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ABSTRACT
Previous works about privacy preserving serial data publishing on
dynamic databases have relied on unrealistic assumptions of the
nature of dynamic databases. In many applications, some sensi-
tive values changes freely while others never change. For exam-
ple, in medical applications, the disease attribute changes with time
when patients recover from one disease and develop another dis-
ease. However, patients do not recover from some diseases such as
HIV. We call such diseases permanent sensitive values. To the best
of our knowledge, none of the existing solutions handle these re-
alistic issues. We propose a novel anonymization approach called
HD-composition to solve the above problems. Extensive experi-
ments with real data confirm our theoretical results.

1. INTRODUCTION
Data mining on databases is quite useful. However, publishing

data related to individuals to public may compromise individual
privacy. For example, a hospital may release patient diagnosis
records so that data analysts and researchers can study the char-
acteristics of various diseases. The raw data, also called micro-
data, contain the identities of individuals such as names or keys
which should not be released in order to protect individual privacy.
However, if an adversary has access to the publicly available voter
registration list1, s/he can discover a large portion of patients’ iden-
tities by joining the published table and the voter registration list
on some attributes such as Age, Sex and Zipcode, which are called
quasi-identifier attributes (QID). In recent years, studies [15, 8, 18,
20, 19, 5, 3, 7] have been made to ensure that the sensitive infor-

1There are many sources of such an external table. Most munici-
palities sell population registers that include the identifiers of in-
dividuals along with basic demographics; examples include local
census data, voter lists, city directories, and information from mo-
tor vehicle agencies, tax assessors, and real estate agencies [12]. In
the voter list, 87% of the voters were identifiable with just the full
postal code, gender and birth date [13]. From [15], it is reported
that a city’s voter list in two diskettes was purchased for twenty
dollars, and was used to re-identify medical records.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

mation of individuals cannot be easily identified in a static table by
generalizing QIDs to form anonymized groups and only publishing
those cloaked anonymized groups.

1.1 Motivation
Serial publishing for dynamic databases is often necessary when

there are insertions, deletions and updates in the microdata. To our
best knowledge, there are only three works targeting parts of these
scenarios. The first one, proposed by Byun et, al. [1], uses delayed
publishing to avoid problems caused by insertions, but does not
consider deletions and updates. The second work [2] also considers
only insertions. The third one, m-invariance [21], considers both
insertion and deletion and requires that each individual is linked
to a fixed set of at least m distinct sensitive values. Counterfeit
records sometimes are added into the published table in order to
protect privacy in data with deletions. However, data updates have
not been considered in m-invariance. Our work is motivated by
four main challenges.

Firstly, both the QID value and sensitive value of an individual
can change, while some special sensitive values should remain un-
changed. For example, after a move, the postal code of an individ-
ual changes. That is, the external table such as a voter registration
list can have multiple releases and changes from time to time. Also,
a patient may recover from one disease but develop another disease.
The motivating example for [1] and [21] is that the adversary may
notice a neighbor being sent to hospital, from which s/he knows
that a record for the neighbor must exist in two or more consecu-
tive releases. They further assume that the disease attribute of the
neighbor must remain the same in these releases. However, the
presence of the neighbor in multiple data releases does not imply
that the records for the neighbor will remain the same in terms of
the sensitive value. At the same time, some sensitive values that
once linked to an individual can never be unlinked. For instance,
in medical records, sensitive diseases such as HIV, diabetes and
cancers are to this date incurable, and therefore they are expected
to persist. We call these values permanent sensitive values. Per-
manent sensitive values can be found in many domains of interest.
Some examples are “having a pilot’s qualification” and “having a
criminal record”.

We take m-invariance as a representative to illustrate the inad-
equacy of traditional approaches for the scenarios above, by the
following example. In Tables 1, RL1, RL2 and RL3 are snap-
shots of a voter registration list at times 1, 2 and 3, respectively.
The microdata table T1, T2 and T3 are to be anonymized at times
1, 2 and 3, respectively. In Table 2, three tables T ∗1 , T ∗2 and T ∗3
are published serially at times 1, 2, and 3, respectively. It is easy
to see that T ∗1 , T ∗2 and T ∗3 satisfy 3-invariance. This is because in



PID Age Zip.
p1 23 16355
p2 22 15500
p3 21 12900
p4 26 18310
p5 25 25000
p6 20 29000
p7 24 33000
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PID Disease
p1 Flu
p2 HIV
p3 Fever
p4 HIV
p5 Flu
p6 Fever

PID Disease
p1 Flu
p2 HIV
p3 Flu
p4 HIV
p5 Fever
p6 Fever

PID Disease
p1 Flu
p2 HIV
p3 Flu
p4 HIV
p5 Fever
p6 Fever

(a) RL1 (b)RL2 (c)RL3 (d) T1 (e) T2 (f) T3

Table 1: Voter Registration List(RL) and Microdata(T )
PID G.ID Age Zip. Disease
p1 1 [21, 23] [12k, 17k] Flu
p2 1 [21, 23] [12k, 17k] HIV
p3 1 [21, 23] [12k, 17k] Fever
p4 2 [20, 26] [18k, 29k] HIV
p5 2 [20, 26] [18k, 29k] Flu
p6 2 [20, 26] [18k, 29k] Fever

PID G.ID Age Zip. Disease
p2 1 [20, 22] [12k, 29k] HIV
p3 1 [20, 22] [12k, 29k] Flu
p6 1 [20, 22] [12k, 29k] Fever
p1 2 [23, 26] [16k, 25k] Flu
p4 2 [23, 26] [16k, 25k] HIV
p5 2 [23, 26] [16k, 25k] Fever

PID G.ID Age Zip. Disease
p2 1 [21, 25] [12k, 16k] HIV
p3 1 [21, 25] [12k, 16k] Flu
p5 1 [21, 25] [12k, 16k] Fever
p1 2 [20, 26] [16k, 29k] Flu
p4 2 [20, 26] [16k, 29k] HIV
p6 2 [20, 26] [16k, 29k] Fever

(a)First Publication T ∗1 (b)Second Publication T ∗2 (c)Third Publication T ∗3

Table 2: Published Tables T ∗ satisfying 3-invariance

any release, for each individual, the set of 3 distinct sensitive val-
ues that the individual is linked to in the corresponding anonymized
group remains unchanged. Note that HIV is a permanent disease
but Flu and Fever are transient diseases. Furthermore, assume that
from the registration lists, one can determine that p1, p2, ..., p6 are
the only individuals who satisfy the QID conditions for the groups
with G.ID = 1 and G.ID = 2 in all the three tables of T ∗1 , T ∗2 and
T ∗3 . Then surprisingly, the adversary can determine that p4 has
HIV with 100% probability. The reason is based on possible world
exclusion from all published releases. First, we show that p1 and
p6 cannot be linked to HIV. Suppose that p1 suffers from HIV. In
T ∗1 , since p1, p2 and p3 form an anonymized group containing one
HIV value, we deduce that both p2 and p3 are not linked to HIV.
Similarly, in T ∗2 , since p1, p4 and p5 form an anonymized group
containing one HIV value, p4 and p5 are non-HIV carriers. Sim-
ilarly, from T ∗3 , we deduce that p4 and p6 are not linked to HIV.
Then, we conclude that p2, p3, p4, p5 and p6 do not contract HIV.
However, in each of the releases T ∗1 , T ∗2 and T ∗3 , we know that there
are two HIV values. This leads to a contradiction. Thus, p1 cannot
be linked to HIV. Similarly, by the same inductions, p6 cannot be
an HIV carrier. Finally, from the anonymized group with G.ID =
2 in T ∗3 , we figure out that p4 must be an HIV carrier! No matter
how large m is, this kind of possible world exclusion can appear
after several publishing rounds. Note that even if the registration
list remains unchanged, the same problem can occur since the six
individuals can be grouped in the same way as in T ∗1 , T ∗2 and T ∗3 at
3 different time, according to the algorithm in [21].

Secondly, the anonymization mechanism for serial publishing
should provide individual-based protection. Yet previous works [1]
and [21] focus on record-based protection. In m-invariance [21],
each record is associated with a lifespan of contiguous releases and
a signature which is an invariant set of sensitive values linking to
rj in the published table. If a record rj for individual pi appears at
time j, disappears at time j + 1 (e.g. pi may discontinue treatment
or may switch to another hospital), and reappears at time j + 2,
the appearance at j + 2 is treated as a new record rj+2 in the
anonymization process of [21]. There is no memory of the pre-
vious signature for rj , and a new signature is created for rj+2. Let
us take a look at T ∗1 in Table 2. From T ∗1 , we can find that by 3-
invariance, the signature of the records for p1 and p3 in T ∗1 is {Flu,
HIV, Fever}. If p1 and p3 recover from Flu and Fever at time 2
(not in T2), and reappears due to other disease at time 3(in T3), the
reappearance of p1 and p3 in T3 is treated as new records r′1, r

′
3 and

by m-invariance, there is no constraint for their signature. Thus,
at time 3, if the signatures for r′1 and r′3 do not contain HIV, p1

and p3 will be excluded from HIV. Consequently, p2 will be found
to have HIV! However, it is not easy to extend m-invariance to
individual-based protection. For example, binding invariant signa-
tures to individuals is not feasible, since an individual may develop
new diseases that are not in the signature.

Thirdly, the knowledge model for the adversary should be real-
istic. Literature [1] and [21] assume that it is trivial to obtain the
background knowledge of each individual’s presence or absence in
every snapshot of the microdata. However, gaining this kind of
participation knowledge can be as hard as knowing the individual’s
sensitive values, because one’s participation in a microdata snap-
shot is also confidential. For example, [10] deals with protecting
the information about the presence of individuals in a data release.
A more plausible scenario is that an adversary knows the participa-
tion knowledge of a few close friends.

Fourthly, suppression (removing a record that should exist) is
better than counterfeit (a deleted record is not deleted). If a rare
but deadly disease such as SARS is suppressed in the published
data, we can still broadcast the existence of such a disease with-
out breaching privacy. On the other hand, if a record of SARS is
counterfeited but is known to be wiped out, the counterfeit will be
discovered and lose its protection power for the previous releases.

1.2 Contribution
This paper presents a first study of the problem of privacy pre-

serving serial data publishing with permanent sensitive values and
dynamic registration lists. We analyze the difficulty and show that
without permanent sensitive values, traditional models such as `-
diversity [8] are enough to protect privacy for serial publishing.
However, with permanent sensitive values, the problem becomes
very difficult. No generalization is possible if we assume the ad-
versary possesses full participation knowledge. Fortunately, such
an assumption is not realistic and we can assume limited participa-
tion knowledge instead.

We propose an anonymization method called HD-composition
which involves two major roles, namely holder and decoy. The
objective is to bound the probability of linkage between any in-
dividual and any sensitive value by a given threshold, e.g., 1/`.
Suppose an individual pi has a sensitive value s in the microdata.
One major technique used for anonymizing static data is to form



PID G.ID Age Zip. Disease
p1 1 [22, 25] [15k, 17k] Flu
p2 1 [22, 25] [15k, 17k] HIV
p5 1 [22, 25] [15k, 17k] Fever
p3 2 [20, 26] [12k, 29k] Flu
p4 2 [20, 26] [12k, 29k] HIV
p6 2 [20, 26] [12k, 29k] Fever

(a) Cohorts (b) T ∗3 ’

Table 3: Generalization T ∗3
′ by HD-composition

an anonymized group mixing pi and other individuals whose sen-
sitive values are not s. Merely having the published anonymized
groups, the adversary cannot establish strong linkage from pi to s.
We also follow this basic principle, where we call the individual
to be protected a holder and some other individuals for protection
decoys.

We propose two major principles for partitioning: role-based
partition and cohort-based partition. By role-based partition, in
every anonymized group of the published data, for each holder of
a permanent sensitive value s, ` − 1 decoys which are not linked
to s can be found. Thus, each holder is masked by ` − 1 decoys.
By cohort-based partition, for each permanent sensitive value s, we
construct ` cohorts, one for holders and the other `− 1 for decoys;
restrict that decoys from the same cohort cannot be placed in the
same partition, this is to imitate the properties of true holders.

Consider the example in Table 1 and Table 2, where ` = 3. Since
p2 and p4 are HIV-holders in T1. In Table 3(a), they are both in
cohort 1 where all HIV-holders are stored. In T ∗1 , p1 and p3 form an
anonymized group with an HIV-holder (i.e. p2), and they are HIV-
decoys. p1 and p3 are inserted into cohort 2 and 3, respectively.
Similarly, p6 and p5 are decoys for p4 in T ∗1 , and are inserted into
cohorts 2 and 3, respectively. With the constraints of cohort-based
partition, we get anonymized table T ∗3

′(Table 3(b)) rather than the
problematic T ∗3 ( Table 2(c)). This is because in T ∗3 , decoys p1 and
p6 are grouped with holder p4, but p1 and p6 are from cohort 2,
which violates the constraint of cohort-based partition.

It should be noted that our solution involves a novel idea of uti-
lizing the assumption of a trusted data publisher and the benefit of
making the anonymization process known to the public. It is ob-
vious that the data publisher must be trusted. Otherwise, the pub-
lished data cannot be used for data mining purpose. Hence, the
publisher is assumed to follow the anonymization algorithm ex-
actly. Interestingly, the knowledge of the algorithm is then helpful
to protect the privacy by ensuring a proper analysis of the probabil-
ity of linking individuals to sensitive values. More details will be
given in Section 3.3.2. Therefore it turns out that providing more
knowledge to the adversary actually helps in privacy protection,
which is a surprising finding. Another interesting idea is to utilize
the external information such as the voter registration lists to facil-
itate the anonymization. This is first suggested in [10]. The main
observation is that there will typically be a lot of individuals who
are in the registration list but are “absent” in a data release. These
individuals can then help to anonymize the ones who are present.

The rest of this paper is organized as follows. Section 2 for-
malizes the related concepts and states the problem of serial data
publishing. Section 3 presents the solution HD-composition and
the corresponding analytical study. Section 4 is an empirical study,
demostrating the inadequacy of conventional privacy models and
the cost of the proposed techniques. Section 5 surveys the previous
work related to ours. Section 6 concludes the paper.

2. PROBLEM DEFINITION
Assume that microdata tables T1, T2, ..., Tn are generated at

times 1, 2, ..., n. Let RLj be the snapshot of a publicly available
registration list (e.g., a voter registration list) at time j. The at-
tributes ofRLj include: (1) an individual identity attributeRLj .pid,
which is the primary key of RLj , and (2) d quasi-identifier at-
tributes (QID): RLj .qid1, RLj .qid2, ..., and RLj .qidd. Assume
that I is the set of all individuals, thus at time j, RLj corresponds
to a subset of I. Tables 1(a) to (c) are examples of registration
list snapshots. Tj can be seen as a snapshot of a dynamic dataset
T at time j. The attributes of Tj include: (1) an individual iden-
tity attribute Tj .pid, which is a foreign key referencing RLj , and
(2) a sensitive attribute Tj .S. Each instance of Tj .S is a sensitive
value. Following the literature’s convention [8], the value in Tj .S
should be categorical, while the other attributes can be either nu-
merical or categorical. For each individual pi ∈ RLj , Tj .S(pi)
denotes πS(σpid=pi.pid(Tj)), the set of sensitive values associated
with individual pi in Tj . Assume that at each time j, the publisher
releases Tj’s anonymized version T ∗j to the public. For example,
Tables 1(d) to (f) are 3 snapshots of T , while Tables 2(a) to (c) are
published anonymized data at times 1, 2, and 3.

Let S be the set of all sensitive values that can appear in the
sensitive attributes. In the set S, some values are permanent sen-
sitive values, which form the set PS. A permanent sensitive value
is a value that will stay with an individual permanently. Hence
if s is a permanent sensitive value, and for an individual pi, s ∈
Tj .S(pi), then for all times j′ > j, either pi has no record in Tj′ ,
or s ∈ Tj′ .S(pi). The remaining values in S are called transient
sensitive values and they form the set TS. For example, diseases
like Alzheimer, HIV and cancer are incurable and are permanent
sensitive values, while diseases like Flu, Diarrhea and SARS are
examples of transient sensitive values.

DEFINITION 1 (ANONYMIZED GROUP). At time j, let P (RLj)
be a partitioning of the individuals in RLj , each partition P in
P (RLj) is related to an anonymized groupAGj(P). EachAGj(P)
is associated with (1) a unique group ID, and (2) a predicate Q on
the QID attributes covering the QID values of all individuals in
P . We also say that AGj(P) is the hosting group of pi for each
pi ∈ P . AGj(pi) is also used to refer to pi’s hosting group.

An example of the predicate Q is a bounding box for numerical
QID values. In Table 2(a), there are two anonymized groups, group
1 and group 2, and their intervals of age and zipcode correspond to
the predicate Q.

DEFINITION 2 (GENERALIZATION). A generalization T ∗j of Tj

is generated upon a partitioning ofRLj denoted by P (RLj). The
attributes of T ∗j include: (1) an anonymized group ID gid, (2) at-
tribute predicate set Q for predicates over the QID attributes, and
(3) a sensitive value attribute S. For every individual pi with a
tuple in Tj , let P denote the partition in P (RLj) that pi belongs
to, a tuple t∗i in T ∗j is generated by: (1) t∗i .gid = AGj(P).id, (2)
t∗i .Q = AGj(P).Q, and (3) t∗i .S=Tj .S(pi). Let T ∗j .S(AGj(P))
denote ⋃

pi∈AGj(P)
Tj .S(pi)

For example, Table 2 shows three generalizations: T ∗1 for T1, T ∗2
for T2, and T ∗3 for T3.

In many applications (such as the medical databases) most of the
individuals in the registration list will not have any record in a par-
ticular data release (since most people are healthy). In fact, such
absent individuals will play an important role in privacy preserva-
tion by being possible culprits. Hence, we introduce different states
of existence for individuals. For pi ∈ RLj , when there exists a tu-
ple in Tj with Tj .pid = pi, we say that pi is present in Tj and



PID Disease.
p1 Flu
p2 HIV
p3 Flu
p5 Fever
p6 Fever
p7 Ulcer

PID G.ID Age Zip. Disease
p1 1 [20, 26] [12k, 33k] Flu
p2 1 [20, 26] [12k, 33k] HIV
p3 1 [20, 26] [12k, 33k] Flu
p5 1 [20, 26] [12k, 33k] Fever
p6 1 [20, 26] [12k, 33k] Fever
p7 1 [20, 26] [12k, 33k] Ulcer

(a) Microdata T4 (b) Topmost Generalization T ∗4

Table 4: Example with no `-scarce generalization

also is present in any generalization T ∗j of Tj ; otherwise, pi is ab-
sent. A special case of absence is when an individual cease to exist
forever. pi is said to be extinct. We assume that the extinction of
individuals is public knowledge.

Next, we need to clarify the knowledge that an adversary may
possess for privacy attack. Typically, there are 2 kinds of knowl-
edge considered: prior knowledge and participation knowledge.

Prior knowledge is known to the public. At time j, prior knowl-
edge includes: (1) all publicly available registration lists (the one
at time j isRLj), (2) the permanent sensitive value set PS, (3) the
published table series {T ∗1 , T ∗2 , ..., T ∗j }, and (4) the list of extinct
individuals.

An adversary can be familiar with their close friends and have
the knowledge of their participation information (presence or ab-
sence in microdata snapshots) at any time. This is called the par-
ticipation knowledge. Different adversary may have participation
knowledge about a different set of individuals, but fortunately the
adversary cannot be familiar with every individual thus her/his par-
ticipation knowledge is always bounded. We assume that the size of
any adversary’s participation knowledge does not exceed K. That
is, s/he can know at most K individuals’ presence or absence infor-
mation at any time.

At any time j, an adversary A can use her/his prior knowledge
and participation knowledge to infer the sensitive values associated
with each individual. In order to quantify the attack on serial data
publishing, we define the term privacy disclosure risk.

DEFINITION 3 (PRIVACY DISCLOSURE RISK). Let Bn be the
prior knowledge at time n, andA be an adversary with the specific
participation knowledge PA. The privacy disclosure risk at time n
with respect to individual pi and sensitive value s is given by

risk(pi, s, n) = max
A

max
1≤j≤n

Prob(pi, s, j|Bn, PA)

where Prob(pi, s, j|Bn, PA) is the probability that pi is linked to
s at time j given the knowledge of Bn and PA.

DEFINITION 4 (PROBLEM). At any time n, generate and pub-
lish an anonymization T ∗n for Tn, the anonymization must ensure
that ∀pi ∈ I, ∀s ∈ S, risk(pi, s, n)≤ 1

`
. Such a series of

anonymization T ∗1 , T ∗2 , ..., T ∗n is called an `-scarce anonymization
series. We also say that the anonymization series satisfies `-scarcity.

Generalization is one way of anonymization. In Table 2, gen-
eralizations T ∗1 , T ∗2 and T ∗3 all satisfy `-diversity2 (`=3) and m-
invariance (m=3) but violate `-scarcity(`=3), as discussed in the
introduction part. Yet generalizations T ∗1 , T ∗2 and T ∗3

′ satisfy not
only `-diversity (`=3) but also `-scarcity (`=3).

2In this paper, `-diversity refers to the requirement that in any
anonymized group, at most 1/` of the records contain any sensi-
tive value v.

PID Disease.
p1 Flu
p2 Fever
p3 HIV
p4 HIV
p5 Flu
p6 Fever

PID Disease.
p1 Flu
p2 Fever
p3 HIV
p4 HIV
p5 Fever
p6 Flu

PID Disease.
p1 Fever
p2 Flu
p3 HIV
p4 HIV
p5 Fever
p6 Flu

(a) T p
1 (b)T p

2 T p
3

Table 5: Possible Table Series

This problem is very difficult when the adversary can have par-
ticipation knowledge of every individual. Generalization is not pos-
sible in some cases. A generalization T ∗, is called a topmost gen-
eralization if T ∗ has only one anonymized group AG where all
individuals in T are covered by AG’s QID predicate. Obviously,
if the topmost generalization could not guarantee privacy, then no
generalization can. In Table 4, T4 is the microdata snapshot at time
4, consequent to T1, T2 and T3 in Table 2, while T ∗4 is the topmost
generalization for T4. Even if we adopt a topmost generalization
for each of T1, T2, T3 and T4, we deduce that T ∗4 still cannot guard
privacy if the adversary knows everyone’s participation informa-
tion (i.e., K=|⋃j RLj |). This is because p4 has been found to be
absent while p1, p2, p3, p5, p6 are still present at time 4, and one of
the two HIV occurrences has disappeared. Since HIV is a perma-
nent sensitive value, p4 must be linked to HIV.

We can adopt the conventional random world assumption on the
probabilistic analysis. In serial data publishing, a random world can
be defined by a possible series of microdata tables, where by possi-
ble, we mean that the series could have been the original microdata
tables which have generated the observed published anonymized
tables and which do not violate the known knowledge. Hence, we
introduce the definitions of possible table series.

DEFINITION 5 (POSSIBLE TABLE SERIES). At time n, table
series TSA

possible={T p
1 , T p

2 , ..., T p
n} is called a possible table se-

ries for adversary A if the following requirement is satisfied:

1. ∀T p
j ∈ TSpossible, (1) T ∗j is a generalization of T p

j and (2)
T p

j does not violate the prior knowledge nor participation
knowledge of A,

2. ∀pi ∈ I, ∀ps ∈ PS, if ∃j, ps ∈ T p
j .S(pi), then ∀j′ > j,

either pi is absent in T p
j′ or ps ∈ T p

j′ .S(pi).

For the example, consider the table series in Table 2. Assume an
adversaryA have participation knowledge of individuals p1, ..., p6.
At time 3, besides {T1, T2, T3} in Table 1, {T p

1 , T p
2 , T p

3 } in Table 5
is also a possible table series.

At time n, the privacy disclosure risk of linking individual pi

to sensitive value s is:

risk(pi, s, n) = max
A

max
1≤j≤n

nlink(pi, s, j)/ntotal(TSApossible) (1)

where ntotal(TSApossible) is the number of possible table series for
A at time n, and nlink(pi, s, j) is the number of possible table
series {T p

1 , T p
2 , ..., T p

n} for A where s ∈ T p
j .S(pi).

In the above we adopt the random world assumption. A possible
world is given by a possible table series. The risk is related to
the number of random worlds with assignment of the value s to
individuals pi.

.



3. HD-COMPOSITION
We propose a generalization technique called HD-composition

to solve the problem in Definition 4. In HD-composition, each per-
manent sensitive value holder is protected by a number of decoys,
which all act like holders to confuse the attacker. This basic idea is
similar to that used in k-anonymity and `-diversity, yet it is a dy-
namic setting here. It is possible that an individual is linked to more
than one permanent sensitive values. Thus we shall use a perma-
nent sensitive value as the prefix for roles, because one may serve
as roles for different permanent sensitive values concurrently.

Let us formally clarify 3 basic roles in HD-composition. At any
time j > 1, we specify the time immediately before the anonymiza-
tion of Tj as time j−, and the time immediately after anonymiza-
tion with possibly some new role assignments as time j+.

For pi ∈ I and s ∈ PS: if ∃1 ≤ j′ < j, s ∈ Tj′ .S(pi), then pi

is called an s-holder from time j−. If ∀s′ ∈ PS, s′ /∈ Tj .S(pi)
and pi is not a s-decoy at time j−, then pi is called an s-clean
individual. In Sections 3.1 and 3.2, we will describe when and
how to select individuals to serve as s-decoys.

For example, in Table 2, initially no one is assigned any role,
at time 1−, p2 and p4 are and HIV-holders, while p1, p3, p5 and
p6 are HIV-clean individuals. At time 1+, after the anonymization
process, the roles of HIV-decoys may be assigned to p1, p3, p5, p6.

3.1 Role-based Partition
For the first microdata snapshot T1, we generate T ∗1 that satis-

fies `-diversity [8]. Then, at any time j > 1, after T ∗j−1 is pub-
lished, before generalizing Tj to T ∗j , the roles are updated as fol-
lows. For each pi that becomes s-holder at time j, `−1 individuals
are selected to serve as s-decoys. After roles are updated, we can
anonymize Tj to its generalization T ∗j , the constraints of which are
specified by a basic principle called role-based partition as follows.

PRINCIPLE 1 (ROLE-BASED PARTITION). At time j > 1,
each anonymized group AG in T ∗j satisfies the following condi-
tions:

1. For each permanent sensitive value s in PS, let Nd be the
number of s-decoy inAG, and Ns be the number of s-holders
in AG. Then Nd = (`− 1) ·Ns.

2. For each transient sensitive value s′ ∈ TS, let Ns′ be the
count of s′ in AG. Then Ns′ ≤ 1

`
|AG|,

where |AG| is the number of individuals that are present in
AG.

By condition 1 in the above, there should always be ` − 1 s-
decoys for each s-holder. Note that if there is no s-holder in AG,
there should be no s-decoys; otherwise, those s-decoys will lose
their protection functionality since they can be excluded from the
possibility of being an s-holders, and consequently disclose the s-
holders they have protected in earlier table publications. Condition
2 requires that each transient sensitive value satisfies a simplified
form of `-diversity. Note that if the adversary has no participation
knowledge the value of |AG| can be defined as the number individ-
uals in AG, both present or absent. However, if in the worst case
the adversary has participation knowledge of the individuals then
only such individuals can help to provide for the uncertainty, and
|AG| should be the number of individuals that are present in AG.

The following lemma shows a necessary condition for `-scarcity,
which is enforced by the role-based partition principle.

LEMMA 1. Let AG be an anonymized group at time j. For any
s ∈ S, let count(s,AG) be the count of s inAG, if count(s,AG)

|AG| >

1/`, then ∃pi, risk(pi, s, n) > 1/`.

PID G.ID Age Zip. Disease
p5 1 [20, 25] [25k, 33k] Fever
p6 1 [20, 25] [25k, 33k] Flu
p7 1 [20, 25] [25k, 33k] Ulcer

Table 6: T ∗5

Proof: At time n, in each possible table series {T p
1 , T p

2 , ...T p
n},

some individual inAG will be assigned to each of the s occurrences
in AG, that is, ∀s ∈ S, s ∈ T p

j (pi), for some pi ∈ AG. If there
are k possible series, then the total number of such assignment is
count(ps,AG)×k. Hence at least one individual is assigned more
than count(ps,AG)× k/|AG| times. Therefore one or more of
the individuals will be assigned to s in more than 1

`
of all the series.

Note that s can be either permanent or non-permanent.

For transient sensitive values, their association with individuals
in one data release has no impact on their associations with indi-
viduals in another release. Since role-based partition ensures `-
diversity for transient sensitive values, we can derive the following
lemma.

LEMMA 2. If the anonymization mechanism follows role-based
partition principle, then at time n, ∀ s′ ∈ TS, ∀pi ∈ I, risk(pi, s′,
n)≤ 1

`
.

In other words, if there are no permanent sensitive values, `-
diversity at each release is sufficient for the required protection.
From Lemma 2, in order to satisfy the privacy requirement, on top
of role-based partition, we only need to make sure that there is
no privacy breach on the permanent sensitive values, meaning that
∀pi ∈ I and ∀s ∈ PS, risk(pi, s, n) ≤ 1/`.

Let us return to the example in Table 2. After T ∗1 is published,
before T ∗2 is generated, roles should be updated. In order to achieve
3-scarcity, two HIV-decoys should be selected from Group 1 and
Group 2 respectively. Therefore, HIV-decoy candidates p1, p3, p5,
and p6 are all selected to be HIV-decoys. From then on, p5 and
p6 must not disclose the fact that they are not HIV infected. Role-
based partition will not allow publications like T ∗5 in Table 6, since
in Group 1 of T ∗5 , there are 2 HIV-decoys but no HIV-holder. If so
happens that no other individuals satisfy the predicate of Group 1,
then p5, p6, p7 will be identified to be the members of this group.
Hence, p5 and p6 will be found to be non-HIV individuals. By
excluding the linkage of p5 and p6 to HIV, and by cross referencing
table T ∗1 , p4 will be discovered to be an HIV-carrier with 100%
certainty. Thus role-based partition prevents such a privacy breach.

3.2 Cohort-based Partition
Unfortunately, role-based partition cannot prevent the linkage

exclusion problem as shown in our first motivation example in Sec-
tion 1.1.

Therefore, besides role-based partition, we propose another par-
tition principle: cohort-based partition. Our goal is that an adver-
sary could never reach a contradiction by assuming that an s-decoy
is an s-holder. Without such contradiction, no linkage exclusion
will be possible. The solution is to distribute the s-decoys into `−1
cohorts, and ensure that s-decoys from the same group could never
share the linkage to one s appearance, which is a basic property if
they were indeed s-holders. Naturally, all the s-holders can form
one cohort too because they can never share linkage to only one s.
Including a cohort for s-holders, we have in total ` cohorts. The
structure of cohorts is utilized for this purpose.

To better present the ideas, we first assume no participation knowl-
edge on the adversary’s side. Also we assume no change in the reg-



istration list over time. These restrictions will be relaxed in Section
3.4.

3.2.1 Container and Cohort
From the above discussion individuals would be assigned to co-

horts. However, an individual that is initially assigned the role of
a decoy may become a s-holder and in which case it must pass its
role onto some other individual who then acts as if s/he has been
the decoy all the time. To find such eligible replacement, we do
not enter individuals directly to the cohorts. Instead, we enter a
structure related to a region, where the region can contain multiple
individuals so that replacements can be found within the region.
Such a region is called a container.

DEFINITION 6 (S-CONTAINER). An s-container C at time j is
defined by a predicate QC over the attributes of the QID. We say
that C contains an individual pi in a registration list RLj if the
QID value of pi in RLj satisfies the predicate QC .

DEFINITION 7 (S-CONTAINER INSTANCE/OWNER/S-BUDDY). A
set CI = {C, po} is called an s-container instance, where C is an
s-container containing a special individual po which is either an
s-holder or an s-decoy, who is the owner of CI. We also say that
CI is owned by po. C may also contain s-clean individuals. An
s-clean individual in an s-container instance CI that has existed
since the creation of CI is called an s-buddy.

An s-buddy is a potential eligible replacement for taking up the
role of an s-decoy. Example 1 below helps to illustrate the above
definitions. Note that at any time, there is a one-to-one mapping
between the set of s-holders plus s-decoys to the set of s-container
instances.

At time j, a set C of individuals is called an s-clique if C only
contains one s-holder and `− 1 s-decoys.

DEFINITION 8 (S-COHORT/S-COHORT FORMATION). A set con-
sisting of a number of s-container instances is called an s-cohort.
An s-cohort formation is a set of ` disjoint s-cohorts, in which one
of the s-cohorts consists of container instances owned by s-holders,
and the remaining s-cohorts consist of container instances owned
by s-decoys. Moreover, in each s-cohort, there are exactly Ns(the
number of s-holders) container instances.

Let us see how the cohorts are initialized. At time 2, from ev-
ery partition P ∈ P (T1), for each s ∈ PS that is contained in
T ∗1 .S(AG(P)), we can form exactly count(s,AG(P)) s-cliques.
∀s ∈ PS, ` empty s-cohorts are initialized, and CH(s) is a set
which stores those ` s-cohorts. For each s-clique C, we put the s-
holder’s s-container instance into the first s-cohort CH(s)[1], and
place the ` − 1 s-decoys’ s-containers in the same s-clique into
the `−1 s-cohorts CH(s)[2], ..., CH(s)[`], (one for each) respec-
tively. For all s ∈ PS, we construct CH(s) by repeating the above
procedure. The predicates in the corresponding containers in the
construction must follow the principle of cohort-based partition.

PRINCIPLE 2 (COHORT-BASED PARTITION). At time j, each
anonymized group AG in T ∗j satisfies the following conditions:

1. In AG, if there are m s-holders, then ∀i where 2 ≤ i ≤ `,
there are exactly m s-decoys whose s-container instances
are in CH(s)[i],

2. Let Q be the predicate on the QID values of AG and let Q
be the predicate of the container for the container instance
owned by any s-decoy or s-holder pi in AG, then Q implies
Q.

PID Age Zip. Role
p1 23 16355 HIV-decoy, Alzheimer-clean
p2 22 15500 HIV-holder
p3 21 12900 HIV-decoy, Alzheimer-clean
p4 26 18310 HIV-holder
p5 25 25000 HIV-decoy, Alzheimer-buddy
p6 20 29000 HIV-decoy, Alzheimer-clean
p7 23 16910 HIV-buddy, Alzheimer-clean
p8 24 15505 HIV-buddy, Alzheimer-clean
p9 22 13055 HIV-buddy, Alzheimer-clean
p10 25 18870 HIV-buddy, Alzheimer-clean
p11 26 25500 HIV-buddy, Alzheimer-buddy
p12 20 28500 HIV-buddy, Alzheimer-buddy
p13 23 26950 HIV-clean, Alzheimer-decoy
p14 24 25855 Alzheimer-holder
p15 21 29355 HIV-clean, Alzheimer-decoy
... ... ... ...

p30 24 28000 HIV-clean, Alzheimer-clean
... ... ... ...

p|RL| 31 31000 HIV-clean, Alzheimer-clean

PID Disease
p1 Flu
p2 HIV
p3 Fever
p4 HIV
p5 Flu
p6 Fever
p13 Ulcer
p14 Alzheimer
p15 Diarrhea
p30 Flu

(a) RL6 (b)T6

Table 7: Registration list RL6 and microdata snapshot T6

Container(s) PIDs Instances Age Zip.
C1(HIV) p1, p7, p2, p8 CIh(p1), CIh(p2) [22, 24] [15k, 17k]
C2(HIV) p3, p9 CIh(p3) [21, 22] [12k, 14k]
C3(HIV) p4, p10 CIh(p4) [25, 26] [18k, 19k]
C4(HIV) p5, p11 CIh(p5) [25, 26] [25k, 26k]
C5(HIV) p6, p12 CIh(p6) 20 [28k, 29k]
C6(Alz.) p5, p6, p13, p14 CIa(p13), CIa(p14) [23, 26] [25k, 27k]
C7(Alz.) p12, p15 CIa(p15) [20, 21] [28k, 30k]

Table 8: Containers and container instances

At any time j > 1, after T ∗j−1 is published, before generaliz-
ing Tj to T ∗j , the roles are updated. Then, fresh s-decoys’ con-
tainer instances are distributed into cohorts CH(s)[o](2 ≤ o ≤ `)
while fresh s-holders’ container instances are entered into cohort
CH(s)[1].

EXAMPLE 1. Suppose at time 6, the registration table RL6

and microdata T6 are given in Table 7. There are two permanent
sensitive values: HIV and Alzheimer. By HD-composition, each
individual is assigned some roles, as shown in Table 7(a). By the
container construction procedure ( in Section 3.2.2), the contain-
ers at time 6 are maintained as in Table 8, five of which are HIV-
containers (C1 to C5), and two of which are Alzheimer-containers
(C6 to C7). Note that these containers are defined by the predi-
cates on Age and Zip Code as shown in the last two columns of the
table. Then, we have HIV-cohorts and Alzheimer-cohorts as in Fig-
ure 1(a) and (b) respectively. Finally, the publication T ∗6 in Table 9
is obtained, which satisfies both the role-based partition principle
and cohort-based partition principle.

3.2.2 Container Maintenance
An s-decoy may become an s-holder and there will be replace-

ment for such a decoy. The concept of containers enables us to
easily identify a possible replacement. In the next part, we discuss
details of how to maintain container instances after such updates.

To simplify our discussion of container maintenance, we make
the following assumption.This assumption will be relaxed in Sec-
tion 3.2.5.

ASSUMPTION 1 (BUDDY ABUNDANCE). At time j, each s-
container instance CI from time j−1 contains at least one unique
s-buddy Bp(CI) which is present and one s-buddy Ba(CI) which
is absent. By uniqueness, we mean that for two instances CI1 and
CI2, Bp(CI1) 6= Bp(CI2) and Ba(CI1) 6= Ba(CI2).
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(a) HIV-cohorts (b) Alzheimer-cohorts

Figure 1: Cohorts for HIV and Alzheimer

PID G.ID Age Zip. Disease
p1 1 [21, 24] [12k, 17k] Flu
p2 1 [21, 24] [12k, 17k] HIV
p3 1 [21, 24] [12k, 17k] Fever
p4 2 [20, 26] [18k, 29k] HIV
p5 2 [20, 26] [18k, 29k] Flu
p6 2 [20, 26] [18k, 29k] Fever
p13 3 [20, 26] [25k, 30k] Ulcer
p14 3 [20, 26] [25k, 30k] Alzheimer
p15 3 [20, 26] [25k, 30k] Diarrhea
p30 3 [20, 26] [25k, 30k] Flu

Table 9: Published Table T ∗6

Introducing new s-holder: At any time j if there is a new s-
holder pi, then a new container instance for pi is added to the cohort
CH(s)[1], also one new decoy container instance need to be made
available from each of the remaining `− 1 cohorts.

In the following, we show how to initialize or maintain the s-
container instances according to how pi’s role changes:

[CASE M1]: pi is not an s-decoy at time j− 1 and becomes a new
s-holder at time j:
C = allocateContainer(pi); CI(pi) ← {C, pi}; enter CI(pi) into
CH(s)[1]. (Note that the decoys for pi will be introduced by
CASE M2 or CASE M4.)

[CASE M2]: pi becomes an s-decoy that owns a new container
instance at time j in cohort H:
C = allocateContainer(pi); CI(pi) ← {C, pi}; enter CI(pi) into
cohort H.

[CASE M3]: an s-decoy pi that owns a container instance CI at
time j−1 becomes an s-holder at time j: C = allocateContainer(pi);
CI(pi) ← {C, pi}; enter CI(pi) into CH(s)[1]. (Note that the de-
coys for pi will be introduced by CASE M2 or CASE M4.)
One s-buddy pi′ is chosen from CI to become an s-decoy and the
new owner of CI (CASE M4).

[CASE M4]: an s-buddy pi for a container instance CI becomes
an s-decoy which owns CI .

In the above, the routine allocateContainer(pi) is to construct a
new container C which contains pi.

It is important to note that with no participation knowledge, the
adversary cannot determine which individual is present or absent.
Hence with an s-decoy pi in a container instance CI , there is no
contradiction from the published data that pi has been present or
absent together with the s-holder since the creation of CI . It is be-
cause when pi is absent(present), there must be some other individ-
ual pj that is present(absent) and the adversary cannot distinguish
between pi and pj .

Absence of individuals. An individual that is present at one data
release may become absent in another. It becomes an issue when
such an individual has been an s-holder or an s-decoy. Suppose pi

is present in Tj−1 but is absent in Tj .

[CASE A1]: If pi is an s-holder at time j − 1, then when it is

absent we must also make `− 1 s-decoys absent. In order to make
a decoy absent, an absent s-buddy in an s-decoy pd’s container
instance takes over the role of this s-decoy. pd becomes s-clean.
This corresponds to CASE M4. We say that the container instance
becomes dormant. In this case, there is no explicit changes of
containers and cohorts.

[CASE A2]: If pi is an s-decoy at time j − 1, then it is replaced
by an s-buddy pb who is present in the same container. This corre-
sponds to CASE M4. pi becomes an s-clean individual again.

When an s-holder that has been absent become present, absent
s-decoys can be made present by switching the s-decoy role to
a present s-buddy. If an s-decoy that has been absent becomes
present, and the container instance should remain dormant, then
the role of s-decoy is passed to another s-buddy who is currently
absent.

Clique Extinction: exit of container instances. If an individual pi

becomes extinct, it is a special case of absence for pi since pi will
never be present in the future. Whenever there is any s-holder pi

that is extinct and there exist `−1 s-decoy container instances with
the s-decoy or any s-buddy that is extinct, we say that a clique ex-
tinction has occurred, the ` corresponding container instances will
be removed from their respective cohorts together. The secret of
the s-holder will be kept forever.

3.2.3 Anonymization step
HD-composition integrates role-based partition and cohort-based

partition: a partition should be a role-based partition and a cohort-
based partition simultaneously. With such a partition, anonymiza-
tion (generalization) is applied, following Definition 2.

3.2.4 Discussion
Note that an individual pi may be linked to multiple sensitive

values in Tj . Suppose {s1, s2} ∈ Tj .S(pi). pi will be both an
s1-holder and an s2-holder. In such a case, pi is in both the s1-
cohort and the s2-cohort. Similarly an individual can be a decoy
for multiple sensitive values.

One basic assumption for the data releases is that the number of
permanent sensitive value occurrences is not large compared to the
dataset size. In the worst case, ` − 1 decoys are required to cover
each such occurrence, which is possible only if the occurrences do
not exceed 1/` of the data size. This is justified in the medical data
scenario, where sensitive and persistent diseases are relatively rare,
with evidence from a real dataset used in our empirical studies.

3.2.5 Relaxing the Buddy Assumption
At time j if there exists an s-decoy pi in the cohort formation at

j − 1 that has turned into an s-holder (CASE M3), if Assumption
1 does not hold for the container instance of pi, there will be no s-
buddy found, it is not possible to find a replacement for pi, in this
case pi is pinned as an s-decoy. The s value of pi is suppressed
and replaced by a transient or non-sensitive value which appears in
the microdata Tj . When an s-decoy pd is pinned, it will act as an s-
decoy until it is extinct. When its QID is changed, if necessary, the
old container instance owned by pd is replaced by a new container
instance Cnew which is owned by pd, and in Cnew, pd remains
pinned.

Pinning an individual as an s-decoy may involve a suppression
of an occurrence of the s value in the case where the s-decoy is
actually linked to s. However, even if an adversary knows that some
s occurrence is suppressed, it is difficult to pinpoint an individual
that has been suppressed. Hence no extra privacy breach can be
gained from such knowledge.



PID Dis.
p1 *
p2 HIV
p3 *
p4 HIV
p5 *
p6 *

PID Dis.
p1 *
p2 *
p3 HIV
p4 HIV
p5 *
p6 *

PID Dis.
p1 *
p2 HIV
p3 *
p4 *
p5 HIV
p6 *

PID Dis.
p1 HIV
p2 *
p3 *
p4 *
p5 *
p6 HIV

PID Dis.
p1 *
p2 *
p3 HIV
p4 *
p5 HIV
p6 *

(a) P1 (b) P2 (c) P ′1 (c) P ′2 (c) P ′3

Table 10: Possible Assignments

3.3 Privacy Guarantee
Next let us examine the privacy guarantee of HD-composition.

First, we need the definition of possible assignments.
At time n, T ′n is possible table for Tn if T ′n is the n-th table

in a possible table series. For a possible table T ′n, the set of in-
dividuals that are linked to a sensitive value s is called a possible
s-assignment at time n.

3.3.1 Preliminary Analysis
Let us return to the example in Table 2. HIV is a permanent

sensitive value but Flu and Fever are not. The objective is to publish
a generalization series that satisfies persistent `-scarcity, where ` =
3. We first build three HIV-cohorts. In this example, each container
instance contains only one individual which is also the owner of
the container instance. Let the three cohorts be (p1, p6), (p2, p4),
and (p3, p5), respectively. By HD-composition, the cohorts remain
unchanged for times 1, 2. Let T ∗1 , T ∗2 be the anonymizations based
on these cohorts. Given these published tables, the adversary may
analyze as follows. From the registration lists, the set of individuals
belonging to each group in the two tables can be determined. From
the group with G.ID=1 in T ∗1 , if p1 is linked to HIV, then neither
p2 nor p3 could be associated with HIV, and therefore from the
group with G.ID=1 in T ∗2 , p6 must link to HIV. Therefore, one
possible assignment is that p1 and p6 are HIV carriers. Following
this inference procedure, there are 5 possible assignments at time
2: P1, P2, P ′1, P ′2 and P ′3 in Table 10.

Note that there are fewer possible assignments linking either p1

or p6 to HIV (only P ′3) than that linking each of p2, p3, p4, p5 to
HIV. For example for p2, there are two such assignments P1 and
P ′1. Under each possible s assignment, to construct the possible
tables of T1 or T2 is straightforward: occurrences of the other 2
sensitive values could be arbitrary assigned to the remaining in-
dividuals since they are transient. Therefore, totally there are 20
possible tables for T1, in which 4 tables link p1 to HIV(P ′2), 8 link
p2 to HIV(P1 and P ′1), and 8 link p3 to HIV(P ′2 and P ′3). Com-
bining the two tables, there are 5(42) possible table series in total,
we have 42 possible table series for p1 or p6 being linked to HIV,
2(42) possible table series for each of p2, p3, p4, p5 being linked to
HIV. Thus, the linkage probability of p2, p3, p4 or p5 to HIV is 2/5,
which exceeds the required threshold of 1

3
(`=3).

However, this result is counter-intuitive, given that generaliza-
tion is based on three cohorts and each cohort has equal chance of
being the HIV-holder cohort. It is not logical that some individual,
such as p1 or p6, gets a smaller chance of being linked to HIV.

3.3.2 Trusted Publisher based Analysis
What is missing in the above analysis is that it does not take into

account the anonymization mechanism. In our approach, the adver-
sary or the public will be provided with the additional knowledge of
the HD-composition mechanism. Then, the above random possible
world assumption is not accurate nor complete. The possible world
model should be enriched with possibilities or random variables
made relevant by the mechanism. In particular, the s-cohort for-

mations for all s becomes one of the random variables. The same
sensitive value assignment to the individuals under different cohort
formations will be considered as two different possible worlds. The
random world assumption is then applied on top of this model.

With the mechanism knowledge, but not knowing exactly the
cohorts, first an adversary would need to consider the possible for-
mations of the cohorts. From T ∗1 and T ∗2 , there are only two possi-
ble cohort formations, namely, F1 = {(p1, p6), (p2, p4), (p3, p5)}
and F2 = {p1, p6), (p3, p4), (p2, p5)}. For formation F1, there are
3 possible assignments, namely, {p1, p6}, {p2, p4}, and {p3, p5}.
Each individual is linked to HIV in one out of the 3 assignments.
For F2, the possible assignments are {p1, p6}, {p3, p4}, and {p2, p5}.
Again, each individual is linked to HIV in one out of the 3 assign-
ments. Under each of these six scenarios, there are the same num-
ber of possible table series by considering all possible assignments
of the transient values to T p

j .S(pi) for the remaining pi’s. There-
fore, by the random world assumption, each of the two formation
has equal probability, and the number of possible table series where
each individual is linked to HIV is one-third of all the possible table
series.

The above example shows that we should consider possible worlds
as defined by a possible cohort formation and a possible assignment
of sensitive values under the formation. We first define the term
possible s-cohort formation series which is a series of consistent
s-cohort formation from which T ∗1 , ...T ∗n can be generated.

DEFINITION 9 ( POSSIBLE S-COHORT FORMATION SERIES).
At time n, a series of s-cohort formation {L1, L2, L3, ..., Ln},
where Lj is an s-cohort at time j, is a possible s-cohort forma-
tion series if and only if the followings hold:

Let Li = {Ci
1, C

i
2, ...C

i
`} and Lj = {Cj

1 , Cj
2 , ...Cj

` },

1. If 2 different s-container instances CI1 and CI2 occur in Li

and Lj , then CI1 and CI2 are in the same s-cohort in Li iff
they are in the same s-cohort in Lj .

2. If an s-container instance occurs in both Ci
1 and Cj

1 (both
are cohorts for s-holders), then if po is the owner of the in-
stance in Ci

k, it is also the owner of the instance in Cj
k.

The first condition in the above governs that a container instance
will never switch from one cohort to another cohort. The second
condition says that for s-holder cohorts, the owner of a container
instance is never changed. With HD-composition, the container in-
stance may become dormant but is never removed from a cohort
until it joins a clique extinction, once a s-holder is assigned to be
the owner of a container instance, it will not give up its owner-
ship to another individual until the container instance goes extinct.
Therefore we have the following lemma.

LEMMA 3. HD-composition generates only possible s-cohort
formation series for each s.

We call the combination of possible cohort formation series for
all permanent sensitive values a global possible cohort formation
series. A random possible world is defined by a global possi-
ble cohort formation series G and a possible table series gener-
ated by G. With the HD-composition mechanism, the definition
of risk(pi, s, n) is defined to be the fraction of random possible
worlds where pi is assigned to s.

THEOREM 1. With HD-composition, the risk of any individual
pi being linked to s at time n is given by

risk(pi, s, n) ≤ 1/`



Proof Sketch: Let CFpossible be the set of all possible s-cohort
formation series at time n. CFpossible can be partitioned into `− 1
subsets: CF1, ..., CF`−1, where CFk corresponds to the set of s-
cohort formation series with exactly k cohorts which have never
experienced any change of ownership for any container instance
that appears at two different times. That is, there are `− k cohorts
which have experienced some changes in such ownerships at or
before time n.

The risk of individual pi being linked to s is related to the num-
ber of random worlds with assignment of the value s for pi. For
CFk, it is easy to see that there are k cohorts that could be the
s-holder cohort, and there are ` − k cohorts that cannot be the s-
holder cohort. In CFk, let CFk

pi
be the subset of cohort formation

series where pi is the owner of some container instance CI(pi) in
the published data.

Since each container instance conforms to the Cohort-based par-
tition principle, and all possible instances are constructed from the
anonymized groups in the published tables, each anonymized group
has the same effect on each cohort. Hence each container instance
has an equal chance of being included in each cohort.

Within CFk
pi

, there is a probability of k/` where CIi is within
one of the possible s-holder cohorts, and for each such cohort, there
is a chance of 1/k where the cohort is indeed the s-holder cohort.
Hence the probability that pi is linked to s is given by k/`×1/k =
1/`. This probability is conditioned on CFk

pi
, in other words,

Prob(pi, s, n|CFk
pi

) = 1/` (2)

Let Prob(CFk) = |CFk|
|CFpossible| . The number of possible worlds

generated by each of the possible s-cohort formation series is the
same because there are the same number of remaining linkages of
values to individuals in each anonymization group in the published
tables, and the individuals are not distinguishable from the adver-
sary viewpoint. Therefore from Equation 2 the probability of pi

being linked to s at time n is

Prob(pi, s, n|CFk) = Prob(pi, s, n|CFk
pi

)× |CFk
pi
|

|CFk| ≤ 1/`

Since CF1, ..., CF`−1 constitute all the possibilities, we have

Prob(pi, s, n) =

`−1∑

k=1

Prob(pi, s, n|CFk)× Prob(CFk)

≤ 1/` ×
`−1∑

k=1

Prob(CFk) = 1/`

3.4 Refinement of HD-composition
In the previous discussion, for clarity, there is no consideration

of QID value changes and participation knowledge of the adver-
sary. In this subsection we refine HD-composition to address these
issues.

3.4.1 QID value updates
From the multiple releases ofRLl, one can determine the changes

of individuals’ QID values from time to time, the changes lead to
changes in the s-cohorts. Suppose pi has changed the QID value
at release Tj so that it is different from that in Tj−1. If pi is an
s-holder and, after the QID change, it is not contained in the con-
tainer instance CN at time j − 1, then a new container instance
owned by pi is created, which replaces the old container. If pi is an
s-decoy and, after the QID value change, pi is not in the original

container CN , then CN should still contain an s-decoy. Hence,
the role of pi as an s-decoy is replaced by an s-buddy in the con-
tainer instance. The role of pi is changed and it becomes an s-clean
individual.

3.4.2 Participation Knowledge
Here we consider that the adversary has the knowledge of the

presence and/or absence of up to K individuals. We replace the
buddy abundance assumption in Section 3.2.2 with the following
assumption (K buddy abundance assumption): given Tj , and the
cohort formation at time j− 1, each container in any cohort should
contain at leastK+1 s-buddies which are present and at leastK+1
s-buddies which are absent.

With at leastK+1 s-buddies present, an adversary will not have
knowledge of at least one s-buddy px that is present, with the QID
anonymization, from the adversary’s viewpoint, px can be any in-
dividual present or absent in Tj . Therefore, px can become an s-
decoy if needed, and the s-decoy role of px can also be swapped in
the future with the s-buddy role of other s-buddies.

With at least K+ 1 s-buddies absent, an adversary will not have
knowledge of at least one absent s-buddy py . Hence, py can be the
s-decoy who is absent in a dormant container instance, and the role
of decoy of py can be swapped with another s-buddy in the future.

In case the condition in theK buddy abundance assumption above
is not satisfied, it is possible for the adversary to know everyone
that is present, then an adversary may limit the scope of possible
s-decoy to the current set X of present individuals. Therefore, the
available pool of s-buddies must be within X , and can be further
restricted if only a subset of X is present at any time. The final
available s-buddy will be pinned as described in Section 3.2.5.

Let us call the scheme of HD-composition with the refinements
in this section the refined HD-composition, the proof of the follow-
ing lemma is similar to that for HD-composition.

THEOREM 2. Anonymization by refined HD-composition satis-
fies `-scarcity.

3.5 Anonymization Algorithm
Existing anonymization algorithms [3, 5] can be adopted for the

task of HD-composition. The existing anonymization algorithms
generate a number of anonymized groups, each of which satisfies
some privacy requirement such as `-diversity. In this paper, we
can borrow one of these algorithms by making each group in the
output of these algorithms satisfy the properties of both role-based
partition and cohort-based partition instead. This flexibility is a
good feature since it opens the opportunity of leveraging the known
anonymization algorithms to optimize HD-composition. In this pa-
per, we adopt a top-down strategy [3] to perform the anonymization
algorithm because it is found that a top-down approach often intro-
duce less information loss in data publishing.

Specifically, each time we generate a published table T ∗j from
Tj , we perform the following steps. Firstly, for each s ∈ PS, up-
date the ` s-cohorts. Secondly, for each s ∈ PS, s-cliques are
created from all the s-holders and s-decoys. If there are N con-
tainer instances in every s-cohort, then we will create N s-cliques.
At the beginning, all the s-holders and s-decoys are set as available
(not involved in any clique). We perform the following process m
times. We want to form an s-clique C. Initially, we set C = ∅.
Randomly pick an s-cohort among the ` s-cohorts. In this chosen
cohort, randomly select an available container instance in which
the owner pj is picked and inserted into C. For each of all other s-
cohorts, we find an available container instance and a correspond-



ing owner pj′ which is the closest3 to pj , insert pj′ into C, and
mark pj′ as unavailable. The final C forms a final s-clique. Finally,
with every formed clique as an atomic unit, an existing anonymiza-
tion algorithm is applied to form a number of groups each of which
satisfy the condition 2 of role-based partition. Note that when an
anonymized group contains a clique, the QID predicates of the con-
tainer instances(whose owner in the clique) will be implied by the
QID predicate of the group.

4. EXPERIMENTS
All the experiments are performed on a Linux workstation with a

3.2Ghz CPU and 2 Giga-byte memory. We deploy one public avail-
able real hospital database CADRMP4. In the database, there are 8
tables: Reports, Reactions, Drugs, ReportDrug, Ingredients, Out-
come, and Druginvolve. Reports consists of some patients’ basic
personal information. Therefore, we take it as the voter registration
list. Reactions has a foreign key PID referring to the attribute ID in
Reports and another attribute to indicate the person’s disease. After
removing tuples with missing values, Reactions has 105,420 tuples
while Reports contains 40,478 different individuals. In Reactions,
an individual can have multiple diseases, which is quite coherent
with our problem setting. We take Breast Cancer(15 occurrences
in Reactions), Cavity Cancer(1 occurrences in Reactions) and Di-
abetes(60 occurrences in Reactions) as permanent sensitive values
and other diseases as transient sensitive values.

Dynamic microdata table series TSexp={T1, T2, ..., T20} is cre-
ated from Reactions. T1 is randomly selected from Reactions with
a rate of 10%. In later rounds, Ti are generated in this way: 10%
of the tuples in Ti−1 randomly change their sensitive values, 10%
of the tuples in Ti−1 are removed, and 10% of tuples in Reactions
are inserted into Ti. Besides, dynamic voter registration list series
RLSexp={RL1, RL2, ..., RL20} is made from Reports. RL1 is
firstly set as a duplicate of Reports. In later rounds,RLi are gener-
ated in this way: fromRLi−1, vol% people change their values on
QIDs(vol is a parameter), 0.2% people become extinct, and 0.35%
people are freshly generated(randomly) and inserted5. In all our
experiments, there are 20 publishing rounds in total.

4.1 Failures of Conventional Generalizations
In this section, we confirms the significance of the privacy breach

problems in traditional generalization principles. We use `-diversity
[8] and m-invariance [21] as the representative principles, since `-
diversity is widely adopted while m-invariance is the latest work
offering protection on serial data publishing. Following m-invariance,
when someone changes one of her/his sensitive value, we treat it as
an articulate deletion and re-insertion.

Given TSexp, we adopt the `-diversity and m-invariance gen-
eralizations respectively. Then, we capture the individuals whose
privacy is breached: those with a higher privacy disclosure risk than
the threshold 1/`(or 1/m). Those individuals are called vulnerable
individuals. It is noted that the vulnerable individuals must once
appear in an anonymized group linkable to a permanent sensitive
value. As in Table 2, at time 3, p1, ..., p6 are all vulnerable in-
dividuals: p1, p5 and p6 are excluded from HIV, p2 and p3 are
found to have 50% probability to contract HIV, p4 is disclosed. At
time j, given the number of vulnerable individuals: Nvul(j), and
3The closeness is measured by Euclidean distance on the QIDs.
For categorical attributes, one can adopt the distance definitions in
[6].
4http://www.hc-sc.gc.ca/dhp-mps/medeff/databasdon/index e.html
5The insertion and deletion rate of registration list is accord-
ing to the death and birth rate per quarter of US. in year 2007,
http://www.indexmundi.com/united states/
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Figure 2: Rate of privacy breach vs. round: `-diversity
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Figure 3: Rate of privacy breach vs. round: m-invariance

the number of individuals once sharing the linkage probability to a
permanent sensitive value: Nlink(j), the rate of privacy breach is
calculated as follows:

rate of privacy breach at time j =
Nvul(j)

Nlink(j)

In Figure 2 and Figure 3, we plot the rate of privacy breaches
at each publishing round in `-diversity and m-invariance general-
izations, with vol%=2% and vol%=5% respectively. Each curve
corresponds to the result obtained with a different ` or m. From the
figures, it could be found that both `-diversity and m-invariance fail
to support serial publication on fully dynamic databases, because
they result in a high privacy breach rate. For example, when `=5(or
m=5), after about 5 publishing rounds, there are more than 90%
individuals once linkable to a permanent sensitive value suffering a
privacy breach risk higher than 1/5.

4.2 Evaluations of HD-Composition
In this part, we test HD-composition in terms of effectiveness

and efficiency. Given TSexp and RLSexp, let vol%=2%, we apply
the anonymization algorithm in Section 3.5 to sequentially compute
the generalized table T ∗j for microdata table Tj . In order to well
evaluate HD-composition, we examine 4 aspects: the portion of
perturbed tuples, the utility of published tables, the computation
overheads, and the additional costs for dealing with participation
knowledge, as follows. In the following container size C refers to
the number of individuals that are present in the container. Also the
default values of C, `,K are 5, 4, 0, respectively6.

Perturbation Rate. As described in Section 3.2.5, perturbing sen-
sitive values sometimes is necessary. Thus, we want to investigate
6In another suit of experiments, we set default K to be 3, and get
very similar results.
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Figure 5: Query error vs. round: HD-composition

that, to achieve `-scarcity, normally how many individuals’ sen-
sitive values should be perturbed. Figure 4(a) shows the ratio of
perturbed individuals among all individuals present in the micro-
data snapshot at each publishing round, where we and plot different
curves to visualize the effects of different `. Figure 4(b) presents
the results of a similar experiment with different container sizes C.
From both Figure 4(a) and (b), we can find that at the first few pub-
lishing rounds, there is no perturbation at all, and the total number
of perturbed tuples is tiny compared to the cardinality of microdata
tables(about 0.02%).

Utility of Published Data. In this set of experiments, we compare
the query processing results on each anonymized table T ∗j and its
corresponding microdata table Tj at each publishing round. We
follow the literature conventions [19, 21, 17] to measure the error
by the relative error ratio in answering an aggregate query. All the
published tables are evaluated one by one. For each evaluation, we
perform 5,000 randomly generated range queries which are similar
to [21] on the microdata snapshot and its anonymized version, and
then report the average relative error ratio. The results are plotted
in Figure 5(a) and (b), in terms of different configurations of ` and
container size C respectively. The results show that the data utility
does not downgrade much with the increase of publishing rounds,
nor the container size. Besides, we also compute `-diversity and
m-invariance generalizations for every microdata snapshot by dif-
ferent ` and m, and the results of their average relative error ratio
are reported in Figure 6(a) and (b) respectively. It could be found
that HD-composition has a similar performance compared with `-
diversity and m-invariance in terms of utility.

Computation Cost. This experiment evaluates the efficiency of
our anonymization algorithm. First, we vary ` and measure the
time spent in generalization phase at each round. The effect of
different ` is plotted in Figure 7(a). It could be found that the larger
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Figure 7: Computation cost vs. round: HD-composition

` is, the faster the anonymization will be. The reason is that with
larger `, the top-down specialization process can stop at an earlier
stage and save a large amount of time on privacy checking. Second,
we change the container size to investigate how the container size
affect the time cost. The results in Figure 7(b) shows that the time
costs are nearly the same for different container sizes. The reason
is that the occurrence of permanent sensitive values is rare, and
consequently the number of containers(for holders and decoys) are
not large.

Effect of Participation Knowledge. The last experiment inves-
tigates how the utility and computation cost change if we need to
defend against the participation knowledge. We vary the quantity of
participation knowledge K, then at each publishing round, record
the relative average query error in Figure 8(a) and plot the computa-
tion cost in Figure 8(b). It could be found that different cardinalities
of the participation knowledge do not have drastic influence on the
results.

5. RELATED WORK
Researches on privacy protections for data publishing can be

classified into two branches. The first branch is the one-time pub-
lication. The second branch is serial publication. For one-time
publication, many privacy models are proposed to protect individ-
ual privacy. The traditional model is k-anonymity [14, 5, 4] which
requires that each QID value either appears at least k times or does
not appear in the published table. However, recently, it is found
that k-anonymity is vulnerable to homogeneity attack and back-
ground knowledge attack. One of the most influential work is `-
diversity [8], which considers the inference relationship between
QID values and sensitive attributes, instead of the number of occur-
rences of the QID values only. Since the aim of privacy protection
is to guarantee the linkage probability between one and a sensitive
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value is no more than a threshold, `-diversity is more meaningful
than k-anonymity. Li and Li [7] also consider the inference rela-
tionship and propose t-closeness which restricts that, according to
the sensitive attribute, the distribution of each anonymized group is
similar to the distribution of the entire published table.

Some works [8, 9, 17] for the one-time publication also consider
some kinds of background knowledge. In [8], a Japanese hardly
suffers from heart disease. Martin et al. [9] propose a new kind of
background knowledge considering the association among individ-
uals. For example, if an individual is linked to a sensitive value
such as HIV, another individual which has a close relationship with
him/her must also be linked to the same sensitive value. Wong et
al. [17] consider that the background knowledge can be the princi-
ple of the anonymization algorithm. Different from previous works,
we focus on the background knowledge including the participation
information which denotes whether an individual is present or not
in a snapshot of the microdata.

Byun et, al. [1] adopt delayed publishing to keep `-diversity dy-
namically, in which the anonymized data will not be published until
the inserted tuples themselves could satisfy some privacy require-
ments. Yet the method has several drawbacks: it only considers
insertions, all the publishing histories need to be maintained, and
delayed durations are not bounded. Xiao and Tao [21] propose the
m-invariance model to support both insertion and deletions. How-
ever, as we have discussed in the introduction, both of these works
cannot address the problems that are identified in this paper.

Wang et al. [16] considers sequential releases where each re-
lease is on a different subset of the attributes for the same dataset.
Both [11] and [2] present a privacy model to protect k-anonymity
with serial publications that only allow insertions. Both consider
k-anonymity and cannot be easily extended to the case where the
inference relationship between QID and sensitive attributes is con-
sidered.

6. CONCLUSIONS
Current anonymization techniques for serial data publishing can-

not support data updates on both QID attributes and the sensitive
attribute and none of them consider the effect of permanent sen-
sitive values. This paper addresses these issues by proposing a
novel anonymization method by role composition. Utilizing the
assumption of trusted publishers, we present an analysis showing
that individual privacy can be guaranteed by our method. In the
experiments on a real dataset, we find that our proposed algorithm
HD-composition is efficient and also can preserve the utility of pub-
lished data.

There are some promising directions for future work. It would be
interesting to extend HD-composition to guard privacy against var-

ious kinds of background knowledge. One can also explore novel
techniques to raise the utility for serial data publishing.
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