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ABSTRACT
The importance of dominance and skyline analysis has been well
recognized in multi-criteria decision making applications. Most
previous works study how to help customers find a set of “best”
possible products from a pool of given products. In this paper,
we identify an interesting problem, creating competitive products,
which has not been studied before. Given a set of products in the
existing market, we want to study how to create a set of “best”pos-
sible products such that the newly created products are not domi-
nated by the products in the existing market. We refer such products
as competitive products. A straightforward solution is to generate a
set of all possible products and check for dominance relationships.
However, the whole set is quite large. In this paper, we propose
a solution to generate a subset of this set effectively. An extensive
performance study using both synthetic and real datasets isreported
to verify its effectiveness and efficiency.

1. INTRODUCTION
Dominance analysis is important in many multi-criteria decision

making applications.

EXAMPLE 1 (SKYLINE ). Consider that a customer is looking
for a vacation package, where each package typically contains a
flight reservation and a hotel reservation, using some travel agen-
cies like Expedia.com and Priceline.com. The customer usesfour
criteria for choosing a package, namely No-of-stops, Distance-to-
beach, Hotel-class and Price. For two packagesp andq, if p is bet-
ter thanq in at least one factor, and is not worse thanq in the rest of
remaining factors, thenp is said todominateq. Table 1 shows four
packages:p1, p2, p3 andp4. In attribute Hotel-class, the numbers
in braces can be ignored at this point and will be described later.
For example, in the table,p1 has attribute “Hotel-class” equal to

∗This research was supported by an RGC Earmarked Research
Grant of HKSAR HKUST and by the Natural Sciences and En-
gineering Research Council (NSERC) of Canada. All opinions,
findings, conclusions and recommendations in this paper arethose
of the authors and do not necessarily reflect the views of the fund-
ing agencies.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09,August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

4. Assume that less stops, shorter distance to beach, higherhotel
class and lower price are more preferable. Thus,p1 dominatesp4

becausep1 has less stops, shorter distance to beach, higher hotel
class and lower price. However, packagep1 does not dominatep2

becausep2 has lower price. Similarly, packagep2 does not domi-
natep1 becausep1 has less stops.

In a table, a tuple that is not dominated by any other tuple is
said to be askyline tupleor it is in theskyline. Recently, skyline
analysis [17, 12, 20, 10, 15, 23] has received a lot of interest in
the literature. In Example 1, packagep is in the skyline if it is not
dominated by any other packages. The packages in the skylineare
the best possible tradeoffs among the four factors in question. For
example,p1 is in the skyline because it is not dominated byp2, p3

andp4. However,p4 is not in the skyline becausep4 is dominated
by p1.

EXAMPLE 2 (CREATING COMPETITIVE PRODUCTS). A
new travel agency wants to start or create some new packages to
be formed from a pool of flights and a pool of hotels as shown
in Table 2 and Table 3, respectively. One straightforward way of
forming new packages is to generate all possible combinations of
flights and hotels.

When generating a new package from a flightf and a hotelh, we
set the price of the new package as a function of the cost off and
the cost ofh. For example, we set the price of packageq exactly to
the sum of the cost off and the cost ofh. Here, a packageq gen-
erated fromf3 andh5 has price at least80 + 140 = 220. Thus, all
attributes ofq (No-of-stops, Distance-to-beach, Hotel-class, Price)
are (2, 170, 4, 220).

In Example 2, the set of all possible packages generated from
flights and hotels as shown in Table 4 is{q1 : (f1, h1), q2 :
(f1, h2), q3 : (f1, h3), q4 : (f1, h4), ..., q24 : (f4, h6)}.

Note that there are someexisting packages in the market as
shown in Table 1. Not all newly generated packages from flights
and hotels will be chosen by customers because some of them
are dominated by existing packages in the market. For example,
q24 : (f4, h6) has (No-of-stops, Distance-to-beach, Hotel-class,
Price) = (2, 200, 3, 210). It is dominated by packagep2 in the ex-
isting market because the price ofp2 is lower than the price ofq24

and other attributes ofp2 are not worse than those ofq24.
In addition to the existing packages in the market, some newly

generated packages may also be dominated by othernewly gen-
erated packages. For example, a newly generated packageq24 :
(f4, h6) is dominated by another newly generated packageq13 :
(f3, h1) where q13 has (No-of-stops, Distance-to-beach, Hotel-
class, Price) = (2, 100, 3, 180).



Package No-of-stops Distance-to-
beach

Hotel-class Price

p1 0 130 4 (2) 250
p2 1 140 4 (2) 170
p3 1 300 5 (1) 150
p4 1 150 2 (4) 300

Table 1: Packages in the existing market

Flight No-of-stops Flight-cost
f1 0 120
f2 1 100
f3 2 80
f4 2 90

Table 2: A setF of flights from the new travel agency

Hotel Distance-to-
beach

Hotel-class Hotel-cost

h1 100 3 (3) 100
h2 200 4 (2) 90
h3 400 5 (1) 80
h4 150 4 (2) 150
h5 170 4 (2) 140
h6 200 3 (3) 120

Table 3: A set H of hotels from the new travel
agency

Package No-of-stops Distance-to-
Beach

Hotel-class Price

q1 : (f1, h1) 0 100 3 (3) 220
q2 : (f1, h2) 0 200 4 (2) 210
q3 : (f1, h3) 0 400 5 (1) 200

... ... ... ... ...
q7 : (f2, h1) 1 100 3 (3) 200

... ... ... ... ...
q13 : (f3, h1) 2 100 3 (3) 180

... ... ... ... ...
q24 : (f4, h6) 2 200 3 (3) 210

Table 4: All possible packages generated fromF and H

The set of all possible newly generated packages that are not
dominated by any packages in the existing market and any newly
created packages corresponds to the “best” packages formedfrom
flights and hotels. We call these packagescompetitive packages.

Hence, the problem in Example 2 is: Given a tableTE storing all
packages in the existing market, a table storing flights and atable
storing hotels, we want to find all competitive packages generated
from the flights and the hotels. Specifically, they are in the skyline
with respect to the final dataset that include packages inTE and all
possible packages formed from hotels and flights. In Table 4,only
q1, q2, q3, q7 andq13 are competitive packages.

A naive way to obtain the set of competitive packages is to (1)
generate all possible combinations of hotels and flights, (2) add
these to the existing market packages and (3) compute the sky-
line of the whole dataset. This approach has several weaknesses.
Firstly, the set of all possible combinations generated from flights
and hotels can be extremely large. This motivates us to propose an
algorithm which considers only a subset of the space of possible
combinations and thus effectively reduces the search spacewhile
computing the full set of competitive packages. Secondly, since a
newly generated product possibly dominates another newly gener-
ated product, there is a need to check the dominance relationship
among each pair of newly generated packages, which can be pro-
hibitively expensive.

In this paper, we formulate this problem and introduce efficient
algorithms that avoid fully materializing the space of all possible
packages and naively applying the skyline algorithm on the whole
space. We call this problemcreating competitive productswhere a
package in our example refers to a product.

Forming competitive products is common in real life applica-
tions. Other applications for creating competitive products in-
clude assembling new laptops which involve CPU, memory and
screen where laptops correspond to products and CPU, memory
and screen are used to form products; a laptop company can or-
der the components from different vendors and there are a lotof
existing laptops in the market. Another interesting application is
to create a delivery service which involves different transportation
carriers such as flights and trucks. A cargo delivery companycan
use different transportation carriers for the delivery. Inthis applica-
tion, delivery services are products which are generated from dif-
ferent transportation carriers.

Our contributions are summarized as follows. (1) To the best

of our knowledge, we are the first to study how to create competi-
tive products. Creating competitive products can help the effort of
companies to generate new packages, which cannot be addressed
by existing methods. (2) We also propose a solution which can
reduce the size of the space of possible combinations effectively
by grouping “similar” products in the same groups and processing
them as a whole. (3) We present a systematic performance study
using both real and synthetic datasets to verify the effectiveness
and the efficiency of our method. The experimental results show
that creating competitive products is interesting.

The rest of the paper is organized as follows. We first give a
background and some notations of this problem in Section 2. In
Section 3, we formally define our problem. Our proposed method
is developed in Section 4. In Section 5, we give some discussions of
the proposed method. A systematic performance study is reported
in Section 6. In Section 7, we describe some related work. The
paper is concluded in Section 8.

2. BACKGROUND AND NOTATIONS
We first describe the background about skyline in Section 2.1.

Then, we give some notations used in this paper in Section 2.2.

2.1 Background: Skyline
A skyline analysis involves multiple attributes. The values in

each attribute can be modeled by a partial order on the attribute. A
partial order� is a reflexive, asymmetric and transitive relation. A
partial order is also a total order if, for any two valuesu andv in
the domain, eitheru � v or v � u. We writeu ≺ v if u � v and
u 6= v.

By default, we consider tuples in anw-dimensional1 spaceS =
x1 × · · · × xw. For each dimensionxi, we assume that there is
a partial or total order. For a tuplep, p.xi is the projection on
dimensionxi. For dimensionxi, if p.xi � q.xi, we also simply
write p �xi

q. We can omitxi if it is clear from the context.
For tuplesp andq, p dominatesq with respect toS, denoted by

p ≺ q, if, for any dimensionxi ∈ S, p �xi
q, and there exists a

dimensionxi0 ∈ S such thatp ≺xi0
q. If p dominatesq, thenp is

more preferable thanq.

DEFINITION 1 (SKYLINE ). Given a datasetD containing tu-
ples in spaceS, a tuplep ∈ D is in the skyline ofD (i.e., a skyline
1In this paper, we use the terms “attribute” and “dimension” inter-
changeably.



tuple inD) if p is not dominated by any tuples inD. The skyline of
D, denoted bySKY (D), is the set of skyline tuples inD.

For example, in Table 1 whereD = {p1, p2, p3, p4}, since
p1, p2 and p3 are not dominated by any tuples inD, SKY (D)
is equal to{p1, p2, p3}.

2.2 Notations
Givenk source tables, namelyT1, T2, ..., Tk, each source table

Ti has a setXi of attributes. The domain of each attribute inXi

is R. For any two sets of attributesXi andXj , Xi ∩ Xj = ∅.
Let X denote the set of all attributes of source tables. That is,
X = ∪k

i=1Xi.
The tableT1 storing the flights (Table 2) and the tableT2

storing the hotels (Table 3) are examples of source tables.X1

and X2 are {“No-of-stops”, “Flight-cost”} and {“Distance-to-
beach”, “Hotel-class”, “Hotel-cost”}, respectively.X = {“No-of-
stops”, “Flight-cost”, “Distance-to-beach”, “Hotel-class”, “Hotel-
cost”}. Let x1, x2, x3, x4 andx5 be “No-of-stops”, “Flight-cost”,
“Distance-to-beach”, “Hotel-class” and “Hotel-cost”, respectively.

The source tables are used to generate theproduct table. The
product tableTP has a setY of attributes. The domain of each
attribute inY is R. Each attributeyj ∈ Y of the product table can
be computed from the attribute setX of the source tables according
to the following definition:

DEFINITION 2 (MERGING FUNCTION gj ). For each at-
tribute yj ∈ Y , we define a functiongj called merging function
over attribute setX such thatyj = gj(X ).

In this paper, for the sake of illustration, we study the merging
functiongj with the linear form overX as follows.

gj(X ) =
∑

x∈X

w(x) · x (1)

wherew(x) is the weight of attributex and is a real number. The
weights of all attributes inX for functiongj are denoted by a vector
vj . If the weightw(x) of an attributex ∈ X is equal to 0, we say
thatyj ∈ Y is independentof attributex. Otherwise, we say that
yj is dependenton attributex. The weight vector of each function
gj is given by the user. Note that the technique presented in this
paper can handle any other specific monotonic merging function.

The above linear form (Equation 1) can express how the attribute
yj of the product table can be derived from the attributes of source
tables in many real applications. We distinguish between two kinds
of attributes in the product table, namelydirect attributeand indi-
rect attribute.

A direct attribute of the product table is an attribute whichis
exactly equal to one of the attributes of a source table. For example,
in our running example, attribute “No-of-stops” of Table 4,saysyj ,
is exactly equal to attribute “No-of-stops” of Table 2, saysx. In this
case, the vector for the merging function of attributeyj contains
only one entryw(x) equal to 1 and other entriesw(x′) equal to
0. An indirect attribute of the product table is the attribute that is
equal to the weighted sum of multiple attributes of multiplesource
tables. For instance, the product table has attribute “Price” (y4)
which is equal to the sum of attribute “Flight-cost” of Table2 (x2)
and attribute “Hotel-cost” of Table 3 (x5). In this case, the vectorv4

contains two entries, namelyw(x2) andw(x5), both equal to 1, and
other entriesw(x′) equal to 0. The formulation of the summation
of attributes appears naturally in many applications.

DEFINITION 3 (DEPENDENTATTRIBUTE). Given an at-
tribute yj ∈ Y and an attributex ∈ Xi wherei = 1, 2, ..., k, x is

said to be adependent attributeof yj if the weight ofx in function
gj (i.e., w(x)) is equal to a non-zero value. We defineD(yj) to
denote a set of all dependent attributes ofyj .

EXAMPLE 3 (DEPENDENTATTRIBUTE). Table 4 is the
product table.Y is equal to{“No-of-stops”, “Distance-to-Beach”,
“Hotel-class”, “Price”}. Let y1 =“No-of-stops”,y2 =“Distance-
to-Beach”,y3 =“Hotel-class” andy4 =“Price”.

Suppose the vector stores the weights of attributes inX in this
order: x1 :“No-of-stops”, x2 :“Flight-cost”, x3 :“Distance-to-
beach”,x4 :“Hotel-class”, x5 :“Hotel-cost”. Then, the vectors
v1, v2, v3 and v4 are equal to (1, 0, 0, 0, 0), (0, 0, 1, 0, 0), (0,
0, 0, 1, 0) and (0, 1, 0, 0, 1), respectively. It is easy to verify that
D(y1), D(y2), D(y3) andD(y4) are equal to{x1}, {x3}, {x4}
and{x2, x5}, respectively.

In the above example, we observe that there is no overlapping
amongD(y)’s. In other words, each attributex of a source table is
involved in the computation ofexactly oneattributey of a product
table. In the following, to simplify the discussion, we assume that,
for any two attributesy andy′ in Y , D(y) ∩ D(y′) = ∅. If this
assumption does not hold where an attributex of a source table is
involved in the computation of more than one attribute of a product
table, we can duplicate attributex such that the above assumption
holds. With this assumption, we have the following definition.

DEFINITION 4 (TARGET ATTRIBUTE). Supposeyj ∈ Y and
x ∈ X. yj is said to be thetarget attributeof x, denoted byα(x),
if the weight ofx in vectorvj (i.e.,w(x)) is non-zero.

Since each attributex of a source table is involved in the compu-
tation ofexactly oneattributey of a product table, each attributex
has its unique target attribute.

EXAMPLE 4 (TARGET ATTRIBUTE). Since D(y1), D(y2),
D(y3) andD(y4) are equal to{x1}, {x3}, {x4} and{x2, x5},
we obtain thatα(x1), α(x2), α(x3), α(x4) andα(x5) are equal to
y1, y4, y2, y3 andy4, respectively.

In our motivating application, we say that, in table flight, at-
tribute Flight-cost is amerging attributebecause its value ismerged
with the value of attribute Hotel-cost to form the value of attribute
Price for a package. We say that attribute No-of-stops is anon-
merging attributesince attribute No-of-stops is directly used in the
attribute value for a package.

DEFINITION 5 (MERGING ATTRIBUTE). Given an attribute
x ∈ Xi, x is said to be amerging attributeif |D(y)| > 1 where
y = α(x).

EXAMPLE 5 (MERGING ATTRIBUTE). In table flight (Ta-
ble 2), attribute “Flight-cost” (x2) is a merging attribute. Lety4

be attribute “Price”. This is becauseα(x2) = y4 andD(y4) =
{x2, x5} where|D(y4)| > 1. But, attribute “No-of-stops” (x1) is
not a merging attribute. In table hotel (Table 3), attribute“Hotel-
cost” (x5) is a merging attribute. But, attributes “Distance-to-
beach” (x3) and “Hotel-class” (x4) are not.

3. PROBLEM DEFINITION
Each tuple in the product table is aproductgenerated from one

tuple of each source tableTi. Consider a tuplep in the product
table generated from tuplet1 in T1, tuple t2 in T2, ..., tupletk in
Tk. We define a function calledproduct functionover these tuples
with merging functiongj as follows.



DEFINITION 6 (PRODUCT FUNCTION θ). Considerk tuples,
namelyt1, t2, ..., tk, whereti is a tuple inTi for i = 1, 2, ..., k.
Suppose we generate the productq from thesek tuples. We de-
fine a functionθ calledproduct functionover thek tuples, namely
t1, t2, ..., tk, such thatq = θ(t1, t2, ..., tk).

Let Xv be the set of all attribute values of tuplest1, t2, ..., tk.
Specifically, under functionθ, for each attributeyj of q, the value
of yj is equal togj(Xv).

A packageq generated fromf3 of T1 (flights) andh5 of T2 (ho-
tels) is computed byθ(f3, h5). In Example 2, it has attributes (No-
of-stops, Distance-to-beach, Hotel-class, Price) = (2, 170, 4, 220).

Let U(T1, T2, ..., Tk) be the set of all possible products gener-
ated from source tablesT1, T2, ..., Tk. Formally,U(T1, T2, ..., Tk)
is equal to

{θ(t1, t2, ..., tk)|ti ∈ Ti wherei ∈ [1, k])}

In our running example,U(T1, T2) is equal to{q1 : (f1, h1), q2 :
(f1, h2), q3 : (f1, h3), q4 : (f1, h4), ..., q24 : (f4, h6)}.
U(T1, T2, ..., Tk) is represented by a product table denoted byTQ

for the ease of reference. Table 4 is an example ofTQ.
In addition to the possible products generated from source tables

T1, T2, ..., Tk, there exist products in theexisting markets. These
existing products are stored in a product table denoted byTE. Thus,
the products inTE are given but the products inTQ are to be gen-
erated from source tablesT1, T2, ..., Tk. Table 1 is an example of
TE .

We definecompetitive productsas follows.

DEFINITION 7 (COMPETITIVE PRODUCT). Given a product
q in TQ, q is said to be acompetitive productif q is in the skyline
with respect toTE ∪ TQ.

In our motivating example, described in Section 1, the newlycre-
ated productq24 is not a competitive product becauseq24 is dom-
inated by productp2 in the existing market. However, the newly
created productq1 is a competitive product because there are no
other products inTE andTQ dominatingq1.

In this paper, we address the problem of finding all competitive
products inTQ.

A straightforward solution involves two steps. (1)Step 1 (Cre-
ating TQ): The first step is to generateTQ from k source tables,
namelyT1, T2, ..., Tk. (2) Step 2 (Finding Competitive Product):
The second step is to adopt one of the existing algorithms [1,4, 13]
to compute the skyline with respect toTE ∪ TQ.

However, the computation is expensive. Suppose that each ta-
ble Ti hasγ tuples. The size ofTQ is equal toγk. For example,
whenk = 3 andγ = 1, 000, 000, then the size ofTQ is equal to
1× 1018, which is extremely large. Most of the known algorithms
without indexing finding the skyline over a single tableT are shown
to have a worst-case complexity ofO(d|T |2), whered is the num-
ber of dimensions and|T | is the table size, and an average-case
complexity at least linear in|T | [9]. It is shown in [5] that the sky-
line problem requires at leastdlog |T |!e comparisons. Thus, since
the second step of the straightforward approach processes the data
T (= TE ∪ TQ), if |TE | is equal to 1,000,000, the size of the table
T denoted by|T | is equal to1, 000, 000 + 1× 1018 ≈ 1 × 1018.
With this large value of|T |, the complexity of the straightforward
approach is quite high (i.e.,O(d × (1 × 1018)2)). This motivates
us to propose an algorithm which considers only a subset of this set
and thus effectively reduces the search space.

4. ALGORITHM

In the following, for the sake of illustration, we assume that,
for each attribute, the smaller the value is, the better it is. In our
motivating example, only attribute Hotel-class does not follow this
assumption. We subtract each value in attribute Hotel-class from
5. In Table 1 and Table 3, the numbers in braces are the subtracted
value. In the following, we use the subtracted value for attribute
Hotel-class.

Our objective is to find all competitive products fromTQ effi-
ciently. Note that all products in the answer are in the skyline with
respect toTE∪TQ. The computation cost of finding these products
depends on two major components.

• Intra-dominance Checking:Intra-dominance checking refers
to the dominance checking among all newly generated prod-
ucts inTQ. For example, in Section 1, we observe that some
newly generated packages, saysq24, may dominate another
newly generated packages, saysq13. There are totally at most
|TQ|

2 dominance checks.

• Inter-dominance Checking:Inter-dominance checking refers
to the dominance checking between the tuples inTQ and the
tuples inTE. For example, as described in Section 1, the
newly generated packageq24 is dominated by an existing
packagep2. There are totally at most|TP |×|TQ| dominance
checks.

The total number of checks is at most|TQ|
2 + |TP | × |TQ|.

In the following, we propose some techniques which reduce both
the number of intra-dominance checks and the number of inter-
dominance checks. At the same time, we do not want to materialize
the entireTQ.

This project is started with a travel agency which wants to cre-
ate packages from flights and hotels in order to create competitive
packages. This project has one important characteristic called the
at-most-one merging attribute characteristic: for each source table
Ti, there exists at most one merging attribute inXi. This character-
istic avoids any intra-doiminace checkingamong tuples inT ′

Q. In
the following, we assume that the application satisfies the at-most-
one merging attribute characteristic. A general model which may
not satisfy this characteristic is described in Section 5.

The at-most-one merging attribute characteristic comes naturally
in a lot of applications in addition to creating packages. All appli-
cations for generating products based on attribute price are some
examples. For example, when new laptops are formed, we consider
attribute price of each component (e.g., CPU, memory and screen).
Another example is the delivery service where each transportation
carrier has attribute price.

We first describe the framework of our algorithm in Section 4.1
by avoiding intra-dominance checking steps. Based on this frame-
work, we propose to group “similar” newly generated products to-
gether to reduce the number of inter-dominance checking steps.

4.1 Framework
In this section, we give a framework which is simple but effective

to generate competitive products by avoiding the intra-dominance
checking.

EXAMPLE 6 (FRAMEWORK). Consider a packageq :
(f4, h6) and q′ : (f3, h2). From Table 2 and Table 3, it easy
to verify thatq has(y1, y2, y3, y4) = (2, 200, 3, 210) andq′ has
(y1, y2, y3, y4) = (2, 200, 2, 170). Specifically,q is dominated
by q′. We call this dominance relationship as an intra-dominance
relationship.

The reason whyq is dominated byq′ is that each of the tuples
from the source tables which are used to generateq are dominated



Flight No-of-stops Cost
f1 0 120
f2 1 100
f3 2 80

Table 5: A setF ′ of skyline tuples inF (i.e.,SKY (F ))

Hotel Distance-to-
beach

Hotel-class Cost

h1 100 3 100
h2 200 2 90
h3 400 1 80
h4 150 2 150
h5 170 2 140

Table 6: A setH ′ of skyline tuples inH (i.e.,SKY (H))

by each of the correspondence tuples which are used to generate
q′. Specifically,f4 is dominated byf3 (See Table 2) andh6 is also
dominated byh2 (See Table 3). By this observation, we propose
a framework which first removes all tuples in each source table
dominated by other tuples. The remaining tuples of a source table
Ti correspond to the skyline ofTi, which will be used to generate
competitive products.

The framework is described as follows. For each source tableTi,
we find the skyline overTi, denoted byT ′

i , whereT ′
i = SKY (Ti).

Let T1 be table flight (Table 2) andT2 be table hotel (Table 3).
It is easy to verify that inT1, only f4 is dominated and thusT1

becomesT ′
1 as shown in Table 5. Besides, inT2, only h6 is dom-

inated and thusT2 becomesT ′
2 as shown in Table 6. LetT ′

Q be
the set of all products generated fromT ′

1, T
′
2, ..., T

′
k. Note that

T ′
Q = U(T ′

1, T
′
2, ..., T

′
k) andT ′

Q ⊆ TQ. We have the following
lemma.

LEMMA 1. Supposeq ∈ TQ. q ∈ SKY (TE ∪ TQ) if and only
if q ∈ SKY (TE ∪ T ′

Q).

The above lemma2 claims that a newly generated productq ∈
TQ is in the skyline computed according toT ′

1, T
′
2, ..., T

′
k if and

only if q is in the skyline computed according toT1, T2, ..., Tk.
In other words, we can just focus on finding the skyline accord-
ing to T ′

1, T
′
2, ..., T

′
k instead ofT1, T2, ..., Tk. SinceT ′

i is much
smaller thanTi in general, the total number of products gener-
ated fromT ′

1, T
′
2, ..., T

′
k is much smaller than that generated from

T1, T2, ..., Tk. Thus, the search space is significantly reduced.
After we obtainT ′

Q, we have the following interesting property.

LEMMA 2 (NON-DOMINANCE RELATIONSHIP). If the ap-
plication satisfies the at-most-one merging attribute characteristic,
for any two distinct tuplesq and q′ in T ′

Q, there is no dominance
relationship betweenq andq′. That is,q 6≺ q′ andq′ 6≺ q.

The above lemma guarantees no intra-dominance relationship
among all products generated from the resulting source tables.
It is a good feature since we do not need to perform any intra-
dominance checking. We only need to check the inter-dominance
relationship between tuples fromT ′

Q and tuples fromTE , as shown
in Lemma 3.

LEMMA 3. Supposeq ∈ T ′
Q. q ∈ SKY (TE ∪ T ′

Q) if and only
if q ∈ SKY (TE ∪ {q}).

Lemma 3 is a key to the efficiency of the algorithm to be pro-
posed. Since, here, we can save the computation of checking the
intra-dominance relationship among tuplesq ∈ T ′

Q, the proposed
step can reduce the search space effectively.

Algorithm 1 shows the algorithm for creating competitive prod-
ucts.
2Note that, according to the above lemma,q ∈ TQ/T ′

Q must not
be in the skylineSKY (TE ∪ TQ).

Algorithm 1 Algorithm for Creating Competitive Products

Input: a setTE of products in the existing market and a setT ′
Q of

all possible products fromT ′
1, T

′
2, ..., T

′
k

Output: the setO of competitive products
1: O ← ∅
2: for eachq ∈ T ′

Q do
3: // if q ∈ SKY (TE ∪ {q})
4: if q is not dominated by any tuple inTE then
5: O← O ∪ {q}
6: return O

THEOREM 1. Algorithm 1 returnsSKY (TE ∪ TQ).

With Algorithm 1, intra-dominance checking steps are removed
if the scenario has the at-most-one merging attribute characteristic.
Thus, |TQ|

2 checks are avoided. Since we focus on processing
T ′

Q instead ofTQ (whereT ′
Q ⊆ TQ), the total number of inter-

dominance checking steps is reduced from|TE | × |TQ| to |TE | ×
|T ′

Q|. The total number of checks in this algorithm is at most|TE|×
|T ′

Q|. Similarly, we can findT ′
E = SKY (TE) so that the number

can be reduced to|T ′
E | × |T

′
Q|. In the following, when we write

TE , we meanT ′
E .

Although Algorithm 1 helps us to derive an efficient algorithm,
a naive implementation stillmaterializesall possible products gen-
erated fromT ′

1, T
′
2, ..., T

′
k and obtains a setT ′

Q, which is computa-
tionally expensive. As we described before, ifγ is the size of each
tableT ′

i , the total number of tuples inT ′
Q is γk. In the following,

we propose techniques to avoid materializingT ′
Q.

4.2 Group Partitioning
In the previous section, although we avoid the intra-dominance

checking, in order to make the algorithm much more efficient,we
have to reduce the number of inter-dominance checking steps. In
this section, we propose a technique calledgroup partitioningto
further reduce the number of inter-dominance checking steps. The
main idea of the group partitioning technique is to group “similar”
tuples inT ′

Q into a single groupG, create abest representativefor
this groupG, denoted byb(G), and compare the tuples inTE with
this representative. With this technique, we propose two kinds of
pruning, namelyfull pruning, in which we try to prune the whole
groups, andpartial pruning, in which we try to prune some mem-
bers of some groups. Full pruning is described in this section while
partial pruning is described in Section 4.3.

Intuitively, the best representative is a tuple which is thebest
among these “similar” tuples according to the following definition.

DEFINITION 8 (BEST REPRESENTATIVE). Given a groupG,
a tuplet is said to be abest representativeif t dominates all tuples
in G which have some different attribute values fromt.

Using the best representative has the advantage of reducingthe
number of inter-dominance checking steps. For example, consider
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Figure 1: An example to illustrate the meta-transformation

N tuples,q1, q2, ..., qN , in T ′
Q forming a groupG. Consider a par-

ticular tuplep in TE. Without the best representative, in order to
determine whetherqi is dominated byp, we have to performN
times of inter-dominance checks. However, with the best represen-
tative, we can just perform asinglestep of the dominance checking
between the best representativeb(G) and tuplep. Thus, the number
of inter-dominance checking steps may reduce fromN to 1.

In our implementation, given a groupG, the best representative
of G is obtained by setting each attribute value of the representative
to be the minimum possible attribute value among all tuples in G.
It is easy to verify that the best representativet found with this
method dominates all tuples inG which have different attribute
values fromt.

EXAMPLE 7 (BEST REPRESENTATIVE). Consider a groupG
containing only two products:q : (f2, h4) and q′ : (f2, h5).
Their attribute values of (No-of-stops, Distance-to-beach, Hotel-
class, Price) are (1, 150, 4, 250) and (1, 170, 4, 240), respectively.
We create abest representativefor this group as (1, 150, 4, 240) by
taking the minimum possible value among all tuples inG on each
attribute. Note that(1, 150, 4, 240) dominates both (1, 150, 4, 250)
and (1, 170, 4, 240). Besides, since this best representative is dom-
inated by an existing productp2, we conclude that all members in
the group are also dominated byp2 and are not in the answer.

LEMMA 4 (FULL PRUNING). If b(G) is dominated by a tuple
p in TE , all tuples inG are also dominated byp.

The next question is how we find “similar” tuples inT ′
Q to form

a groupG and then find the best representativeb(G). A straight-
forward solution is to perform clustering over all possibletuples
in T ′

Q to form groups and then find the best representative in each
group. This solution has a requirement that we have tomateri-
alize all tuples inT ′

Q by enumerating all possible products from
T ′

1, T
′
2, ..., T

′
k. As we mentioned before, materializing all possible

tuples inT ′
Q is time-consuming and there are a large number of

possible tuples inT ′
Q.

Instead, we leverage the way we generate products from source
tables to perform clustering over the tuples in eachsource tableT ′

i

instead of the materialized product tableT ′
Q. After we obtain the

clusters for each source table, we (conceptually) generatea group
G from one cluster of each source table. We do not materialize
groupG, which means that we do not enumerate all members gen-
erated from the corresponding cluster. We just keep the cluster IDs
for a groupG. Specifically, supposeG is formed from clusterC1

(of tableT ′
1), clusterC2 (of tableT ′

2), ..., clusterCk (of tableT ′
k).

We denoteG in form of (C1, C2, ..., Ck). Let L be the set of clus-
ter IDs forC1, C2, ..., Ck. We just keep setL to denote groupG
in the implementation. Since each cluster from a source table con-
tains “similar” tuples, the groupG formed also contains “similar”
tuples.

Any clustering techniques can be used in our algorithm. It opens
the opportunity of leveraging the rich literature of clustering to op-
timize our algorithm. In our implementation, we adoptk-mean to
cluster over each source table where Euclidean distance metric is
used for the pairwise distance.

Although we do not enumerate all members inG, we can still
create the best representativeb(G) by using thebest representa-
tive of each corresponding clusterCi of source tableT ′

i . The best
representative of clusterCi of a tableT ′

i is generated according to
Definition 8 with its attributes set toXi instead ofY . Specifically,
for each clusterCi, we create the best representativeb(Ci) of clus-
terCi. Then, we find the best representativeb(G) of a groupG by
the following formula.

θ(u1, u2, ..., uk)

whereul = b(Cl) for l ∈ [1, k].

EXAMPLE 8 (BEST REPRESENTATIVE). SupposeT ′
1 is table

flight andT ′
2 is table Hotel. ConsiderC1 = {f2, f3} andC2 =

{h4, h5}. From Table 5 and Table 6, it is easy to obtain that
b(C1) and b(C2) are equal to(1, 80) and (150, 2, 140), respec-
tively. SupposeG is formed fromC1 andC2. b(G) is equal to
(1, 150, 2, 80 + 140) = (1, 150, 2, 220). Note thatb(G) is dom-
inated byp2 (See Table 1). Thus, the whole group can be pruned.

In Algorithm 2, we adopt Algorithm 1 to include group parti-
tioning. The major additional component of the algorithm isthe
introduction of full pruning (Line 9): ifb(G) is dominated by a tu-
plep in TE, we can skip the inter-dominance checking between all
tuples inG and tuples inTE (Lemma 4).

The full pruning is used to prune theentire group. In Line
10, we introduce a function calledpartialPrunewhich is used to
prunesometuples inG for the consideration of the inter-dominance
checking. This pruning is calledpartial pruning. Details will
be descrbied in Section 4.3. FunctionpartialPrune removes a
set W of tuples fromG where each tuple inW must not be in
SKY (TE ∪ T ′

Q).



Algorithm 2 Algorithm for Creating Competitive Products

Input: TE andT ′
1, T

′
2, ..., T

′
k

Output: the setO of competitive products
1: O ← ∅
2: perform clusterings over each source tableT ′

i

3: generate a setG of disjoint groupsconceptuallyaccording to
the clustering results obtained in the previous step

4: for each clusterCi of each source tableT ′
i do

5: create the best representativeb(Ci)
6: for each groupG ∈ G do
7: create the best representativeb(G) according to the best rep-

resentatives of the correspondence clusters
8: for each groupG ∈ G do
9: if b(G) is not dominated by any tuple inTE then

10: G′ ←partialPrune(G)
11: for eachq ∈ G′ do
12: // if q ∈ SKY (TE ∪ {q})
13: if q is not dominated by any tuple inTE then
14: O ← O ∪ {q}
15: return O

Note that Algorithm 1 is a special case of Algorithm 2 if each
cluster of each source table contains only 1 tuple.

4.3 Partial Pruning in Group Partitioning
Consider a groupG : (C1, C2, ..., Ck). In Algorithm 2, fucntion

partialPrune is called if full pruning is unsuccessful (i.e., the best
representative of groupG, b(G), is not dominated by any tuple in
TE). Note that the best representative cannot be used to remove
sometuples in the group. This is because the best representative
does not contain detailed information about the tuples inG. One
way to remove some tuples in the group is afull materialization
which enumerates all tuples inG so that we can obtain alldetailed
information. However, as described before, it is very computation-
intensive.

Partial pruning is a tradeoff between the full materialization ap-
proach and the best representative approach. Specifically,we pro-
pose the following three steps for functionpartialPrune. Consider
a groupG : (C1, C2, ..., Ck).

Step 1 (Meta-transformation):We do the following for each cluster
Ci. Consider a clusterCi from a source table. For each tupleti in
Ci, we transformti to a tuple called ameta-productof ti and then
project the meta-product on some attributes to form ameta-tupleof
ti. The meta-tuples of all tuples inCi form a new cluster̃Ci.

A meta-product of a tupleti is defined as follows.

DEFINITION 9 (META-PRODUCT). Supposeti is a tuple
from clusterCi. A meta-productof tupleti, denoted byβ(ti), is
equal to a productq whereq is

θ(u1, u2, ..., uk)

whereul = b(Cl) for l ∈ [1, k]/{i} andui = ti.

A meta-product of tupleti is similar to the best representative of
b(G). However, the difference is that a meta-product makes use of
the real content of tupleti but the best representative utilizes the
best possible information inCi (instead of the real content of tu-
ple ti). Intuitively, a meta-product gives more detailed information
compared with the best representative.

Next, we describe how we generate a meta-tuple ofti from the
meta-product by a projection operation.
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Figure 2: An example to illustrate how we use the projection
for pruning

Note that each tuple inCi is associated with an attribute setXi

sinceCi comes from the source tableT ′
i . We defineỸi to be a set

of target attributes of attributes inXi. That is,Ỹi is equal to{y|y =

α(x) wherex ∈ Xi}. Note thatỸi ⊆ Y . With the attribute set̃Yi,
we define the meta-tuple ofti as follows.

DEFINITION 10 (META-TUPLE). Suppose q is a meta-
product of tupleti. A meta-tupleof tupleti, denoted bỹti, is de-
fined to be equal to

∏
Ỹi

q which is the projection ofq on attribute

setỸi.

EXAMPLE 9 (META-TRANSFORMATION). Figure 1 illus-
trates the meta-transformation. Figure 1(a) shows the variables rep-
resenting the attribute names in our motivating example where T ′

1

is table Flight andT ′
2 is table Hotel. ConsiderC1 = {f1, f2} and

C2 = {h1, h2, h3}. Figure 1(b) shows the meta-transformation
from C1 to C̃1. Note thatX1 is equal to{x1, x2}. Sinceα(x1) =

y1 andα(x2) = y4, we obtainỸ1 = {y1, y4}. Note thatb(C1) has
(x1, x2) = (0, 100) andb(C2) has(x3, x4, x5) = (100, 1, 80).

Consider how we generate the meta-tuple off1. Note thatf1

has (x1, x2) = (0, 120). It is easy to obtain that the meta-
product offi is equal toβ(f1) = θ(f1, b(C2)) which is equal
to (0, 100, 1, 120 + 80) = (0, 100, 1, 200). Thus,f̃1 is equal to∏

Ỹ1
β(f1) = (0, 200). In the same way, we obtaiñf2 = (1, 180).

Similarly, fromC2, we also obtaiñC2 containingh̃1, h̃2 andh̃3

as shown in Figure 1(c).

Step 2 (Dominance checking):After the transformation, for each
transformed cluster̃Ci and each tuplep ∈ TE , we determine a set
of meta-tuples inC̃i such that each of these meta-tuples is domi-
nated by a tuplep ∈ TE with respect tõYi. We denote this set by
γ(Ci, p).

EXAMPLE 10 (DOMINANCE CHECKING). Figure 2 shows
C̃1 andC̃2 from Example 9. Consider a tuplep2 in TE .

We can see thatp2 dominatesf̃2 only in C̃1 with respect to
Ỹ1. It also dominates̃h2 only in C̃2 with respect toỸ2. We have
γ(C1, p2) = {f2} andγ(C2, p2) = {h2}.

Step 3 (Meta-pruning):According to the information obtained in
Step 2, we can determine which tuples inG can be pruned for each
p ∈ TE.

Consider a tuplep ∈ TE . We can use the content
of γ(Ci, p) for pruning some tuples inG by the following
lemma. Let W (p) be a set of possible combinations gener-
ated from γ(C1, p), γ(C2, p), ..., γ(Ck, p). That is W (p) =
{θ(t1, t2, ..., tk)|ti ∈ γ(Ci, p) for i ∈ [1, k]}. The following
lemma suggests that we can prune any tuples inW (p).



LEMMA 5 (PARTIAL PRUNING). Let p be a tuple inTE.
Each tupleq ∈W (p) is not inSKY (TE ∪ T ′

Q).

From Example 10, we know thatW (p2) = {θ(f2, h2)}. Thus,
we do not need to consider the productθ(f2, h2).

With Lemma 5 and Theorem 1, it is easy to verify the following.

THEOREM 2. Algorithm 2 returnsSKY (TE ∪ TQ).

4.4 Implementation
We will describe how we can use some indexing techniques to

speed up the inter-dominance checks. The major part of Algo-
rithm 2 is to perform the inter-dominance checks between tuples
in TE and tuples inT ′

Q. In our implementation, we build an R*-
treeRE overTE. Suppose thatY containsy1, y2, ..., yu. This tree
can be used in full pruning and partial pruning. In full pruning,
when we check whether a best representativebo is dominated by
an existing product inTE , we perform a range query with range
(y1 ≤ bo.y1) ∧ (y2 ≤ bo.y2) ∧ ... ∧ (yu ≤ bo.yu). If the range
query returns a setA of products which have some attribute values
different frombo, thenbo is dominated byp ∈ A. Otherwise,bo is
not dominated by any tuples inTE .

In partial pruning, similarly, we can also use the R*-treeRE

as follows. We want to findγ(Ci, p) for eachp ∈ TE and each
clusterCi. Initially, we setγ(Ci, p) = ∅. For each meta-tuple
t̃i in C̃i, we find a set of existing tuples inTE dominating t̃i

with respect toỸi by a range query. Specifically, suppose that
Ỹi containsy1, y2, ..., yv. Let the attributes inY but not inỸi be
yv+1, yv+2, ..., yu. We perform a range query(y1 ≤ t̃i.y1)∧(y2 ≤
t̃i.y2)∧...∧(yv ≤ t̃i.yv)∧(yv+1 ≤ ∞)∧(yv+2 ≤ ∞)∧...∧(yu ≤
∞). Let R be the range query result containing productsp which
has some attribute values different from̃ti with respect tõYi. For
eachp ∈ R, we insert̃ti into γ(Ci, p).

5. DISCUSSION
We first describe how the clustering quality affects our proposed

method. Then, we discuss how our proposed algorithm can be ex-
tended to a general case.
Clustering Quality Issue:The clustering quality may affect the per-
formance of full pruning. LetG = (C1, C2, ..., Ck). If each cluster
Ci contains many “similar” tuples, thenG contains many “similar”
tuples. Suppose each attribute of these tuples inG has a large value.
It is very likely that the best representative of the groupG is domi-
nated by tuples inTE. However, suppose that a clusterCi contains
some “distant” tuples such that a tuple inG have an attribute value
which is much smaller compared with another tuple inG. It is less
likely that the best representative of the groupG, taking the small-
est possible attribute value among all tuples inG, is dominated by
tuples inTE .

We want to emphasize that the clustering quality does not affect
the correctness of the algorithm. If the cluster contains “distant”
tuples, then the entire group cannot be pruned and thus has tobe
processed in the later steps of the algorithm.

General Model:In Section 4, we assume that the application satis-
fies the at-most-one merging attribute characteristic. With this char-
acteristic, by Lemma 2, we can avoid the intra-dominance check-
ing. If this characteristic is not satisfied, Lemma 2 does nothold
and thus we have to perform the intra-dominance checking. Inthis
case, after obtaining the answerO from Algorithm 2, we add a post-
processing step which computesSKY (O), which corresponds to
SKY (TE ∪ TQ). We call this algorithm with the post-processing
step the algorithm for creating competitive products (ACCP).

THEOREM 3. Algorithm ACCP returnsSKY (TE ∪ TQ).

Parameter Default value
No. of attributes in each source table (N ) 4
No. of indirect attributes in a product table (I) 1
No. of source tables (k) 2
Size ofTE (|TE |) 5M

Size of each source table (|Ti|) 100k

Table 7: Default values of parameters

6. EMPIRICAL STUDIES
We have conducted extensive experiments on a Pentium IV

2.4GHz PC with 4GB memory, on a Linux platform. The algo-
rithms were implemented in C/C++. We conducted the experiments
on both synthetic and real datasets.

The synthetic dataset is generated by a dataset generator. The
dataset generator has five input parameters, namely (1) the num-
ber of attributes in each source table,N , (2) the number of indirect
attributes in the product table,I , (3) the number of source tables,
k, (4) the number of tuples in tableTE, |TE |, and (5) the number
of tuples in each source table,|Ti|. We generate the datasets as
follows. Firstly, we createk source tables, namelyT1, T2, ..., Tk.
We adopted the data set generator released by the authors of [1].
For each source tableTi, as in [1], we generate the anti-correlated
dataset containing|Ti| tuples withN attributes each of which has a
range from 0 to 1000. Details of the generation of this dataset can
be found in [1]. LetX be the set of attributes of all source tables.
Secondly, we generate tableTE as follows. We generateI indirect
attributes. For each indirect attributey in TE , we randomly pick a
valueM from a distribution with mean 2 with standard derivation 1
to find the number of dependent attributes ofy. Then, we randomly
pick M attributes fromX to beD(y) and remove them fromX .
For each of the remaining attributesx in X , we create a direct at-
tributey in Y such thatD(y) = {x}. We generate a setD of all
possible combinations fromT1, T2, ..., Tk. Then, we randomly se-
lect |TE| tuples fromD and store them asV . For each tuplet in V ,
we modify each attribute oft by multiplying a numberx which fol-
lows a normal distribution with mean 1.0 and variance 0.025.All
modified tuplest form the final tableTE. If the parameters are not
specified, we adopt the default values in Table 7.

The real datasets are obtained from two anonymous travel agen-
cies, namely AgencyA and AgencyB. From each travel agency,
we obtained all packages, all flights and all hotels for a round trip
traveling from San Francisco to New York for a period from March
1, 2009 to March 7, 2009. In AgencyA dataset, we have 296 pack-
ages, 1014 hotels and 4394 flights. In the AgencyB dataset, we
have 149 packages, 995 hotels and 866 flights. Hotels and flights
form two source tables, and packages forms tableTE. Hotels have
attributes, namelyquality-of-room,, customer-grading, hotel-class,
hotel-price, while flights have attributes, namelyclass-of-flight,
no-of-stops, duration-of-journeyand flight-price. Packages have
four attributes, namelyquality-of-room, customer-grading, hotel-
class,class-of-flight, no-of-stops, duration-of-journeyand price.
Same as our motivating application, inTE, attributeprice is an
indirect attribute whereprice is equal to the sum of attributehotel-
price and attributeflight-price, and others are direct attributes.

We denote our proposed algorithm asACCP. This also involves
two major steps. The first step is calledpreprocessing step, which
finds SKY (Ti) for each source tableTi and findsSKY (TE)
for the tableTE. We also build an R*-treeRE on T ′

E where
T ′

E = SKY (TE). The second step is to use Algorithm 2 to find
all competitive products. We adoptk-mean for clustering over each
source table wherek used ink-mean is equal to|Ti|/1000. Thus,
the average cluster size is equal to 1000.



We also compared algorithmACCPwith two algorithms, namely
naiveandbaseline. Naiveis an algorithm which generates all possi-
ble combinations fromT1, T2, ..., Tk and stores them inTQ. Then,
it forms a datasetD = TE ∪ TQ and use the existing skyline algo-
rithm called SFS [4] to find the skyline inD. Baselineis same as
ACCPwithout full pruning and partial pruning.

We evaluated the algorithms in terms of seven measurements:
(1) Preprocessing:We measured the time of the pre-processing
step. (2) Execution time: The execution times of algorithms
are measured. ForBaselineand ACCP, in order to analyze the
execution time of the framework of the algorithms, the time of
the post-processing step is not reported. (3)|SKY |/|TQ|: Let
TQ be the set of all possible combinations from the original
source tablesT1, T2, ..., Tk (i.e., TQ = U(T1, T2, ..., Tk)). Let
SKY = SKY (TE ∪ TQ) ∩ TQ. |SKY |/|TQ| corresponds
to the proportion of skyline tuples among all tuples inTQ. (4)
|SKY |/|T ′

Q|: |SKY |/|T ′
Q| corresponds to the proportion of sky-

line tuples among all tuples inT ′
Q. (5) |TR|/|TQ|: Let TR be

the set of remaining products after full pruning and partialprun-
ing. |TR|/|TQ| corresponds to the proportion of remaining prod-
ucts after full pruning and partial pruning among all products in
TQ. (6) |TR|/|T

′
Q|: |TR|/|T

′
Q| corresponds to the proportion of

remaining products after full pruning and partial pruning among
all products inT ′

Q. (7) Memory: The memory usage of algo-
rithm ACCP is the memory consumed by the R*-tree built onT ′

E

whereT ′
E = SKY (TE) and the temporary storage in the algo-

rithm ACCPto store groupsG′ after full pruning and partial prun-
ing.

6.1 Synthetic dataset
We first compare our algorithms, namelyBaselineandACCP,

with Naive in Section 6.1.1 to show thatNaive is not scalable to
large datasets. In Section 6.1.2, we give a comprehensive experi-
mental studies to study the scalability of our algorithms.

6.1.1 Comparison with Naive Algorithm
In the synthetic dataset whereN = 3, I = 5, k = 2, |TE | =

10000 and|Ti| = 5000, Naivetook 1G memory and ran for hours.
Both the memory usage and the execution time ofNaiveare several
thousand times more than those ofbaselineandACCP. SinceNaive
is not scalable to large datasets, in the following, we focuson the
comparisons between algorithmACCPand algorithmBaseline.

6.1.2 Scalability
In the following, we study the following factors: (a) the source

table size, (b) the size ofTE, (c) the number of indirect attributes of
each product table, (d) the number of attributes of the product table,
(e) the number of source tables, and (f) the number of clusters in
each source table.

Effect of the source table size:We change the size of source ta-
bles from 100k to 500k. Figure 3(a) shows that the preprocessing
times and the execution times of both algorithms increase with the
source table size. The execution time of algorithmACCPis smaller
than that of algorithmBaselinebecause algorithmACCPperforms
full pruning and partial pruning, which speeds up the computation.
In Figures 3(b) and (c),|SKY |/|TQ|, |SKY |/|T ′

Q|, |TR|/|TQ|,
|TR|/|T

′
Q| and |TR|/|SKY | remains nearly unchanged. In Fig-

ure 3(b), we observe that|SKY |/|T ′
Q| is larger than|SKY |/|TQ|.

This means that|T ′
Q| is smaller than|TQ|, which shows the effec-

tiveness of the step to produceT ′
Q for the dataset. In Figure 3(c),

|TR|/|TQ| decreases by an order of magnitude when the source ta-
ble size increases while|TR|/|T

′
Q| remains relatively constant. A

smaller value of|TR|/|TQ| (or |TR|/|T
′
Q|) means that the search

space is larger. Thus, the trend shows that creatingT ′
Q becomes

more effective when the source table size increases. Figure3(d)
shows that the memory is more or less the same when the source
table size changes.

Effect of the size ofTE: We also conducted experiments to study
the effect of the size ofTE by varying from 2.5M to 10M. The
results are similar to those for the effect of the source table size.
Figure 4(a) shows thatACCP is also faster thanBaseline. When
the size ofTE is larger, the execution times of both algorithms
decrease. This is because there are more products inTE dominating
tuples inTQ. So, it is more likely that a tuple inTQ is dominated by
a tuple inTE. Once a tupleq in TQ is dominated by a tuple inTE,
the dominance checking betweenq and the remaining tuples inTE

can be skipped. Thus, the execution times are lower. Figure 4(b)
shows that|SKY |/|TQ| and |SKY |/|T ′

Q| decreases when|TE|
increases. In Figure 4(c),|TR|/|TQ|, |TR|/|T

′
Q| and|TR|/|SKY |

remains nearly unchanged when|TE | increases. Figure 4(d) shows
that the memory consumptions of both algorithms increase slightly
with |TE|.

Effect of the number of indirect attributes of the product table: We
conducted experiments to study the effect of the number of indi-
rect attributes of the product table by changing from 1 to 7. We fix
the number of attributes to be 7. The execution time of algorithm
ACCP is within 3,000s. Figure 5(b) shows that when the number
of indirect attributes increases,|SKY |/|TQ| remains nearly un-
changed. However,|SKY |/|T ′

Q| decreases. This is because the
size ofT ′

Q increases a lot. In Figure 5(c), as the number of indirect
attributes is larger,|TR|/|T

′
Q| is very large. This is because, when

there are more indirect attributes in the product table, it is less likely
that a tuple is dominated by another tuple. Thus, it is less likely that
full pruning and partial pruning are successful.

Effect of the number of attributes of the product table:We studied
the effect of the number of attributes of the product table where we
fix the number of indirect attributes of the product table to be 1.
The results are similar to Figure 5. For the sake of space, we omit
the figure here.

Effect of the number of source tables:Figure 6 shows the re-
sults when we vary the number of source tables where|TE | =
100k, |Ti| = 1k, I = 5 andN = 3. In the figure, the prepro-
cessing time, the execution times of both algorithms,|SKY |/|TQ|,
|SKY |/|T ′

Q|, |TR|/|TQ|, |TR|/|T
′
Q|, |TR|/|SKY | and the mem-

ory increases with the number of source tables. This is because
with more source tables,|TQ| is larger. Thus, the execution time,
the set of skyline tuples in the final dataset and the memory are
larger.

Effect of the number of clusters:We conducted experiments to
study the effect of the number of clusters over a source table.
We varied the number of clusters from 6 to 30. The results are
shown in Figure 7. SinceBaselineis independent of the number
of clusters, we do not include the results forBaselinein the figure.
When the number of clusters increases,|TR|/|TQ|, |TR|/|TQ| and
|TR|/|SKY | decreases. This is because the cluster size decreases
when there are more clusters. Thus, each group formed from one
cluster of each source table is smaller. There are more groups which
contain large attribute values. Thus, it is more likely thatthey are
dominated by tuples inTE. Thus,|TR| is smaller.

6.2 Real Dataset
In the real dataset, we conducted two sets of experiments,

namelyAgencyA Package Generation SetandAgencyB Package
Generation Set. LetHA (FA) be the source tables of AgencyA for
Hotel (Flight). LetHB (FB) be the source tables of AgencyB for
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Figure 5: Effect of the number of indirect attributes of eachproduct table

 0.01

 1

 100

 10000

 1e+06

 1  2  3  4  5

E
xe

cu
tio

n
 T

im
e

 (
s)

No. of source tables

Preprocessing
Baseline

 ACCP

 0.001

 0.01

 0.1

 1

 10

 100

 1  2  3  4  5

S
ky

lin
e

 R
a

tio
 (

%
)

No. of source tables

 |SKY| / |TQ| 
 |SKY| / |TQ’|

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1  2  3  4  5P
ro

p
. 

o
f 

tu
p

le
s 

a
ft

e
r 

p
ru

n
in

g
 (

%
)

No. of source tables

|TR| / |TQ| 
 |TR| / |TQ’|

 |TR| / |SKY|

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 1  2  3  4  5

M
e

m
o

ry
 (

M
B

)

No. of source tables

Baseline
ACCP

(a) (b) (c) (d)

Figure 6: Effect of the number of source tables
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Hotel (Flight). SupposeTE,A (TE,B) is the product table storing
the existing packages in agencyA (agencyB). In the AgencyA
Package Generation Set, we generate new packages from hotels and
flights of AgencyA and find which new packages are competitive
in the existing market including new packages and the packages
from AgencyB That is, we want to findSKY (TQ ∪ TE,B) where
TQ is the product table generated fromHA andFA. The Agency
B Package Generation Set is similar to AgencyA Package Genera-
tion Set but the source tables come from AgencyB and the existing
packages come from AgencyA. That is, we want to generate new
packages from hotels and flights of AgencyB and to find which
new packages are competitive in the existing market including new
packages and the packages from AgencyA.

In Agency A Package Generation Set, the execution times of
ACCPandBaselineare 44.74s and 84.47s, respectively. In Agency
B Package Generation Set, the execution times ofACCPandBase-
line are 10.43s and 27.14s, respectively.

The merging function of attribute Price is equal to the sum of
attribute Flight-cost and attribute Hotel-price in our motivating ex-
ample. In the following, we want to study the effect when the merg-
ing function is in another form. Consider that the merging function
of attribute Price is equal to the sum of attribute Flight-cost and
attribute Hotel-pricemultiplied by (1 − r) wherer is a discount
rate. In the real travel agency sites, usually, when customers choose
flights and hotels together, they will obtain a discount.

We conducted experiments for each set and measured the follow-
ing: (1) |SKY |/|TQ|: SKY is equal toSKY (TE ∪ TQ) ∩ TQ.
Thus,|SKY |/|TQ| is equal to the ratio of the tuples inTQ which
are in the skyline in datasetTE ∪ TQ. and (2) |DOM |/|TE |:
DOM is equal to the number of tuples inTE dominated by the
newly generated packages inTQ. Thus,|DOM |/|TE | is equal to
the ratio of tuples inTE dominated by some newly generated pack-
ages.

Figure 8(a) shows that|DOM |/|TE | increase with the discount
rater for the AgencyA Package Generation Set. This is because
whenr increases, the price of the products inTQ decreases. It is
more likely that the products inTQ dominates tuples inTE. Thus,
|DOM | increases.|SKY |/|TQ| remains nearly unchanged when
r increases. In the figure,|SKY |/|TQ| is greater than 0.5 for dif-
ferent values ofr, which means most newly created packages are
competitive. Surprisingly, when there is no discount (i.e., r = 0),
|DOM |/|TE | is also greater than 0.5, which means that the newly
created packages are “better” than half of the existing packages in
the market. Thus, the newly created packages are quite competitive,
which suggests that many existing packages may not be too “good”
to customers. Figure 8(b) shows similar results for the Agency B
Package Generation Set.

Conclusion: Algorithm Naive is not scalable to large datasets. Al-
gorithms Baseline and ACCP perform thousand times faster than
algorithm Naive. Algorithm ACCP (with full pruning and partial
pruning) runs faster than algorithm Baseline (without fullpruning
and partial pruning).

7. RELATED WORK
Skyline queries have been studied since 1960s in the theory

field where skyline points are known asPareto setsandadmissible
points[8] or maximal vectors[6]. However, earlier algorithms such
as [6, 7] are inefficient when there are many data points in a high
dimensional space. The problem of skyline queries was introduced
in the database context in [1].

We can categorize the existing work into two major groups –
single-table skyline queriesandmultiple-table skyline queries.
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Figure 8: Results for real datasets

There are a lot of efficient methods proposed for single-table sky-
line queries where the tuples considered are based on a single ta-
ble. Some representative methods include a bitmap method [17], a
nearest neighbor (NN) algorithm [12], and branch and bound sky-
lines (BBS) method [13]. Recently, skyline computation hasbeen
extended to subspace skyline queries [22, 14, 21] where the compu-
tation returns the skylines with respect to all possible subsets of at-
tributes. Besides, the above skyline queries are based on numerical
attributes. Recently, [3, 2, 19, 15] proposes some methods which
can handle categorical attributes in addition to numeric attributes.
However,all of the above works are also based on a single table.

Multiple-table skyline queries [11, 16] return the skylinebased
on multiple tables instead of asingletable. [11, 16] study how to
perform anatural joinover multiple relational tables, generate one
joined table and find the skyline in the joined table. The basic as-
sumption of a natural join operation over multiple relational tables
is that for each tableT1, one of its attributes, saysx1, is associated
with an attributex2 of another tableT2 wherex1 andx2 are apri-
mary keyof T1 and aforeign keyof T2 (to T1), respectively, or vice
versa. However, they only consider how to join the tables where a
foreign keyof a table is aprimary keyof another table. Thus, their
focus is to find how tomatchthe value of a foreign key with the
value of a primary key. Our work is fundamentally different from
the works about natural joins [11, 16]. This is because theirworks
are based on foreign keys but our work considers how to perform a
cartesian productover multiple tables without any foreign key.

Creating products studied in this paper introduce challenges.
This is because a tuple in a table can be combined withany tuple
in another table such that the product is in the skyline. Thus, our
focus is to find which potential tuples in some tables can be com-
bined with a given tuple in a table such that the combined products
are in the skyline.

8. CONCLUSION
In this paper, we identify and tackle the problem of creatingcom-

petitive products, which has not been studied before. We propose a
method to find competitive products efficiently. An extensive per-
formance study using both synthetic and real datasets is reported
to verify its effectiveness and efficiency. As future work, creating
competitive products with dynamic data and creating the top-K in-
teresting competitive products are interesting topics.
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Proof of Lemmas/Theorems:
For the sake of space, we only included the proof of Lemma 1

and the proof of Lemma 2. The proof of other lemmas and theo-
rems can be found in [18].

Proof of Lemma 1: Supposeq ∈ SKY (TE ∪ TQ). There is no
tuple q′ ∈ TE ∪ TQ dominatingq. SinceT ′

Q ⊆ TQ, there is no
tupleq′ ∈ TE ∪ T ′

Q dominatingq and thusq ∈ SKY (TE ∪ T ′
Q).

Supposeq ∈ SKY (TE ∪ T ′
Q). Thus,q ∈ T ′

Q. Besides, there
is no tupleq′ ∈ TE ∪ T ′

Q dominatingq. We want to prove that
q ∈ SKY (TE ∪ TQ).

We prove by contradiction. Suppose there exists a tupleq′ ∈
TQ/T ′

Q dominatingq. Supposeq is generated fromt1, t2, ..., tk

and q′ is generated fromt′1, t
′
2, ..., t

′
k. whereti ∈ T ′

i and t′i ∈
Ti. Sinceq′ ∈ TQ/T ′

Q, we know that there exist a tuplet′j ∈
Tj/T ′

j amongt′1, t
′
2, ..., t

′
k. Let W be the set of all these tuplest′j

(amongt′1, t
′
2, ..., t

′
k). We deduce thatt′j ∈ W is dominated by

t′′j ∈ T ′
j (sinceT ′

j = SKY (Tj)). Let V be the set of tuples used
for generatingq′. That is,V = {t′1, t

′
2, .., t

′
k}. If we replace each

tuple t′j in V which also appears inW with the correspondence

tuplest′′j , we obtain another setV ′. Note thatV ′ contains all tuples
in T ′

j instead ofTj/T ′
j . Consider another tupleq′′ generated from

V ′. We know thatq′′ ∈ T ′
Q. We conclude thatq′′ ∈ T ′

Q dominates
q′ ∈ T ′

Q. Sinceq′ dominatesq, we deduce thatq′′ dominatesq.
Note that bothq′′ andq are inT ′

Q. Thus,q 6∈ SKY (TE ∪ T ′
Q).

This leads to a contradiction thatq ∈ SKY (TE ∪ T ′
Q).

Proof of Lemma 2: We prove by contradiction. Suppose that there
exists two distinct tuplesq andq′ in T ′

Q such that there is a domi-
nance relationship betweenq andq′. Without loss of generality, we
assume thatq′ ≺ q. In the at-most-one merging attribute charac-
teristic, for eachXi, there exists at most onex ∈ Xi such thatx
is involved in the merging function of an indirect attributey ∈ Y .
We callx ∈ Xi is mergingif it is involved in the merging function
of an indirect attributey ∈ Y . We callx ∈ Xi is non-mergingif it
is involved in the merging function of a direct attributey ∈ Y . In
the at-most-one merging attribute characteristic, each source table
has at most one merging attribute. Given an attributex in a source
tableTj , we defines(x) to bej.

Suppose thatq is generated fromt1, t2, ..., tk such thattj ∈ T ′
j

for j ∈ [1, k]. That is,q = θ(t1, t2, ..., tk). Also suppose thatq′ is
generated fromt′1, t

′
2, ..., t

′
k such thatt′j ∈ T ′

j for j ∈ [1, k]. That
is, q′ = θ(t′1, t

′
2, ..., t

′
k). Sincetj andt′j come fromT ′

j , we know
that tj 6≺ t′j andt′j 6≺ tj for eachj ∈ [1, k]. We can also deduce
that, for allx ∈ Xi wherex is non-merging,

t′j .x � tj .x (2)

wherej ∈ [1, k]. Otherwise,q′ does not dominateq.
Sinceq′ dominatesq in T ′

Q, we know that there exists a dimen-
siony in Y and all other dimensionsy′ in Y such thatq′.y ≺ q.y
andq′.y′ � q.y′. Consider two cases.Case 1: y is an indirect
attribute.There existsx ∈ D(y) such that

t′j .x ≺ tj .x (3)

wherej = s(x). Sincex is involved in the merging function of
the indirect attributey, x is merging. Since each source table has
at most one merging attribute, from (2) and (3), we deduce that
t′j .x ≺ tj .x for attributex andt′j .x

′ � tj .x
′ for other attributes

x′ ∈ Xj . Thus,t′j ≺ tj . This leads to a contradiction thatt′j 6≺ tj .
Case 2:y is a direct attribute.D(y) contains one attribute, says

x. Sinceq′.y ≺ q.y, we have

t′j .x ≺ tj .x (4)

wherej = s(x). Note thatx is non-merging. Consider two cases.
Case (a):TableTj does not contain any merging attribute. Thus,
all attributes inXj are non-merging. Similarly, from (2) and (4),
we know thatt′j .x ≺ tj .x for attributex and t′j .x

′ � tj .x
′ for

other attributesx′ ∈ Xj . We conclude thatt′j ≺ tj . This leads to a
contradiction thatt′j 6≺ tj .

Case (b):TableTj contains a merging attributex′. We further
consider two sub-cases.Case (i): t′j .x

′ � tj .x
′. From (2) and (4),

We know thatt′j .x ≺ tj .x for attributex andt′j .x
′′ � tj .x

′′ for
other attributesx′′ ∈ Xj . We conclude thatt′j ≺ tj , which leads
to a contradiction thatt′j 6≺ tj .

Case (ii): t′j .x
′ � tj .x

′. Let y′ = α(x′). Sinceq′.y′ � q.y′,
there existsx′′ ∈ D(y′) such thatt′l.x

′′ ≺ tl.x
′′ wherel = s(x′′).

Note thatx′′ is merging. Consider two cases:Case (A):Tl has at
least one non-merging attribute.Thus, from (2), we conclude that
t′l.x

′′ ≺ tl.x
′′ for attributex′′ andt′l.x � tl.x for other attributes

x ∈ Xl. Thus,t′l ≺ tl, which leads to a contradiction thatt′l 6≺ tl.
Case (B):Tj has no non-merging attribute.Sincet′l.x

′′ ≺ tl.x
′′

and there is only one merging attribute, we know thatt′l ≺ tl, which
leads to a contradiction thatt′l 6≺ tl.


