
the set until all keywords are covered.

Theoretical Analysis. Although the set S returned by the MaxDotSize-A algorithm
might have a larger cost than the optimal set So, the difference is bounded.

Theorem 2. MaxDotSize-A gives a ln |q.ψ|-factor approximation for the MaxDotSize-
CoSKQ problem. In particular, if the solution returned by MaxDotSize-A has the size at
most 3, the solution is an exact solution.

Proof: Let So be the optimal solution and Sa be the solution returned by MaxDotSize-
A. Let o be the query distance owner of So. There exists an iteration that the algo-
rithm processes o and the greedy process construct the set S′ by selects the objects in
D(q, d(o, q)).

In the following, we show that cost(S′) ≤ ln |q.ψ| · cost(So) which immediately
implies the correctness of the theorem since cost(Sa) ≤ cost(S′).

Let S′ = {o, o′1, o′2, ..., o′a} and So = {o, o1, o2, ..., ob}. That is, |S′| = 1 + a
and |So| = 1 + b. Without loss of generality, assume that after o is included in S′,
o′1, o

′
2, ..., o

′
a are included in S′ sequentially in the greedy procedure.

Let ψt denote the set of keywords in q.ψ that are not covered by S′ after o′t−1 (if
any) is included in S′ but before o′t is included in S′ for t = 1, 2, ..., a. For example,
ψ1 = q.ψ − o.ψ.

In the case that |S′| = 1, i.e., S′ = {o} and a = 0, we know that o covers all the
keywords in q.ψ and So = {o} = S′. Therefore, S′ is an exact solution. In the case
that |S′| = 2, i.e., S′ = {o, o′1} and a = 1, So also involves exactly two objects and
thus cost(So) = d(o, q) · 2 = cost(S′). Again, S′ is an exact solution. In the case that
|S′| = 3, i.e., S′ = {o, o′1, o′2} and a = 2, it could be verified that So involves exactly
three objects (this is because (1) So involves no more than three objects by definition
and (2) So involves at least three objects since otherwise S′ involves less than three
objects which leads to a contradiction) and thus cost(So) = d(o, q)·3 = cost(S′). Still,
S′ is an exact solution. In the case that |S′| ≥ 4, i.e., a ≥ 3, we continue to prove as
follows. First, it could be verified that b ≥ 2. Second, it could be verified that |ψ1| ≥ 3

since a ≥ 3. Third, in the case that |ψ1| ∈ [3, 7], we verify that cost(S
′)

cost(So)
≤ ln |q.ψ| and

the details of this step could be found in [6]. Therefore, in the following, we focus on
the case that |ψ1| ≥ 8.

First, we have

|o′t ∩ ψt| ≥
|ψt|
b

(2)

which could be verified by as follows. Consider the moment when o′t−1 (if any) has
been included in S′ but o′t has not. By the greedy nature of the process, o′t is the ob-
ject that covers the greatest number of keywords that are not covered yet, i.e., o′t =
argmaxo∈O′{|o.ψ∩ψt|}. Therefore, we know |o′t.ψ∩ψt| ≥ max1≤i≤b{|oi.ψ∩ψt|} ≥∑

1≤i≤b |oi.ψ∩ψt|
b ≥ |ψt|

b .



Based on Equation (2), we have

|ψt+1| = |ψt| − |o′t.ψ ∩ ψt|

≤ |ψt| −
|ψt|
b

= (1− 1

b
)|ψt| (3)

Based on Equation (3), we further deduce that

|ψa| ≤ (1− 1

b
)|ψa−1| ≤ (1− 1

b
)a−1|ψ1| (4)

Note that |ψa| ≥ 1 since otherwise o′a would not be included in S′. As a result, we
know

(1− 1

b
)a−1|ψ1| ≥ |ψa| ≥ 1 (5)

Based on Equation (5), we know that

a ≤ ln |ψ1|
− ln(1− 1

b )
+ 1 ≤ ln |ψ1|

1
b

+ 1 (6)

≤ ln |ψ1| · b+ 1 (7)

The correctness of Equation (6) is based on the fact that ln(1 + x) ≤ x for x ∈ (−1, 0]
(to illustrate, consider f(x) = ln(1 + x) − x. We have f ′(x) = 1

1+x − 1 ≥ 0 for
x ∈ (−1, 0] and f(0) = 0).

As a result, we know

cost(S′)

cost(So)
=
d(o, q) · |S′|
d(o, q) · |So|

=
a+ 1

b+ 1

≤ ln |ψ1| · b+ 2

b+ 1
≤ ln |ψ1|+

2− ln |ψ1|
b+ 1

≤ ln |ψ1|+
2− ln 8

b+ 1
< ln |q.ψ| (8)

which immediately implies the correctness of the theorem since cost(Sa) ≤ cost(S′).

Time Complexity. We use the IR-tree built on O to support the range query operations
involved in the algorithm.

Let n1 be the number of iterations in MaxDotSize-A. The time complexity of
MaxDotSize-A is O(n1 · γ), where γ is the cost of the greedy process. The cost of the
greedy process is O(|ψ| · |ψ||O′|) since it involves at most |ψ| iterations and for each
iteration, it checks for at most |O′| objects the number of keywords in ψ newly covered
by the object being checked, which could be done in O(|ψ| · |O′|) time with the help
of an inverted list of |O′| based on ψ (note that the cost of building the inverted list is
simply O(

∑
o∈O′ |o.ψ|)).

Therefore, the time complexity of MaxDotSize-A is O(n1 · (
∑
o∈O′ |o.ψ| +

|ψ|2|O′|)), where n1 << |Oq|, |O′| ≤ |Oq| << |O|, and |ψ| < |q.ψ|.



4.3 Adaptations of Existing Algorithms

In this section, we adapt the existing algorithms in [3,18,2], which are originally de-
signed for CoSKQ problem with other cost functions, for MaxDotSize-CoSKQ.

Cao-E. Cao-E is an exact algorithm proposed in [3] for CoSKQ problem with
costMaxSum. It can be adapted to MaxDotSize-CoSKQ problem directly by replacing
the cost function from costMaxSum to costMaxDotSize, because it is a best-first search
algorithm which is independent of the cost function used in the problem.

Other Exact Algorithms. Some other exact algorithms were proposed in the litera-
ture for CoSKQ problem with different cost functions, namely Cao-Sum-E [3,2] (for
costSum), Cao-E-New [2] (for either costMaxSum or costMinMax) and Long-E [18]
(for either costMaxSum or costDia). They cannot be adapted to CoSKQ problem with
costMaxDotSize because they all rely on the property of their original cost functions.
Consider Long-E as an example. The core of Long-E relies on an important property
of the distance owner group (containing three objects) that different sets of objects
with the same distance owner group have the same cost for the cost function of either
costMaxSum or costDia studied in [18]. However, this important property could not be
applied to our cost function studied in this paper, i.e., costMaxDotSize. In fact, it is pos-
sible that two sets of objects with the same distance owner group have different costs
for the cost function of costMaxDotSize.

Cao-A1. Cao-A1 is an approximate algorithm proposed in [3,2] for CoSKQ problem
with either costMaxSum or costMinMax. In [6], we prove that Cao-A1 gives |q.ψ|-
factor approximation for MaxDotSize-CoSKQ.

Cao-A2. Cao-A2 is an approximate algorithm proposed in [2] for CoSKQ problem
with costMaxSum. In [6], we prove that Cao-A2 gives |q.ψ|2 -factor approximation for
MaxDotSize-CoSKQ.

Cao-A3. Cao-A3 is an approximate algorithm proposed in [3,2] for CoSKQ prob-
lem with costSum. In [6], we prove that Cao-A3 gives |q.ψ|-factor approximation for
MaxDotSize-CoSKQ.

Long-A. Long-A is an approximate algorithm proposed in [18] for CoSKQ problem
with either costMaxSum or costDia. In [6], we prove that Long-A gives |q.ψ|2 -factor
approximation for MaxDotSize-CoSKQ.

Approximate algorithm Approximation factor
Cao-A1 [3,2] |q.ψ|
Cao-A2 [2] |q.ψ|/2

Cao-A3 [3,2] |q.ψ|
Long-A [18] |q.ψ|/2

MaxDotSize-A (this paper) ln |q.ψ|
Table 1. Approximation factors for MaxDotSize-CoSKQ



Table 1 shows the approximation factors of the above adaptations of existing ap-
proximate algorithms and also the approximate algorithm MaxDotSize-A in this paper.
Among all approximate algorithms, our MaxDotSize-A provides the best approximation
factor for MaxDotSize-CoSKQ.

4.4 Extension to Arbitrary Inherent Costs

Our algorithms can also be applied to the general case with arbitrary object costs, with
the following small changes in both MaxDotSize-E and MaxDotSize-A.

Specifically, for MaxDotSize-E, we do not return the solution immediately after we
found a set S′′ covers ψ (i.e., line 9 in Algorithm 2). Instead, we enumerate all sub-
sets and find the one with the minimum cost. Note that the distance constraint pruning
(Lemma 2) is still applicable. Also, we adjust the definition of dominance as follows.
Given a set of keywords ψ, a set of objects O′, two objects o1 and o2 in O′, we say that
o1 dominates o2 wrt ψ if all keywords in ψ that are covered by o2 can be covered by o1,
there exists a keyword in ψ that is covered by o1 but not by o2, and o1.cost ≤ o2.cost.
Then, the pruning based on dominance remains applicable. It is easy to see that the
above changes do not affect the correctness and time complexity of the algorithm.

For MaxDotSize-A, we need to change the selection criteria in the greedy process
as follows. The greedy process first initializes the set to be returned to {o} and then
iteratively selects an object in the disk D(q, d(o, q)) which has the greatest ratio of
(number of uncovered keywords covered by the object) / (object inherent cost) and
inserts it into the set until all keywords are covered. The following theorem shows the
approximation ratio of MaxDotSize-A.

Theorem 3. MaxDotSize-A gives a (ln |q.ψ| + 1)-factor approximation for the
MaxDotSize-CoSKQ problem, when objects have arbitrary inherent costs. In particu-
lar, if the solution returned by MaxDotSize-A has the size at most 2, the solution is an
exact solution.

Proof: Let c = o.cost, a =
∑
o∈S′ o.cost−c and b =

∑
o∈So

o.cost−c. Let ψt denote
the set of keywords in q.ψ that are not covered by S′ after o′t−1 (if any) is included in
S′ but before o′t is included in S′ for t = 1, 2, .... For example, ψ1 = q.ψ − o.ψ.

In the case that |S′| = 1, i.e., S′ = {o}, we know that o covers all the keywords in
q.ψ and So = {o} = S′. Therefore, S′ is an exact solution. In the case that |S′| = 2,
i.e., S′ = {o, o′1}, So also involves exactly o and o′1 and thus cost(So) = cost(S′).
Again, S′ is an exact solution.

In the case that |S′| ≥ 3, we verify a ≤ b · (ln |ψ1| + 1) as follows. Consider an
object oi ∈ So. Let oi.ψ = {tk, tk−1, ..., t1}, where the algorithm covers the keywords
in oi in the order tk, tk−1, ..., t1. There exist an iteration in our algorithm that pick an
object o′t that covers a keyword tj of oi. In that iteration, at least i keywords in oi
remain uncovered. Thus, if the algorithm were to pick oi in that iteration, the cost per
keyword at most oi.cost/i. Summing over the keywords in oi, the total amount charged
to keywords in oi is at most oi.cost · (1 + 1/2 + 1/3 + ..1/k) ≤ oi.cost · (ln k + 1) ≤
oi.cost · (ln |ψ1|+ 1). Summing over the objects in So and noting that every keywords



in ψ1 is covered by some objects in So, we get

a =
∑

oi∈So\o

oi.cost · (ln |ψ1|+ 1)

= b · (ln |ψ1|+ 1) (9)

Therefore, we know

cost(S′)

cost(So)
=
d(o, q) ·

∑
o∈S′ o.cost

d(o, q) ·
∑
o∈So

o.cost
=
a+ c

b+ c

≤ b · (ln |ψ1|+ 1) + c

b+ c

≤ ln |ψ1|+ 1− c · (ln |ψ1|+ 1)

b+ c
< ln |q.ψ|+ 1 (10)

which immediately implies the correctness of the theorem since cost(Sa) ≤ cost(S′).

It is easy to see that changing the object selection criteria does not affect the time
complexity of the algorithm.

5 EMPIRICAL STUDIES

5.1 Experimental Set-up

Datasets. We used three real datasets adopted in [3,18,2], namely Hotel, GN and
Web. Dataset Hotel contains a set of hotels in the U.S. (www.allstays.com), each of
which has a spatial location and a set of words that describe the hotel (e.g., restaurant,
pool). Dataset GN was collected from the U.S. Board on Geographic Names (geon-
ames.usgs.gov), where each object has a location and also a set of descriptive keywords
(e.g., a geographic name such as valley). Dataset Web was generated by merging two
real datasets. One is a spatial dataset called TigerCensusBlock1, which contains a set
of census blocks in Iowa, Kansas, Missouri and Nebraska. The other is WEBSPAM-
UK20072, which consists of a set of web documents. Table 2 shows the statistics of the
datasets. We set the inherent costs of the objects to 1 by default.
Query Generation. Let O be a dataset of objects. Given an integer k, we generate a
query q with k query keywords similarly as [3,18] did. Specifically, to generate q.λ, we
randomly pick a location from the MBR of the objects in O, and to generate q.ψ, we
first rank all the keywords that are associated with objects in O in descending order of
their frequencies and then randomly pick k keywords in the percentile range of [10, 40].
In this way, each query keyword has a relatively high frequency.
Algorithms. We studied our MaxDotSize-E, MaxDotSize-A and adapted algorithms
as mentioned in Section 4.3. Specifically, we consider two exact algorithms, namely

1 http://www.rtreeportal.org
2 http://barcelona.research.yahoo.net/webspam/datasets/uk2007



Hotel GN Web
Number of objects 20,790 1,868,821 579,727

Number of unique words 602 222,409 2,899,175
Number of words 80,645 18,374,228 249,132,883

Table 2. Datasets used in the experiments

MaxDotSize-E and Cao-E [3] (the adaption), and five approximate algorithms, namely
MaxDotSize-A, Cao-A1 [3,2], Cao-A2 [2], Cao-A3 [3,2] and Long-A [18].

All algorithms were implemented in C++ and all experiments were conducted on a
Linux platform with a 2.66GHz machine and 32GB RAM. The IR-tree index structure
is memory resident.

5.2 Experimental Results

We used the running time and the approximation ratio (for approximate algorithms
only) as measurements. For each set of settings, we generated 50 queries, ran the algo-
rithms with each of these 50 queries. The averaged measurements are reported.

5.2.1 Effect of |q.ψ|
Following the existing studies [3,18], we vary the number of query keywords (i.e., |q.ψ|)
from {3, 6, 9, 12, 15}.
Experiment on Dataset Hotel. Figure 2 shows the results on dataset Hotel. Accord-
ing to Figure 2(a), the running time increases with the query size. Our MaxDotSize-E
is faster than Cao-E by 1-3 orders of magnitude, and the order of magnitude increases
with the query size. It is because Cao-E has to enumerate all sets while MaxDotSize-E
has more effective pruning strategies. According to Figure 2(b), MaxDotSize-A, Cao-
A2, Cao-A3 and Long-A have comparable running time. The running time of Cao-A1
is the smallest but as shown in Figure 2(c), however, the empirical approximation ra-
tio of Cao-A1 is the greatest. Our MaxDotSize-A has the best performance with an ap-
proximate ratio close to 1, which shows that MaxDotSize-A achieves a high accuracy
in practice. This is also consistent with our theoretical results that MaxDotSize-A gives
the best approximation factor among all approximate algorithms.

Experiment on Dataset GN. Figure 3 shows the results on dataset GN. The results of
Cao-E with the query size 9, 12, 15 are not shown because it took more than 3 days or
ran out of memory. According to Figure 3(a), our MaxDotSize-E is faster than Cao-E.
Note that when query size increases, the running time of MaxDotSize-E only increases
slightly because the pruning strategy based on dominant objects reduces the search
space effectively. According to Figure 3(b), Long-A runs the slowest, Cao-A1 runs the
fastest, and all other approximate algorithms including MaxDotSize-A run comparably
fast. As shown in Figure 3(c), all approximate algorithms have approximate ratios 1.
We found that this is because each object in the optimal solution So only contains one
query keyword and thus the size of So is equivalent to the number of query keywords
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Fig. 2. Effect of |q.ψ| (Hotel)

(i.e., |So| = |q.ψ|). In this case, So = N(q) which is used as a starting point in each of
the approximate algorithms.
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Fig. 3. Effect of |q.ψ| (GN)

Experiment on Dataset Web. Figure 4 shows the results on dataset Web, which gives
similar clues. In the following, we do not show the results of Cao-E since it is not
scalable and consistently dominated by our MaxDotSize-E algorithm.

5.2.2 Effect of average |o.ψ|
Following the existing studies [3,18], we conduced experiments on average |o.ψ|. The
details could be found in [6].

5.2.3 Scalability Test
Following the existing studies [3,18,2], we generated 5 synthetic datasets for the exper-
iments of scalability test, in which the numbers of objects used are 2M, 4M, 6M, 8M
and 10M. Specifically, we generated a synthetic dataset by augmenting the GN dataset
with additional objects as follows. Each time, we create a new object o with o.λ set to
be a random location from the original GN dataset by following the distribution and o.ψ
set to be a random document from GN and then add it into the GN dataset. We vary the
number of objects from {2M, 4M, 6M, 8M, 10M}, and the query size |q.ψ| is set to 6.
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Fig. 4. Effect of |q.ψ| (Web)

Figures 5 shows the results for the scalability test. According to Figure 5(a), our
MaxDotSize-E is scalable wrt the number of objects in the datasets, e.g., it ran within
10 seconds on a dataset with 10M objects. Besides, according to Figure 5(b), our
MaxDotSize-A runs consistently faster than Cao-A2 and Long-A and it is scalable, e.g.,
it ran within 1 second on a dataset with 10M objects. According to Figure 5(c), all ap-
proximate algorithms can achieve approximation ratios close to 1.
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Fig. 5. Scalability test

5.2.4 Objects with Inherent Cost
We further generated a dataset based on the Hotel dataset, where each object is asso-
ciated with an inherent cost. For each object, we assign an integer inherent cost in the
range [1, 5] randomly.

Figure 6 shows the results. As shown in Figure 6(a) and (b), the running time of the
algorithms are similar to the case without object inherent cost (i.e., Figure 2(a) and (b)).
According to Figure 6(c), the approximation ratio of our MaxDotSize-A is near to 1,
which shows that the accuracy of MaxDotSize-A is high in practice. The approximation
ratio shown in the figure was computed based on the average of 50 queries. We found
that the approximation ratio of MaxDotSize-A is exactly 1 for most queries (e.g., more
than 47). Therefore, the averaged approximation ratio of MaxDotSize-A is always near



to 1. This is also consistent with our theoretical results that MaxDotSize-A gives the best
approximation factor among all approximate algorithms.
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Fig. 6. Effect of |q.ψ| (Inherent cost)

6 Conclusion

In this paper, we proposed a new cost function, maximum dot size cost for CoSKQ prob-
lem. The cost function captures both the distances among objects and the inherent costs
of objects. We proved the NP-hardness of MaxDotSize-CoSKQ and designed an exact
algorithm and an approximate algorithm with a theoretical error guarantee. Extensive
experiments were conducted which verified our theoretical findings.

There are several interesting future research directions. One direction is to penalize
objects with too much keywords such that the results would not always favour these
objects (this could be used to make it more difficult to cheat an algorithm for the CoSKQ
problem by associating an object with many keywords). It is interesting to see how to
make a good balance between objects with many keywords and the number of objects.
Acknowledgements: We are grateful to the anonymous reviewers for their constructive
comments on this paper. The research of Harry Kai-Ho Chan and Raymond Chi-Wing
Wong is supported by HKRGC GRF 16219816.
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