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ABSTRACT

We study the problem of computing shortest path or distareece b
tween two query vertices in a graph, which has numerous impor
tant applications. Quite a number of indexes have been pegpo
to answer such distance queries. However, all of these @sdean
only process graphs of size barely up to 1 million verticdsicivis
rather small in view of many of the fast-growing real-woriéghs

today such as social networks and Web graphs. We propose a

efficient index, which is a novel labeling scheme based oimithe-
pendent set of a graph. We show that our method can handlegyrap
of size orders of magnitude larger than existing indexes.

1. INTRODUCTION

Computing the shortest path or distance between two veriice
a basic operation in processing graph data. The importahite o
operation is not only because of its role as a key buildinglblo
in many algorithms but also of its numerous applicationslfitdn
addition to applications in transportation, VLSI desigrhan plan-
ning, operations research, robotics, etc., the proli@nabf net-
work data in recent years has introduced a broad range of pew a
plications. For example, social network analysis, pagelaiity
measurement in Web graphs, entity relationship rankingmas-
tic Web ontology, routing in telecommunication networksnitext-
aware search in social networking sites, to name but a few.

In many of these new applications, however, the size of the un
derlying graph is often in the scale of millions to billionsvertices

and edges. Such large graphs are becoming more and more com-
mon, some of the well-known ones include Web graphs, various

social networks (e.g., Twitter, Facebook, LinkedIn), RD&pmhs,
mobile phone networks, SMS networks, etc. Computing skbrte
path or distance in these large graphs with conventionakitihgms
such as Dijkstra’s algorithm or simple BFS may result in aglon
running time that is not acceptable.

For computing shortest path or distance between two pants i

a road network, many efficient indexes have been proposed [1,
2, 4,9, 16, 17, 30, 31, 32]. However, these works apply unique

properties of road networks and hence are not applicabletfar
graphs/networks that are not similar to road networks. teme
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years, a number of indexes have been proposed to processadist
queries in general sparse graphs [12, 15, 16, 22, 34, 38H4&Dy-
ever, as we will discuss in details in Section 7, these inslesn
only handle relatively small graphs due to high index cargion
cost and large index storage space. As a reference, thetaeg
graphs tested in these works have only 581K vertices withagee
degree 2.45 [12], and 694K vertices with average degree[225
r]While most of the other real graphs tested are significamtiglier.

We propose a new index for computing shortest path or distanc
between two query vertices and our method can handle graigiins w
hundreds of millions of vertices and edges. Our index, naased
IS-Label, is designed based on a novel application ofititepen-
dent sebf a graph, which allows us to organize the graph into lay-
ers that form a hierarchical structure. The hierarchy candeel to
guide the shortest path computation and hence leads to signde
of effective vertex labels (i.e., the index) for distancenpuitation.

We highlight the main contributions of our paper as follows.

e We propose an efficient index for answering shortest path or
distance queries, which can handle graphs up to orders of
magnitude larger than those tested in the existing works [12
15, 16, 22, 34, 38, 40]. None of these existing works can
handle even the medium-sized graphs that we tested.

We design an effective labeling scheme such that the label
size remains small even if no optimization (mostly NP-hard)
is applied as in the existing labeling schemes.

e Our index naturally lends itself to the design of simple and
efficient algorithms for both index construction and query
processing.

We develop 1/0-efficient algorithms to construct vertex la-
bels in large graphs that cannot fit in main memory.

We verify both the efficiency and scalability of our method
for processing distance queries in large real-world graphs

Organization. Section 2 defines the problem and basic notations.
Sections 3 and 4 present the details of index design, anib8éct
describes the algorithms. Section 6 reports the experahezgults.
Section 7 discusses the limitations of existing works. ®ac8
discusses handling path queries and Section 9 concludesties.

2. NOTATIONS

We focus our discussion on weighted, undirected simpletgrap
Let G = (Va, Eg,wc) be such a graph, whefié; is the set of
vertices,E¢ is the set of edges, and; : Ec — N1 is a function
that assigns to each edge a positive integer as its weightieWete



the weight of an edgéu, v) by w(u,v). The size ofG is defined
as|G| = (Ve + |Ec|).

We define the set adidjacentvertices (omeighbor3 of a vertex
vinGasadj,(v) = {u: (u,v) € Eg}, and thedegreeof v in G
asdeg(v) = |adjg(v)].

We assume that a graph is stored in its adjacency list refteese
tion, where each vertex is assigned a unique vertex ID articesr
are ordered in ascending order of their vertex IDs.

Given a pathp in G, thelength of p is defined aden(p) =
Zeep wa(e), i.e., the sum of the weights of the edgesporGiven
two verticesu, v € Vg, theshortest pattfrom « to v, denoted by
SPc(u,v), is a path inG that has the minimum length among alll
paths fromu to v in G. We define thalistancefrom v to v in G
asdistg(u,v) = len(SPq(u,v)). We definedist (v, v) = 0 for
anyv € Va.

Problem definition: we study the following problem: given a
static graphG = (Vg, Eq,wea), construct alisk-based indefor
processingoint-to-point(P2P) shortest path distance queries, i.e.,
given any pair of verticeés, t) € (Vo x V), find dista (s, t).

We focus onsparse graphswhich are prevalent in real world.
We focus our discussion on undirected graphs, and will diswvs
that our index can be extended to handle directed graphsciio8e
4.3. We will also discuss computing the actual path in Sedsip
which is a fairly simple extension with some extra bookkegpi

3. QUERYING DISTANCE BY VERTEX
HIERARCHY

In this section, we present our main indexing scheme, which c
sists of the following components:

e A layered structure of vertex hierarchy constructed from th
input graph.

e A vertex labeling scheme developed from the vertex hierar-
chy.

e Query processing using the set of vertex labels.
We discuss each of these three components in Sections 33.to 3

3.1 Construction of Vertex Hierarchy

The main idea of our index is to assign hierarchy to vertinesi
input graphG so that we can use the vertex hierarchy to compute
the vertex labels, which are then used for querying distance

To create hierarchies for vertices @#, we construct a layered
hierarchical structure frond’. To formally define the hierarchical
structure, we first need to define the following two importartp-
erties that are crucial in the design of our index:

e \ertex independence given a graph! = (Vu, B, wrH),
and a set of vertice$, we say that/ maintains the vertex
independence property with respectibif I C Vg and
Yu,v € I, (u,v) ¢ Eg,i.e.,Iisanindependent seif H.

e Distance preservation given two graphs H;
(Va,, Ex, ,wa,) andHz = (Vi,, Ex,,ww, ), we say that

H,> maintains the distance preservation property with respect

to Hy if Vu,v € Vi, distu, (u,v) = disty, (u,v).

While distance preservation is essential for processiatadce
queries, vertex independence is critical for efficient indenstruc-
tion as we will see later when we introduce the index.

We now formally define the layered hierarchical structuod; f
lowed by an illustrating example.

DEFINITION1 (VERTEXHIERARCHY). Given a graphG =
(Va, Ea,wea), a vertex hierarchy structure ofG is defined by a
pair (L, G), whereL = {Ly,..., Ly} is a set of vertex sets and
G ={G,...,G} is aset of graphs such that:

e Voe=L1U...ULp,andL; N L; =Pfor1 <i<j<h

e For 1 < ¢ < h, eachL; maintains the vertex independence
property with respect t6;, i.e., L; is an independent set of

Gy,
e Gy = G,andfor2 < i < h, letG; = (Vg,, Eg,,wa,),
thenVg, = (Vo — L1 — ... —Ll,l),whereasEGZ andwgl

satisfy the condition thaf?; maintains the distance preser-
vation property with respect t6'; ;.

Intuitively, IL is a partition of the vertex seV and represents
a vertex hierarchy, wheré&; is at a lower hierarchical level than
L; for i < j. Meanwhile, eaclG; € G preserves the distance
information in the original grapliz, as shown by the following
lemma.

LeEmmMA 1. For all w,v € Vg, wherel < 4
dista, (u,v) = dista(u, v).

< h,

<

PrRoOF Since for anyu,v € Vg,, u,v € Ve, forl <y
i. Thus, we havedistg, (u,v) = dista, (u v) =
dista, (u,v) = dista(u,v) since eacli; malntalns the dlstance
preservation property with respect@q_; for2 <i < h. O

We use the following example to illustrate the concept ofeser
hierarchy.

EXAMPLE 1. Figure 1 shows a given grap&y’ and the vertex
hierarchy of G. We assume that each edgeGhhas unit weight
except for(e, f), which has a weight of 3. It is obvious that the set
{c, f, i} forms an independent set @&, similarly {b,d, h} in G2
and{e} in Gs. Itis easy to see thak, preserves all distances in
G, we shall explain the addition of edde, h) later. In order to
preserve the distance ifi2, an edgege, g) of weight 2 is added to
Gs. G4 consists of a single edde, g) of weight 3.L, = {a}, Gs
consists of a single vertex Ls = {g}.

(a)G: G/, L/:{ C,f; l}

VE S

(¢) Ly={b,d h} (d) G, Li={e} (¢)Gy Li={a}

(b) G

(f) Gs

Figure 1: A vertex hierarchy

The distance preservation property can be maintainég} iwith
respect ta=;—; as follows. First, we require the subgraph(éf_,
induced by the vertex séfg, to be inG; (i.e. (u,v) € Eg, iff
(u,v) € Eg,_, foru,v € Vg,). Then, we create a set of addi-
tional edges, calledugmenting edgesto be included intdzs, as



follows. For any vertew € L;_; (thusv ¢ Vg, according to Def-
inition 1), if u,w € Vg,, (u,v) € Eg,_, and(v,w) € Eqg,_,,
then an augmenting edge, w) is created irG; with wg, (u, w) =
wa,_, (u,v) + wa,_, (v,w). If (u,w) already exists irG;, then
wa; (u7 w) = min(wG171 (uv w)7 WG (uv U) + wa; (vv w))

of f since in the pathf, e, d), £(e) = 3 while {(d) = 2. The
ancestor-descendant relationships are shown in Figurg.2(a

We now define vertex label as follows.

DEFINITION2 (VERTEXLABEL). Thelabel of a vertexv €

An edge inG;; with updated weight is also called an augmenting v, denoted byLABEL(v), is defined asLABEL(v) =

edge. For example, in Figure 1, i3, dist(e,g) can be pre-
served by creating an augmenting edgeg) with w(e,g) = 2.

Edge(e, h) is also added according to our process above. Note that

dista, (e, h) = 3, which can be preserved ifi; without adding
(e, h), but we leave(e, h) there to avoid costly distance querying
needed to excludg, h).

The following lemma shows the correctness of construafiag
from G,_; as discussed above.

LEMMA 2. ConstructingG; from G,_1, where2 < ¢ < h, by
adding augmenting edges to the induced subgragh;of, by Vi,
maintains the distance preservation property with respect; _ .

PrROOF According to Definition 1,L;_1 is the only set of
vertices that are irG;—; but missing inG;. For any two ver-
tices s and ¢t in G;, suppose that the shortest path (@ih-1)
from s to ¢, SP¢, ,(s,t) does not pass through any vertex in
L;_1, then the distance betweenandt in G;_; is trivially pre-
served inG;. Next supposeSPg,_, (s,t) passes through some
vertexv € L;—i. Let SPq, ,(s,t) = (s,...,u,v,w,...,t).
Then, we must have the augmenting edgew) created inG;
with wg, (v, w) = wa,_, (u,v) + wa,_, (v,w), ofwg, (u, w) =
min(wg, , (4, w),wa,_, (u,v) +wea, , (v,w)) if (u, w) already
exists inG;. Therefore, the distance (ii;_1) between any two
vertices is preserved i¢;. O

In addition to the distance preservation property that dsiired
for answering distance queries, the proof also gives a mintloy
we require eacll; to be an independent set 6f. Since there is
no edge inG;—1 between any two vertices ih;_1, to create an
augmenting edgéu, w) in G; we only need to do a self-join on
the neighbors of the vertex € L,_,. Thus, the search space is
limited to 2 hops from each vertex. On the contrary, if an eclye
exist between two vertices ih;_1, then to preserve the distance
the search space is at least 3 hops from each vertex, whiafyis s
nificantly larger than the 2-hop search space in practicds iBh
crucial for processing a large graph that cannot fit in maimony

as we may need to scan the graph many times to perform the join,

as we will see in Section 5.

3.2 \Vertex Labeling

With the vertex hierarchyLL, G), we now describe a labeling
scheme that can facilitate fast computation of P2P distaie
first define the following concepts necessary for the lalgelin

e Level number: each vertew € V¢ is assigned a level num-
ber, denoted by(v), which is defined aé(v) =i iff v € L;.

e Ancestor. a vertexu € Vg is an ancestor of a vertexif
there exists a sequenSe= (v = w1, wa, ..., wp = u), such
thatf(w1) < f(w2) < ... < £(wp), and forl < i < p,
the edgg(w;, wi+1) € Eg; wherej = £(w;). Note thatv
is an ancestor of itself. I is an ancestor of, thenv is a
descendanof u.

EXAMPLE 2. In our example in Figure 1, the level numbers of
¢, f,i are 1, that ofb, d, h are 2, that ofe is 3. The ancestors of
f willbee, h, a, g, since(f,e) and(f, h) are inG1, (h,g) isin
G2, and (e, a), (e,g) are in G3. Note thatd is not an ancestor

{(u, dista(v,u)) : u € Vi is an ancestor ofv}.

To computeLABEL(v) for all v € Vg, we need to compute
the distance from to each ofv’s ancestors. This is an expensive
process which cannot be scaled to process large graphsdiiesad
this problem, we define a relaxed vertex label that requinds an
upper-boundd(v, u), of dist (v, w) and show thad (v, u) suffices
for answering distance queries.

DEFINITION3 (RELAXED VERTEXLABEL). The relaxed
label of a vertexv € Vg, denoted bylabel(v), is a set of
“(u,d(v,u))"” pairs computed by the following procedure:
For eachv € Vg, we first include(v,0) in label(v) and
mark v. Then, we add more entries tlbel(v) recursively
as follows. Take amarked vertex v that has the smallest
level numberé(u), and unmarku. Let/(u) = j. For each
w € adjg, (u), wherel(w) > j and (w,d(v,w)) ¢ label(v),
add the entry(w, (d(v,u) + wg, (u,w))) to label(v), and mark
w. If the entry (w,d(v,w)) Is already in label(v), update
d(v,w) = min(d(v,w), (d(v,u) + wg,(u,w))). Repeat the
above recursive process until no more vertex is marked.

As for LABEL(v), label(v) contains entries for all ancestors
of v. In Section 5, we will show that the new definition facilitate
the design of an I/O-efficient algorithm for handling largejghs.
Here, we further illustrate the concept using an exampld,then
prove thatlabel(v) can indeed be used instead LAl BEL(v) to
correctly answer P2P distance queries in the following sciisn.

label(c) | {(a,2),(b,1),(c,0), (e, 2), (g,4)}
label(f) | {(a,4),(e;3),(f,0),(g,5), (h, 1)}
label(z) | {(a,2), (e, 1),(g,3), (3,0)}
label(b) | {(a,1),(b,0), (e, 1), (g,3)}
label(d) | {(a,2),(d,0), (e, 1), (g,1)}
label(h) | {(a,5), (e, 4),(g,1), (h,0)}
label(e) | {(a, 1), (e,0),(g,2)}
label(a) | {(a,0),(g,3)}
label(g) | {(g,0)}

(a) (b)

Figure 2: Labeling for the example in Figure 1

ExXAmMPLE 3. For our example in Figure 1, the ancestor re-
lationships are shown in Figure 2(a), where all edges havi un
weights unless indicated otherwise. The labeling starth Wi,
for verticesc, f, i, nextLs verticesb, d, h are labeled, followed by
Ls = {e}, Ls = {a}, andLs = {g}. Consider the labeling
for vertexe, first, (c,0) is included, sincexdjc(c) = {b}, (b,1)
is added tdlabel(c) and b is marked. b is unmarked by checking
its neighborsz ande in G2, and we include botlia, 2), (e, 2) into
label(c), a ande are markede is at level 3 and is unmarked next.
adjc, (e) = {a, g}, we add(g,4) to label(c). Thena is unmarked,
its only neighborg in G4 is already inlabel(c), d(c, g) is not up-
dated.g is marked. Finallyy is unmarked, sincg has no neighbor
in G5, no further processing is required. The labels for all vegts
are shown in Figure 2(b). Note thd{h, e) = 4 in label(h), while
distg(h,e) = 3, henced(h,e) > dista(h,e). In general the dis-
tance value in a label entry can be greater than the true dista



3.3 P2P Distance Querying

We now discuss how we use the vertex labels to answer pP2pVvertices, s and ¢, let X

distance queries. We first define the following label operatiused
in query processing.

e Vertex extraction: V[label(v)]
label(v)}.

{u : (u,d(v,u)) €

e Label intersection: label(u) N label(v) = V[label(u)] N
V[label(v)].

The above two operations apply in the same waj#BEL(.).
Given a P2P distance query with two input verticesndt, let
X = label(s) N label(t), the query answer is given as follows.

minwex{d(S, w) + d(w7 t)}

A _ if X#£0
dista(s,t) = { if X = ¢ 1)

In Equation 1, we retrievd(s, w) andd(¢,w) for eachw € X
from label(s) and label(t), respectively. We give an example of

answering P2P distance queries using the vertices labfii@ss.

EXAMPLE 4. Consider the example in Figure 1, the labeling is
shown in Figure 2. Suppose we are interestediistc(h,e). We
look uplabel(h) andlabel(e). label(h) N label(e) = {e,a,g}.
Among these verticeg has the smallest sum éth, g)+d(g,e) =
1+ 2 = 3. Hence we return 3 agdistc (h, €). Note that although
the distancel(h, e) recorded inabel(h) is 4, which is greater than
dista(h,e), the correct distance is returned. If we want to find
distc(a,g), label(a) N label(g) = {g}. Hencedistc(a,g) is
given byd(a, g) + d(g,9) =3+ 0=3.

Query processing using the vertex labels is simple; howétver
is not straightforward to see how the answer obtained isecorr
for every query. In the remainder of this section, we prove th
correctness of the query answer obtained using the vetelsla

We first define the concept ohax-level vertex denoted by
vmaz, Of @ shortest path, which is useful in our proofs. Given a
shortest path fromto¢ in G, SPg(s,t) = (s = v1,v2,...,0p =
t), Umaa IS the max-level vertex o6Pq(s,t) if vmas iS a vertex
on SPg(s,t) andl(vmas) > €(v;) for 1 < ¢ < p. The following
lemma shows that,,.. is unique in any shortest path.

LEMMA 3. Given two vertices andt, if s andt are connected
in G, then for any shortest patiP¢ (s, t) betweens andt, there
exists a unique max-level verte,,., of SPa(s, t).

PrRoOOE If s and¢ are connected id/, then at least one short-
est path exists betweenandt¢. Consider any such shortest path
SPa(s,t), Umas Must exist onSP¢(s,t). Now suppose to the
contrary thaw,,.. is not unique, i.e., there exists at least one other
vertexv on SPq(s,t) such that(vma:) = ¢(v) = j, which also
means that both,,.., andv are inL; andG;. SinceL; is an in-
dependent set df;, there is no edge between,.. andv in G;.
Sincevmqs andv are on the same pathiP (s, t), they must be
connected inG; and the path connecting them must pass through
some neighbot. of v,... OF v in G, whereu is also onSPq (s, t).
Thus,u cannot be inL; (otherwise the vertex independence prop-
erty is violated) and henc&wu) > ¢(vmaz ), Which contradicts that
Umaz IS the max-level vertex afPq (s, t). O

Next we prove thal.ABEL(.) can be used to correctly answer
P2P distance queries. Then, we show Habel(.) possesses the
essential information of. ABEL(.) for the processing of distance
queries.

THEOREM 1. Given a P2P distance query with two input
LABEL(s) N LABEL(t), then
distg(s,t) = mingex{distc(s,w) + dista(t,w)} if X # 0,
or dista(s,t) = 0o if X = 0.

PROOF We first show that ifSP (s, t) exists, them,q.. € X.
Consider a sequence of vertices, = (s = ui,u2,...,Ua =
Umaz = Vg, ...,02,01 = t), extracted fromSP«(s, t), such that
Lur) < L(u2) < ... < L(ua) = (Vmaz), L(v1) < L(v2) < ... <
L(vg) = £(Vmas), and forl < ¢ < «, any vertexw betweenu;
andu;4+1 on SPq(s,t) hast(w) < £(u;), and same for any vertex
betweerv; andv;+1. Note that sinces; 11 is the next vertex aftar;
with £(uit1) > £(us), we havel(w) < f(u;), andf(w) # €(u;)
by the vertex independence property.

Sincewu; andu;41 are connected, they must exist together in
Gu,)- Since there exists no other vertexbetweenu; andu; 1
on SPq(s,t) such that/(w) > £(u;), u; andu; 1 are not con-
nected by any sucly in Gy(,;). Thus, by Lemma 1, the edge
(ui, uiv1) Must exist inG ) for Gy, to preserve the distance
betweenu; andw;+1, which means that fot < j < «, u; is
an ancestor o and henceu; € LABEL(s). Note thatu; =
s € LABEL(s) if « = 1. Similarly, we havev; € LABEL(t),
for1 < i < B. Thus,vme = ua = vg € X and hence
dista(s,t) = distc(s, Vmaz) + distc(t, Vmaz).

The other case is tha#tP (s, t) does not exist, i.es andt are
not connected, and we want to show that= (). Suppose on the
contrary that there exists € X. Then, it means that there is a path
from s to w and fromt¢ to w, implying thats andt¢ are connected,
which is a contradiction. ThusX = § and dista(s,t) = oo is
correctly computed. [

Theorem 1 reveals two pieces of information that are esdenti
for answering distance queries: the ancestor set and ttendésto
the ancestors maintained i1 BEL(.). We first show thatabel(.)
also encodes the same ancestor sétABEL(.).

LEMMA 4. For eachv € Vg, V[label(v)] = VI[LABEL(v)].

PROOF First, we show that ifv € V[LABEL(v)], i.e.,wis an
ancestor o, thenw € V[label(v)]. According to the definition
of ancestor, there exists a sequetstte= (v = w1, w2, ..., wp =
w), such that’(w:) < £(wz2) < ... < £(wp), and forl < i <
p, (Wi, wit1) € Egl(wi). This definition implies that ifw; is
currently inV[label(v)], wiy1 will also be added td/[label (v)]
according to Definition 3. Since; = v must be inV[label(v)], it
follows thatw = w),, is also inV[label (v)].

Next, we show that ifw € Vlabel(v)], then w €
V|LABEL(v)]. First, we havev € Vllabel(v)], v is also in
V|LABEL(v)]. Then, according to Definition 3, a vertex is
added toV[label(v)] only if w € adjg, ., (u) for somew cur-
rently in V[label(v)], and ¢(w) > ¢(u), and sinceu is an an-
cestor ofv, it implies thatw is an ancestor of and hencew €
V[LABEL(v)]. O

Next, we show thalabel(.) also possesses the essential distance
information for correct computation of P2P distance.

LEMMA 5. Given a P2P distance query and ¢, let X =
label(s) N label(t). If SPg(s,t) exists, thenvy. € X,
d(8, Vmaz) = distc (s, Vmaz) @NAd(t, Vmaz ) = diste(t, Vmaz)-

PrRoOF It follows from Lemma 4 thatabel(s) N label(t) =
LABEL(s) N LABEL(t). As the proof of Theorem 1 shows that
Umae € LABEL(s) N LABEL(t), we also have ... € X.

The proof of Theorem 1 defines a sequente,= (s =

UL, U2, ..., Uq = Umaz = Ug,...,V2,v1 = t), extracted from



SPq(s,t). In particular, the proof shows that the edge, wi+1)
exists inGy(,,) and£(uit1) > £(uq), for 1 < i < a. Thus,
according to Definition 3, we add the enttyi+1, (d(s,u;) +
wG@(ui)(ui7ui+l))) to label(s). Since eaCh.uGe(ui)(ui,uiH)
preserves the distance between and u;+1, and d(s,u1) =
distc (s, u1), it follows thatd(s, vme: = ua) = dista (s, Vmaee =
uq). Similarly, we havei(t, vme) = dista(t, Vmaez). O

Finally, the following theorem states the correctness afrgqu
processing usingnbel(.).

THEOREM 2. Given a P2P distance queryandt, distc(s,t)
evaluated by Equation 1 is correct.

PrROOF The proof follows directly from Theorem 1, Lemmas 4
and5. O

4. A K-LEVEL VERTEX HIERARCHY

In Definition 1, we do not limit the heightt of the vertex hier-
archy, i.e., the number of levels in the hierarchy. This diédin
ensures that an independent Egtan always be obtained for each
Gi, for 1 < ¢ < h. However, when the given graph is massive,
there are two problems associated with the height of thexdnit
erarchy. First, as the number of levéisncreases, the label size
of the vertices at the lower levels (i.e., vertices with a kendevel
number) also increases. Since vertex labels require st@pace
and are directly related to query processing, there is a teeladit
the vertex label size. Second, as we will discuss in Sectjghes
complexity of constructing the vertex hierarchy is lingahi Thus,
reducingh can also improve the efficiency of index construction.

In this section, we propose to limit the heightby a k-level
vertex hierarchy, wheré is normally much smaller thah, and
discuss how the above-mentioned problems are resolved.

4.1 Limiting the Height of Vertex Hierarchy

The main idea is to terminate the construction of the vertex h
erarchy earlier at a level when certain condition is met. W fi
define thek-level vertex hierarchy.

DEFINITION 4  (K-LEVEL VERTEXHIERARCHY). Given
a graph G = (Vg,FEg,wg), a vertex hierarchy structure
H = (L, G) of G, and an integek, wherel < k < (h+ 1) andh
is the number of levels iH, ak-level vertex hierarchy structure of
G is defined by a paifH<, Gi), whereH.;, and G}, are defined
as follows:

e H.y = (L<k, G<y) consists of the firstk — 1) levels ofH,
i.e.,]L<k = {L17 ey kal} andG<k = {Gl7 ey Gk—l};

o (G is the samé&7,. as theGy in G.

The k-level vertex hierarchy simply takes the fifét— 1) L;

L, forl < ¢ < k, and the firstt G; € G, for1 < ¢ < k.
We set the value ok as follows: leti be the first level such that
(IGi|/IGi=1]) > o, whereo (0 < o < 1) is a threshold for the
effect of G;; then,k = 1.

If K = (h+1), thenH is simplyH andG} is an empty graph.

In practice, a value of that attains a reasonable indexing cost and
storage usage will often give < h.

For the k-level vertex hierarchy, we assign the level number
L(v) = 1 for each vertexo € L(i), wherel < ¢ < (k — 1),
while for each vertew € Vg, , we assign{(v) = k. In this
way, we can computéabel(v) (or LABEL(v)) for each vertex

(@) G=Gy, Li={c. f i}

(b) G;

Figure 3: A k-level vertex hierarchy (¢ = 2)

ExamMPLE 5. Let us consider our running example in Figure 1,
if we setk = 2, there is only one level; in L., the graphG-
is the highest level graph and is not further decomposed. kFhe
level vertex hierarchy is shown in Figure 3. The maximumllefe
vertices is 2, since all verticasin G- are assigned(v) = 2. The
labels for the vertices il are shown in the following table.

label(c) (6,1),(c,0)}
label(f) | {(e,3),(f,0), (h, 1)}
Tabel (i) (e,1), (4,0}
4.2 P2P Distance Querying by k-Level Vertex
Hierarchy

According to Section 4.%(v) andlabel(v) computed from the
k-level vertex hierarchy may be different from those comgute
from the original vertex hierarchy. However, we show latethis
section that these labels are highly useful for they capallrthe
information that is essential frod — G, for a continued distance
search inG,. Given a P2P distance query,andt, we process
the query according to whetherandt¢ are inGx. We have the
following two possible types of queries.

Type L s ¢ Vg, andt ¢ Vg, , and eithe(V[label(s)] N Vg, ) =
0 or (V[label(t)] N Vg,) = 0. Type 1 queries are evaluated by
Equation 1.

Type 2 queries that are not Type 1. Type 2 queries are evaluated
by alabel-based bi-Dijkstra searchrocedure.

We have discussed query processing by Equation 1 in Section
3.3. We now discuss how we process Type 2 queries as follows.

4.2.1 Label-based bi-Dijkstra Search

We describe a bidirectional Dijkstra’s algorithm thatiatis ver-
tex labels for effective pruning. The algorithm consistsmd main
stages: (1) initialization of distance queues and prunogiion,
and (2) bidirectional Dijkstra search.

As shown in Algorithm 1, we first initialize orward and are-
versemin-priority queue FQ andRQ, which are to be used for run-
ning Dijkstra’s single-source shortest path algorithmmfreandt,
respectively. For any vertex € Vg, , if (v,d(s,v)) € label(s),
we add(v, d(s,v)) to FQwith d(s, v) as the key. For all other ver-
tices inVg, but not inlabel(s), we add the recordv, o) to FQ.
Similarly, we initializeRQ.

The vertex labels can also be used for pruning the searcle spac
If there exists a path betweenand ¢ that passes through some
vertexw € (Vo — Vg, — {s,t}), then Lines 5-6 initializeg as
the minimum length of such a path. Note that distc(s,t).

We now describe Stage 2 of the query processing. We run Di-

v € Vg in the same way as discussed in Section 3.2. Note that jkstra's algorithm simultaneously from and¢ by extracting the

label(v) = {(v,0)} for each vertew € Vg, sincev has the high-
est level number among all verticeslif:.

vertex v with the minimum key fromFQ or RQ (Line 9). Let
(v,d(z,v)) be the extracted record, where = s if the record



Algorithm 1: Label-based bi-Dijkstra Search

Input  :s,t, label(s), label(t), Gy
Output : distg(s,t)
// Stage 1. initialization of distance queues
and pruning condition
/'l FQ (RQ: forward (reverse) mn-priority
queue
1 initialize FQ with the set{(v, d(s,v)) : v € Vg, ,
(v, d(s,v)) € label(s)}, with d(s,v) as the key;
2 initialize RQwith the set{(v, d(t,v)) : v € Vg, ,
(v, d(t,v)) € label(t)}, with d(¢, v) as the key;
3 Vv € Vg andv not in FQ(RQ), insert(v, oo) into FQ(RQ);

/1 p: shortest distance froms to ¢ found so
far
/'l pis used for pruning in Stage 2
4 < oo;

5 X <« label(s) N label(t);
6 if X # 0 then p < miny,ex{d(s, w) + d(w,t)};

/] Stage 2: bidirectional
7 8+ 0
8 while both FQ and RQ are not empty, and

(min(FQ) + min(RQ)) < p do

Di jkstra search

9 (v, d(z,v)) < extract-mi{FQ,RQ); /Il z=sor z=t
10 leta’ =tifz =s,andz’ =sif x =¢;

11 if (v, distg(z,v))is notinS then

12 | insert(v, distg(x,v)) into S;

13 foreachu € adjg, (v) do

14 if d(z,u) > d(z,v) + wg,, (v, u) then

15 d(z,u) + d(z,v) + wg,, (v, u);

16 updated(z, u) in FQ (if z = s) or RQ(if z = ¢);
17 if (u,distg(z’,w))isin S then

18 | # < min{y, d(z,u) + distg(z',u)};

19 return p;

is extracted fronQ andx = ¢ otherwise. At this point, Dijkstra’s
algorithm guarantees that the distance frono v is found, i.e.,
d(z,v) = dista(x,v). Then, in Lines 13-18, the distance from
x to every neighbow of v in Gy, is updated, ifu is still in FQ (if
x = s) or RQ(if x = t).

In addition to starting the search in both directions frerand
t in Dijkstra’s algorithm, we also add a pruning condition imé&
8 that requires the sum of the minimum keysF@) andRQto be
less thanu. If this sum is not less thap, then it means that no
path froms to ¢ of a shorter distance thancan be found (proved
in Theorem 4) and hence we retuiistc (s, t) = u.

(b,2) are entered intaRQ. Sinceb is in S, we updatey to 2 + 1
= 3. At this point(min(FQ) + min(RQ)) > p and we return
dista(c, i) = 3.

4.2.2 Correctness

We now prove the correctness of query processing by tesel
vertex hierarchy. We first prove the correctness for prangsg/pe
1 queries.

THEOREM 3. Given a P2P distance queryandt, if the query
belongs to Type 1, thedist: (s, t) evaluated by Equation 1 is cor-
rect.

PROOF. First, we show that if the query belongs to Type 1, then
SPa(s,t) does not contain any vertex Wiz,. Suppose on the
contrary thatSP¢ (s, t) contains a vertex ivg, . Then, consider
the sub-path o6P¢ (s, t) from s to z, wherez is the only vertex
on the sub-path that is Wi, . SinceSP (s, t) is a shortest path in
G, this sub-path is a shortest path frerto = in G. Let SP (s, z)
be the sub-path. Consider the query with two input verticaad
x; then, by similar argument as in the proof of Lemma 3 we have
Umaz = £ ONSP¢(s,x), and by similar argument as in the proof of
Lemma 5 we have = vna: € V[label(s)]. A symmetric analysis
on the sub-path fromto some vertey, wherey is the only vertex
on the sub-path that is Wiz, , shows thay = vime: 0N SPa(t,y)
andy € V[label(t)]. This contradicts the definition of Type 1 query
that either(V[label(s)] N Vg, ) = 0 or (V[label(t)] N Vg, ) = 0.

Now if SP¢(s,t) does not contain any vertex i, , then the
query can be answered using only label entries of vertices the
first (k — 1) levels of the vertex hierarchy. These entries will have
identical occurrences and contents in the vertex labelsedinstk
levels of any vertex hierarchiff« ;, wherek < 5 < h + 1, which
is formed by limiting the height of a givef. Thus, the correctness
of query answer follows from Theorem 2]

Note that Type 1 queries exist only if there exist more tha@ on
connected component @& such that all vertices in some connected
component(s) have a level number lower tthan

Next we prove the correctness for processing Type 2 queries.

THEOREM 4. Given a P2P distance queryandt, if the query
belongs to Type 2, thedist:(s,t) evaluated by the label-based
bi-Dijkstra search procedure is correct.

PROOF We have two cases: ()P (s, t) does not contain any
vertex inVg, , or (2) otherwise.

If SPa(s,t) does not contain any vertex iVg,, then
distc(s,t) is computed in Lines 5-6 of Algorithm 1, or in other

To improve the pruning effect so as to converge the search words by Equation 1. As explained in the proof of Theorem 8, th

quickly, we keep updating: wheneverd(z, ) is updated if
distc(x',u) has been found (Lines 17-18), sineeis a poten-
tial vertex onSP (s, t). We use a sef to keep a set of vertices
whose distance fromor ¢ has been found. Whenevéista(z, v)

is found for a vertex, if v is not yet inS, we insertv, together
with distg(z,v), into S.

correctness of query answer follows from Theorem 2.

If SPa(s,t) contains at least one vertex Wy, , then consider
the two subpaths§P (s, ) andSP«(t,y), defined in the proof of
Theorem 3 (note that it is possibde= x and/orx = y and/ory =
t). dista(s,x) anddiste(t,y) can be answered using only label
entries of vertices if..,, and their ancestors iy for (H<x, Gi).

We give an example to illustrate how queries are processed asFrom the labeling mechanism, the occurrences and contesiisio

follows.

label entries will be identical in the labels of vertices lie ffirstk
levels of any vertex hierarch§l;, £ < j < h + 1, which is

EXAMPLE 6. Let us consider Example 5. Suppose we need to formed by limiting the height of a giveH. Hence by Theorem 2,

process a distance query between verticandi, i.e.s = ¢, t = 1.
In label(c), b is in Gy, and therefore we ente, d(c,b) = 1)
into FQ. In label(i), e is in Gi, hence we entefe, d(i,e) = 1)
into RQ. label(c) N label(i) = ¢, hencep = oo after Stage
1 of Algorithm 1. In Stage 2, let us extra@t 1) from FQ first,
(b, 1) is inserted intaS, and we entefa, 2), (e, 2), into FQ. Next
we extract(e, 1) from RQ, and insert(e, 1) into S. (a,2), (d,2),

dista(s,z) and distg (t,y) are correctly initialized in Lines 1-3
of Algorithm 1. Thus, if we do not consider the pruning coruatit
in Line 8, then Dijkstra’s algorithm guarantees the distafiom s
(andt) to any vertex in7, correctly computed, from which we can
obtaindista(s,t).

Now we consider query processing with pruning. ket usx,
andminy = min(FQ) andmin, = min(RQ), when the search



stops. If ux is the value ofy initialized in Line 6, then we

Algorithm 2: Constructingl;

must havex = y € (label(s) N label(t)) and henceux =
(dista(s,z) + dista(t,z)). Otherwise,ux is a value assigned

to p in Line 18 and suppose to the contrary that there exists a
shorter path betweenandt with lengthp such thap < px. Since

the path passes through verticesGi, there must exist an edge
(v,u) in Gy such thap = dista (s, v) +wa, (v, uv) + dista(u, t),

Input  :AgraphG; = (Vg,, Eg,,wa,)
Output : L; andADJ(L;) = {adjg, (v) 1 v € L;}
1 allocate a buffer foi.; and ADJ(L;), and a buffer forl’;
2 G} + Gy
3 sortadj g (v) in G in ascending order afeg / (v);
4 foreach adj % (u) read inG’;, do

dista(s,v) < miny anddista(u,t) < min,. The existence of 5 if ug L' then

this edge is guaranteed becapse px < (miny + min,). Since 6 insertu into L;, and insertadj o+ (u) into ADJ(L;);
dista(s,v) < miny anddista(u,t) < min,, by Dijkstra’s algo- 7 foreachv € adj o/ (u) do ’

rithm, bothdistc (s, v) anddist(¢, w) have been computed when g | ifogL then insertw into L';

the search stops. Thug,should have been updated to a value not ) )

greater thamp in Line 18 when the edgéy, u) was processed. This 1(9) :; Eﬂgg ;g:éj iasnfglfl“tﬁgn@i) is full then flush the buffer;
contradicts our assumption and hepee= dista(s,t). O 1 L scan’, to delete allo € I/ andadj ¢ (v), and clearl’;

4.3 Handling Directed Graphs

To handle directed graphs, we need to make the following
changes. Let us us@:,v) to indicate a directed edge fromto
v in this subsection. The concept of independent set can be ap-
plied in the same way by simply ignoring the direction of tlges.
However, for distance preservation, we create an augnteatige
(u,w) atG; only if 3v € L;—; such that{u, v), (v,w) € Eq,_,.

We distinguish two types of ancestors for a vertexn-ancestors
andout-ancestors The definition of in-ancestors is similar to that
of ancestors in undirected graphs, except that we only densi
edges from higher-level vertices to lower-level verticeSnalo-
gously, the definition of out-ancestors concerns edgesygoam
lower-level vertices to higher-level vertices.

The labeling needs to handle two directions.
tex v, we need two types of labels defined as follows.
in-label of a vertexv € Vg, denoted by LABEL;,(v),
is defined asLABEL;,(v) {(u, distc(u,v)) u €
Vg is anin-ancestor ob}.  The out-label of a vertexv €
Ve, denoted byLABELyy:(v), is defined asLABELow:(v) =
{(u, dista(v,u)) : u € Vg is an out-ancestor ob}.

Given a P2P distance query with two input verticeandt, we
computeX = LABELyu:(s) N LABEL;, (t) and then answer the
query in the same way as given in Equation 1.

For each ver-
The

5. ALGORITHMS

In this section, we present the algorithms for index cormsion
(i.e., vertex hierarchy construction and vertex labeliagyl query
processing using the vertex labels. In recent years, dusetpro-
liferation of many massive real world networks, there hasnben
increasing interest in algorithms that handle large grapbs pro-
cessing large graphs that cannot fit in main memory, /O cest u
ally dominates. Thus, we propose |/O-efficient algorithiinem
which the in-memory algorithms can also be easily devised.

For the analysis of the I/O complexity in this section, we de-
fine the following notation [5]. Letscan(N) = O(N/B) and
sort(N) = ©(% log),, 5 %), WhereN is the amount of data be-
ing read or written from/to disk) is the main memory size, and
B is the disk block sizel(< B < M/2).

5.1 Algorithm for Index Construction

Although the vertex hierarchy, excepf, is not required for
query processing, it is needed for vertex labeling. Theexehi-
erarchy consists of two componenis,andG; thus we have two
main steps: (1) computing each independent vertex.set L,
and (2) constructing each distance-preserving g@plkEe G. We
first describe these two steps, followed by the construatiotne
overall vertex hierarchy, and finally the vertex labeling.

Algorithm 3: ConstructingG;

Input :G;—1,L;—1andADJ(L;—1)
Output : G;

Gi < Gi-1;

remove fromG; allv € L; 1 andadeF1 (v);
Ejq 0

foreach adjq, , (v) € ADJ(L;—1)do
foreachu, w € adjg, , (v), whereu < w do
insert intoE 4 the edgegu, w) and(w, u), with
wg; (v, w) = wg, (w,u) =
L @Gy (4, 0) + we,_, (v,w));

sort the edges i 4 by vertex ID’s;
scanE 4 andG; to add each edgeu, w) € E 4 to G;, or update
wg, (u, w) with the smaller weight ifu, w) already exists irt;;

o AW NP
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5.1.1 Constructing.;

We want to maximize the size of eaéh as this helps to mini-
mize the number of levels and hence also minimizes the vertex
label size. However, maximizing; means computing the maxi-
mum independent set 6#;, which is an NP-hard problem.

We adopt a greedy strategy to approximate the set of maximum
independent set aF; by selecting the vertex with minimum degree
at each step [20], since small degree vertices have smailieber
of dependent (i.e., adjacent) vertices and hence morecesrtire
left as candidates for independent set at the next step. dvere
the greedy algorithm can also be easily extended to give@n |/
efficient algorithm that handles the case wlienis too large to fit
in main memory, as described in Algorithm 2.

The algorithm computes an independent 5gbf G;, together
with the adjacency lists of the verticesin, denoted byd DJ (L;).
We useADJ(L;) to constructG;+1 in Section 5.1.2. To compute
L;, we also keep those vertices that have been excludedfram
the algorithm, as denoted ly. We use a buffer to keep the current
L; and ADJ(L;), and another buffer to keefy.

The algorithm first makes a copy 6f;, let it be G, and then
sorts the adjacency lists i@} in ascending order of the vertex de-
grees (i.e., the sizes of the adjacency lists). Then, we ¢aith
this sorted order, i.e., the adjacency lists of verticeh sinaller
degrees are read first. For eaa:diy‘gg (u) read, ifu is not in L',

we includeu into L; and addadj o, (u) to ADJ(L;). Meanwhile,
we exclude all vertices imdj .. (u) from L; because of their de-

pendence with, i.e., we add these vertices 1. The algorithm
terminates whemdj ., (u) for all u in G} are read.

If G; is very large, it is possible thdt; and ADJ(L;) are too



large to be kept by a memory buffer. We can simply write the cur
rentL; andADJ(L;) in the buffer to disk, and then clear the buffer
for new contents ofL; and AD.J(L;). However, when the buffer

for L' is full, we cannot simply flush the buffer since it is possible
that3du € L', adj g1 (u) has not been read yet. To tackle this with-

out incurring random disk accesses, we s€4rto remove all the
vertices currently inL’, together with their adjacency lists, from
G, because these vertices have already been excluded from
Then, we clear the buffer fat’.

If G can be resident in main memory, Lines 10-11 of Algorithm
2 are not necessary and we only need to sGaronce. If G is
resident on disk, it is easy to see that only sequential sch64
are needed and expensive random disk access is avoided.

Algorithm 2 takessort(|G;|) I/Os to sortG;. If |[L'| < M, we
need anothescan(|G;|) I/Os to read’;. Otherwise O(|L'|/M) *
scan(|G;|) I/Os are required.

5.1.2 Constructing:;

After obtainingL;_; andADJ(L;_1), we use them to construct
G;. As shown in Algorithm 3, we first initializ&; by removing
the occurrences of all vertices i _1, together with their adja-
cency lists, fromG;_,. However, the resultar@; may not sat-
isfy the distance preservation property. As discussed uti@e
3.1, the violation to this property can be fixed by the creatiba
set of augmenting edges. We create these augmenting edges fr
ADJ(L;—1) as follows.

When a vertew € L;_1, together WithadeF1 (v), is removed
from G;_; to form G;, what is missing irG; is the path(u, v, w)
foranyu,w € adjg,_, (v), whereu < w (i.e., u is ordered be-

Algorithm 4: Top-Down Vertex Labeling
Input :(L,G)
Output : label(v), Vv € Vg
/1 Initialization of vertex |abels
1 fori=1,..,k—1do
2 foreachv € L; do
3 L |_ label(v) < {(v,0)} U{(v,wg, (v,u)) 1 u € adjg, (v)};

4 Yv € Vg, . label(v) < {(v,0)};

/'l Top-down vertex | abeling

fore=k—1,...,1do

allocate bufferBy, and loadlabel(v), for eachv € L;, in Br;
7 allocate bufferBy; and loadlabel(v), for eachv € L for

i < j < kand foreachv € Vg, , in By;

8 foreach block By, do

9 foreach block By do

o O

10 foreach label(v) in By, do

11 foreach label(u) in By do

12 if (u,d(v,u)) € label(v) then

13 foreach (w, d(u, w)) € label(u) do
14 if (w,d(v,w)) & label(v) then

15 add(w, d(v, u) + d(u,w)) to
label(v);

16 else
d(v,w) =

’ I

min(d(v, w), d(v, u)+d(u, w));

fore w). Thus, to preserve the distance we only need to create theV[label(v)], u is an ancestor ob by Definition 2. In the same

augmenting edgéu, w), and symmetricallfw, u) for undirected
graphs, with weightwe, _, (u,v) + we,_, (v, w)).

We create all such augmenting edges in Lines 4-6 of Algorithm
and store them in an arrdy4. Then, we sort the edges M4 first
in ascending order of the first vertex and then of the secortéxie
Then, we scan botlit4 and G; (already sorted in its adjacency
list representation), so that each edgé:in is merged intaZ;. If
an edge inE4 is already inG;, then its weight is updated to the
smaller value of its weight recorded 4 and inG;.

If main memory is not sufficient, Line 2 of Algorithm 3 uses
O(|Li—1|/M) * scan(|Gi-1]) IOs, if |[Ea| < |G;] then Lines 3-6
and 8 usescan(|G;|) I/0s, and Line 7 usesort(|G;|) I/Os, else
we may sort partiaZ4 each time it fills up memory and then scan
Gi, sothe 10 costi®©(|Ea|/M)scan(|Gil).

5.1.3 ConstructingL, G)

The overall scheme to construct the vertex hierar¢hyG), is
to start with the giverG: = G, and keep repeating the two steps
of computingL; (Algorithm 2) and constructing; (Algorithm 3)
until we reach a levet (see Section 4.1 for the value bY.

5.1.4 Top-Down Vertex Labeling

Definition 3 essentially defines a procedure for computing
label(v) for eachv € V. However, a careful analysis will show
that such a procedure, if implemented directly as it is dbedr
involves much redundant processing as implied by the faligw
corollary of Lemma 4.

CoROLLARY 1. Givenavertex € L;, we haveV[label (v)] =
{0} U (Uncadg, (o) Vllabel ().

PROOF. By Definition 3,Vu € adjg, (v), u will be included
into V[label(v)]. From the result of Lemma 4, we have: €

way, we havevw € V[label(u)], w € V[label(v)] sincew is
then also an ancestor of Thus,Vu € adjg, (v), V[label(u)] C
V]label(v)].

Next, Vw € V[label(v)]\{v}, w € V]label(u)] for someu €
adj ¢, (v) because is included intoV[label (v)] from someu by
Definition 3, and by the same procedurewill be included into
Vl|label (u)] when we computéabel (u). [

Corollary 1 implies thatiabel(v) can be computed from
label(u), for eachu € adjq, (v), instead of from scratch. Based
on this, we design a more efficient top-down algorithm forteser
labeling as shown in Algorithm 4.

The algorithm consists of two stages: initialization oftearla-
bels and top-down vertex labeling by block nested loop jdis;
cussed as follows.

According to Corollary 1, we only need to add,0) and
(u,wa; (v,u)) forall u € adjg, (v) to label(v), and then derive
other entries oflabel(v) from label(w) in the top-down process.
For eachv € Vg, , however, we only need to add, 0) to label(v)
since each € Vg, has only one ancestor, i.e.jtself.

After the initialization, we compute the labels for the vegs
starting from the top levels to the bottom levels, i.e., flewel (k—

1) down to level 1. We assume that the set of labels at each level
may not be able to fit in main memory and hence use block nested
loop join to find the matching labels, i.dgbel(u) for eachu €
adj ¢, (v) when we process at leveli. Note that ifu € adj g, (v),
then (u, d(v,u)) € label(v) by the initialization. Thus, as shown

in Lines 11-16, we derive the entries of other ancestors fodm
label(u) directly, which essentially follows the rule specified in
Definition 3.

The complexity of the algorithm is apparently dominated hoy t
top-down process. Lebr(i) = |{label(v) : v € L;}|, and
bu (i) = |Uic < {label(v) s v € Lj} U {label(v) : v € Vg, }.



The 1/0 complexity for the block nested loop join is given by
(br(i)/M) = (bu (i)/B). Thus, the I/O complexity of Algorithm 4

is given byO (32777 (b (i)/M) * (bu i)/ B))).

5.2 Algorithm for Query Processing

For processing large datasets, the vertex labels may nat fit i
main memory and are stored on disk. The entries in éalefi(v)
are stored sequentially on disk and are sorted by the veisx |
of the ancestors of. Thus, label(s) N label(t) involves simple
sequential scanning of the entrieslitbel(s) and label(t). From
our experiments, the vertex labels are small in size antbvéig a
vertex label from disk takes only one 1/0. The CPU time forrgue
processing comes mostly from the bi-Dijkstra search. Faaaly
G = (V, E), a binary heap can be used and Dijkstra’s algorithms
runs inO((|E| + |V]) log |V|) time.

6. EXPERIMENTAL EVALUATION

[ [ V1] [E] | Avg. deg [ Max. deg [ Disk size |

Undirected graphg

BTC 164.7M | 361.1M 2.19 105,618 5.6 GB
Web 6.9M | 113.0M 16.40 31,734 1.1GB
as-Skitter 1.7M 22.2M 13.08 35,455 | 200 MB
Email-Enron 37K 368K 10.02 1,383 2.7MB
ca-Astroph 19K 396K 21.10 504 2.8MB
homo 7K 40K 5.64 157 0.3MB
erdos 7K 24K 3.42 507 0.2MB
Directed graphs

ukweb 105.9M | 297.4M 2.81 78,228 7.4GB
wiki-talk 2.4M 5.0M 2.10 100,022 | 104.2MB
Email-EuAll 265K 419K 1.58 7,631 8.6MB
soc-sign-slashdot 77K 517K 6.68 2,532 8MB
soc-Epinions 76K 509K 6.71 3,035 7.5MB
p2p 63K 148K 2.36 78 2.8MB
cit-HepPh 35K 421K 12.20 846 6.3MB
wiki-vote 7K 104K 14.57 893 1.4MB

Table 1: Real datasets

when (|G;|/|Gi-1|) > o, we setk = i. To assess query per-

We evaluate the performance of our method and compare with formance, we randomly generate 1000 queries in each dataget

other related methods for processing P2P distance qué@eS8].
All methods tested were programmed in C++ and compiled with
the same compiler. All experiments were run on a computen wit
an Intel 3.3 GHz CPU, 4GB RAM and a 7200 RPM SATA hard
disk, running Ubuntu 11.04 Linux OS.

We use both undirected and directed real datasets. For the un
rected datasets: BTC is a semantic graph converted fromithe B
lion Triple Challenge 2009 RDF dataset (vmlion25.der),iehere

compute the average query time.

Table 2 reports both the indexing performance and querypperf
mance of all the methods. The results clearly show that IISeLa
significantly outperforms both HCL and TEDI in all aspectsst
IS-Label is far more scalable than HCL and TEDI. IS-Label can
process graphs up to three and four orders of magnituder idvge
those HCL and TEDI can handle. For most of the graphs tested, w
were not able to obtain the result for HCL and TEDI due to ttee pr

each vertex represents an object such as a person, a dogumenhibitively high cost of all-pairs shortest path computati®econd,

and an event, and each edge represents the relationshipdretw
two nodes such as “has-author”, “links-to”, and “has-titl&Veb
(barcelona.research.yahoo.net/webspam) is a subgratbie &fK

even for processing those small graphs which HCL and TEDI can
handle, both the indexing time and querying time of IS-Larel
up to orders of magnitude shorter than those of HCL in all ase

Web graph, where vertices are pages and edges are hyperlinksTEDI is faster in indexing than IS-Label but TEDI is only altte

The original graphé is directed and converted into undirected
graphG as follows: if two vertices are reachable from each other
within w hops inG, wherew € {1, 2}, they have an undirected
edge with weightw in G. Since there are many connected com-
ponents inG, we extract the largest connected component . As-
Skitter is an Internet topology graph from traceroutes raitydn
2005 (www.caida.org/tools/measurement/skitter). E+Railon is
the communication network from Enron. Ca-Astroph is the col
laboration network of Arxiv Astro Physics. The homo and ardo
datasets are a biological network and a social network fra8h. [
For the directed graphs: ukweb is a subgraph of the UK Welhgrap
The wiki-talk graph is a communication network from Wikiped
Email-EuAll is the email network from a EU research institat
Soc-sign-slashdot and soc-Epinions are social networke. pRp
graph is the Gnutella peer to peer network. Cit-HepPh is thévA
High Energy Physics paper citation network. The wiki-votagin

is the Wikipedia who-votes-on-whom network. More detaifs o
the following datasets can be found in (snap.stanford:edis)
Skitter, email-Enron, aa-Astroph, wiki-talk, email-Eu/doc-sign-
slashdot, soc-Epinions, p2p, cit-HepPh, and wiki-vote. lidtehe
datasets in Table 1.

6.1 Comparison with Other Methods

We compare with two most recent works on point-to-point dis-
tance queryingHCL [22] for directed graphs an@EDI [38] for
undirected graphs. In [22, 38], HCL and TEDI were shown to
outperform other existing methods for distance queryingliin
rected and undirected graphs, respectively. Since |SiLatrs
bidirectional Dijkstra searchBDIJ) in G, we also report the re-
sults of BDIJ on the original grapli¥ as a reference. We use
o = 0.95 as our default threshold in IS-Label to obtaih,, i.e.,

handle very small graphs with only 7K vertices.

For the relatively smaller graphs, IS-Label obtains a cetepl
vertex hierarchy, i.ek = (h+1) andG}, is an empty graph, but the
indexing process is still very fast. The label size is in gahkarger
than when we have a non-empf., but the largest overall label
size is only around 1 GB which is certainly acceptable. Noa if
storage space is critical, we can easily limit the heighhefuertex
hierarchy to obtain a smaller label size, as we have donehfor t
large graphs. This shows the flexibility of our labeling stleefor
processing graphs of different sizes and/or computinguress.

Compared with BDIJ, IS-Label is significantly faster for pess-
ing all datasets. The need for an index becomes clearerdoeps-
ing larger graphs. For processing the datasets BTC and ykwesb
could not obtain the result for BDIJ since the memory condionp
of BDIJ exceeds the main memory capacity.

In conclusion, our labeling scheme is a big step forward & th
development of an efficient index for answering point-térpdis-
tance queries in real world general graphs (both directeduadi-
rected). This is evident from the results that IS-Label ik db
handle graphs up to three and four orders of magnitude Itinger
the largest graphs used to test HCL [22] and TEDI [38], respec
tively. Furthermore, even for processing small graphsl.d8el
also significantly outperforms the most recent work, HCL][22
all aspects.

6.2 Effect of Graph Density

In this experiment, we examine the effect of density on the pe
formance of IS-Label. We generate two types of synthetiplyga
using the graph generator provided by [39]: pgheferential attach-
mentmodel (modeling graphs with power-law degree distribytion
[10], and thesmall worldmodel (modeling graphs with short aver-



k Vo, | | [Eg,| | [label] Index size Indexing time (s) Query time (ms)
Data graphs IS»LabeI| HCL | TEDI IS»LabeI| HCL | TEDI IS—LabeI| HCL | TEDI | BDIJ
Undirected
BTC 6 134K | 16.4M 6.6 7.1GB - - 2057.98 - - 6.35 - - -
Web 19 242K | 14.5M 259.1 8.1GB - - 2034.07 - - 28.39 - - 108.53
as-Skitter 6 86K 8.5M 53.2 || 428.6MB - - 487.92 - - 2.32 - - 4.91
Email-Enron 78 0 0 784.1 || 137.7MB | 46.4MB - 36.58 | 51780 - 0.005 | 0.294 - 0.107
ca-Astroph 164 0 0 2605.7 || 233.5MB | 78.4MB - 238.56 | 22445 - 0.015| 1.818 - 0.091
homo 75 0 0 466.7 15.7MB | 9.4MB | 27.9MB 16.70 | 2871 3.12 0.003 [ 0.223 | 0.0014 | 0.024
erdos 17 0 0 27.7 1MB 2.2MB 1.9MB 293 | 1889 | 0.22 0.0008 | 0.012 | 0.0009 0.01
Directed
ukweb 10 1.1M 54.5M 7.0 8.9GB - n.a. 10132.8 - n.a. 19.796 - n.a. -
wiki-talk 4 14K 1.1M 15 85MB - n.a. 39.93 - n.a. 0.011 - na. | 0.198
Email-EuAll 4 975 125K 1.0 8.0MB - n.a. 1.39 - n.a. 0.008 - na. | 0.021
soc-sign-slashdot| 215 0 0| 1336.5 1GB - n.a. 439.47 - n.a. 0.007 - n.a. 0.048
soc-Epinions 216 0 0 1586.3 1.1GB - n.a. 517.41 - n.a. 0.009 - n.a. 0.079
p2p 322 0 0 896.3 || 536.3MB - n.a. 464.82 - n.a. 0.004 - n.a. 0.045
cit-HepPh 107 0 0 325 || 107.8MB | 63.9MB n.a. 44.41 | 40747 n.a. 0.002 | 0.246 na. | 0.445
wiki-vote 69 0 0 176.2 12.1IMB | 2.6MB n.a. 13.20 559 n.a. 0.001 [ 0.018 n.a. | 0.005

Table 2: Performance results of IS-Label, HCL, TEDI, and Bi-Dijkstra (BDIJ): the size of G\ and average number of entries per
label, |label|, of IS-Label; and the total index size, total indexing time,and average query time of all methods.

age distance and small communities) [37]. We fix the graphtsiz
1 million vertices and vary the average degree of the verticam
5 to 80.

We report the total label size for each average degree value i
Figure 4. The indexing time and query time follow similamtdeas
the label size.

The results show that our label size is not significantlyeased
when the density increases for both preferential attachraed
small-world models. The more rapid increase in the labelsizen
the degree increases from 5 to 20 is because a larges., more
levels in the vertex hierarchy, is computed for smaller ggagHow-
ever, when the density becomes larger, the increase inlitbedze
becomes small.
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Figure 4: Performance results of density change

6.3 Effect of k-Level Vertex Hierarchy

For handling large graphs, IS-Label restricts the numbée\of
els in the vertex hierarchy tb in order to combat the increasing
label size, and then run the bi-Dijsktra algorithm@p. In this ex-
periment, we test the effect &fon the performance. In particular,
we examine whethef, is too dense for the bi-Dijsktra algorithm
to be efficient.

We report the results in Table 3, where we use the two larger
graphs BTC and Web to demonstrate the effeck ¢the results
on other datasets are similar). The valuekofomputed by our
algorithm is 6 and 19 for BTC and Web, respectively. And we
manually sett < k < 8 and15 < k < 23 to test the effect.

The results show that for any two level numtdrandk2, where
k1 < k2, Gie is denser than that a@f;. The increase in density
is largely due to the decrease in the vertex number, but theabtv
size (in terms of both edge number and vertex numbet)gf is

‘ | k | Ve, | [Eg, | ‘ Label | Indexing | Qtime-1 | Qtime-2
size | time (s) (ms) (ms)

BTC | 4 232K | 18.7M 3.8GB | 1422.10 3.59 0.06
BTC | 5 167K 17.2M 49GB | 1574.19 4.77 0.05
BTC | 6 134K 16.4M 7.1GB | 2057.98 6.31 0.04
BTC | 7 114K | 15.8M | 11.2GB | 2147.93 7.83 0.04
BTC | 8 100K [ 15.4M | 18.1GB| 2711.81 9.09 0.04
Web | 15 329K | 17.8M 5.8GB | 1398.34 17.10 15.63
Web | 17 280K 16.0M 7.1GB | 1729.28 19.57 13.65
Web | 19 242K 14.5M 8.1GB | 2034.07 20.58 7.81
Web | 21 211K | 13.2M 9.0GB | 2437.78 23.43 7.15
Web | 23 186K [ 12.2M 9.9GB | 2784.04 32.61 6.55

Table 3: Performance results of differentk: the size of G, and
label, indexing time, Qtime-1 for the time taken to processhe
labels and Qtime-2 for the time to run bi-Dijsktrain Gy

smaller than that of7x;. Thus, ask increases, bi-Dijkstra runs on
a denser but smaller grafhs. As shown by Qtime-2 in Table 3,
bi-Dijkstra is still faster inG2 than inGx1, thoughGy. is denser.

The overall query time, i.e., the sum of Qtime-1 and Qtime-2,
increases ag increases. This is mainly due to the fact that the
label size increases whénincreases, i.e., the number of levels in
the vertex hierarchy increases. Thus, the time to retrieedabels
from disk (leading to high I/O cost) and to intersect the ladsds,
i.e., Qtime-1, becomes more expensive. However, we notéftha
is too small, it becomes very costly to run bi-Dijkstradh,. For
example, it takes 108.53 ms to run bi-DijkstraGy = G for the
Web graph, which is larger than the sum of Qtime-1 and Qtime-2
for any k shown in Table 3.

Finally, we can also see from the table that the valugé obm-
puted by our algorithm is effective. In fact, for the Web drap

= 19 computed by our algorithm is the optimal value.

7. LIMITATIONS OF EXISTING WORK

We highlight the challenges of computing P2P distance by dis
cussing existing approaches and their limitations.

7.1 Indexing Approaches

Cohen et al. [16] proposed the 2-hop labeling that com-
putes for each vertex two sets, Li,(v) and Lo (v), where
for each vertexu € Li(v) andw € Louw(v), there is a
path fromw to v and fromv to w. The distanceslista(u, v)
and distq(v,w) are pre-computed. Given a distance query,
and ¢, the index ensures thafistz(s,t) can be answered as
MiNy e (L0 ()N L (1) L disTG (8, V) + dista (v, t) }. However, com-



puting the 2-hop labeling, including the heuristic algamits [15,
34], is very costly for large graphs.

Xiao et al. [40] exploit symmetric structures in an unwedaght
undirected graph to compress BFS trees to answer distaecesju
However, the overall size of all the compressed BFS treesois p
hibitively large even for medium sized graphs.

7.3 Methods with Similar Characteristics

We also want to specifically compare and contrast with sévera
methods for road-networks that share some similar chaisiits
with I1S-Label.

First, we consider the landmark approach proposed in [18],
in which a set of landmarkd. are selected and for each ver-

Wei [38] proposed an index based on a tree decomposition of tex, the distance to and from each landmarke L is pre-

an undirected grapt¥, where each node in the tree stores a set of
vertices inG. The distance between each pair of vertices stored in
each tree node is pre-computed, so that queries can be auswer
by considering the minimum distance between vertices dtore

a simple path in the tree. However, the number of verticezdto

in the root node is large and thus the pair-wise distancethéme
vertices are expensive to compute and require huge stopage.s
As aresult, the method cannot scale to handle large graphs.

Jin et al. [22] proposed to use a spanning tree as a highwag str
ture in a directed graph, so that distance froto ¢ is computed as
the length of the shortest path fronto some vertex, then fromu
via the highway (i.e., a path in the spanning tree) to somexer,
and finally fromo to t. Every vertex is given a label so that a set of
entry points in the highway (e.g:) and a set of exit points (e.g:)
can be obtained. However, the labeling requires all paiostsht
paths to be computed and is too costly for processing lamyehgt

Cheng et al. [13] proposed the VC-index for computing the dis
tances from a source vertex to all other vertices. The useréx
cover in [13] has inspired the use of independent set in otinode
VC-index can be used to answer P2P distance queries if we forc
the search from sourceto stop when hitting target However,
their method is not a labeling technique and much compurtatit
be wasted in computing the distances from the source to naaty i
evant vertices. There is also another method that usescarver
but is for answering:-hop reachability queries [14].

The problem of P2P distance querying has been well studied fo
road networks. Abraham et al. [2] recently proposed a higedha
labeling algorithm, which is the fastest known algorithnthia road
network setting. Other fast algorithms such as [31], [1AH 0]

computed. By triangle inequalityjistc (s, t) is lower bounded
by max,er{|dista(s,z) — distc(t,z)|}, which helps speed up
bi-Dijkstra search. With the full vertex hierarchy in IStel, we
also store pre-computed distances in labels, except tedabels
can always give the exact value @fst:(s,t) instead of a lower
bound.

Next, we compare with the multilevel overlay graphs in [24] f
road networks, where overlay graphs are built on top of &g
setsS of vertices, preserving the distances among verticeS.in
The overlay graphs can limit the search in a graph smaller ¢tha
However, in building overlay graph for a vertex sgteach vertex
in S undergoes a Dijkstra’s single source shortest path seax@h i
The complexity is high and the empirical studies in [21] Hadd
graphs with less than 500,000 vertices. While all overlaapbs
are maintained in [21] for querying, we do not keep any graph f
full vertex hierarchy and keep onty;. for k-level hierarchy.

Labeling technique is also used in the hub-based labeliggr al
rithm (HL) [2], which is the fastest known algorithm for disice
querying in road networks. As pointed out by the same autimors
[3], for graphs other than road networks, the contracti@nairchy
(CH) preprocessing in HL is not effective for general grapfesad-
dress this problem they proposed hierarchical hub labékhtidi.)
for other graph types [3]. Instead of the bottom up CH method,
a top-down method was proposed for HHL, as inspired by [16].
HHL maintains a shortest path tree for every vertex to repreall
uncovered shortest paths starting at each vertex. The datigpu
and storage complexities of HHL are not scalable for hagdinge
graphs. With a RAM of 96GB, HHL was tested only on preferen-
tial attachment graphs and small world graphs With = 100, 000

are also based on the concept of highways to reduce the searctynd average degree 10. In contrast, our labeling technicrena

space. However, it has been shown in [4] and [1] that the effec
tiveness of these methods relies on properties such as lowiVC
mensions and low highway dimensions, which are typical adro
networks but may not hold for other types of graphs. Anotlger a
proach is based on a concise representation of all pairgeshor
paths [30, 32]. However, this approach heavily depends en th
spatial coherence of vertices and their inter-connegtivifao et

al. [35] proposed thé-skip shortest path on road networks, which
is to return at least one out of evekyconsecutive vertices in a
shortest path. While P2P distance querying has been quitess+
fully resolved for road networks, these methods are in gemet
applicable to graphs from other sources.

7.2 Other Approaches

When the input graph is too large to fit in main memory, ex-
ternal memory algorithms can be used to reduce the high ABsk |
cost. Existing external memory algorithms are mainly fampait-
ing single-source shortest paths [23, 27, 25, 26] or BFS [617
24, 28], which are wasteful for computing P2P distance.

There are also a number of approximation methods [8, 19, 29,
33, 36] proposed to compute P2P distance. Although thedwocet
have a lower complexity than the exact methods in generay; th
are still quite costly for processing large graphs, in teahboth
preprocessing time and storage space. We focus on exaahchst
querying but remark that approximation can be applied onofop
our method (e.g., on the gragky. defined in Section 4).

modates 1/O efficient algorithms that work with small RAMesiz
such as 4GB, and we can handle preferential attachmentgeamgh
small world graphs withV’| = 1, 000, 000 and average degree 80.

8. PATH QUERIES

In this section, we discuss the extension of our method to an-
swer shortest-path queries. To answer a P2P shortest-pati, q
we need to keep some extra information in the vertex labelserw
an augmenting edgéu, w) is created inG; with wg, (u,w) =
wa,_, (u,v) + weg,_, (v, w), we also keep the intermediate vertex
v along with the augmenting edge to indicate that the edgefepr
sents the pathu, v, w). Note that(u,v) and (v, w) are edges in
Gi—1, which in turn can be augmenting edges. In the labeling pro-
cess, instead of adding the enfry, d(u, w)) to label(u), we also
attach the intermediate vertex(if any) for (u,w). Thus, the en-
try becomes a tripléw, d(u, w), v) (or (w, d(u,w), ¢), if there is
no intermediate vertex). Note that we keep the gréphand thus
the intermediate vertex of any augmenting edgé&inis directly
attached to the edge.

Given a querys andt, if the query is of Type 1, the answer is de-
termined by two label entrie$w, d(s, w),v) and(w, d(t, w),v’).

If v # ¢ (similarly for v’), we form two new querie$s, v) and
(v,w). In this way, we recursively form queries until the interme-
diate vertex in a label entry is. It is then straightforward to obtain
the resulting path by linking all the intermediate verticdsthe



query is of Type 2, then the answer is determined by two label e
tries and a path id7,. The subpaths from the two label entries are

[14] J. Cheng, Z. Shang, H. Cheng, H. Wang, and J. X. Yu. Kiresi¢ho
is in your small world PVLDB, 5(11):1292-1303, 2012.

derived in the same way as we do for a Type 1 query. The path in [15] J. Cheng and J. X. Yu. On-line exact shortest distaneeyqu

G is expanded into the original path @by forming new queries,
“u andv” and “v andw”, for any augmenting edgéu, w) with

the intermediate vertex. For each such query, the corresponding

subpath is obtained as discussed above. The I/O compleiityeo
overall process is given b@(|SPa(s,t)]), where|SPa(s,t)] is
the number of edges a$\P ¢ (s, t).

9. CONCLUSIONS

In this paper, we introduced an effective disk-based inmugxi

method named IS-Label for distance and shortest path aqugeryi

in large real-world graphs, both directed and undirectether@&

are two major ideas in our approach. Firstly, we developed an

independent-set based vertex hierarchy and proved that gaide
the labeling process of vertices. Secondly, for massivplgrawe
can limit the height of the hierarchy so that the label size lsa
controlled and our theoretical analysis show that basedenat
bels, we need only one in-memory bi-Dijkstra’s search oneisel-
ual graph to obtain the final solution.
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