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ABSTRACT

We study the problem of point-to-point distance queryingnfas-
sive scale-free graphs, which is important for numeroudiegp
tions. Given a directed or undirected graph, we propose id bu
an index for answering such queries based on a novel hopidgub
labeling technique. We derive bounds on the index size, the ¢
putation costs and 1/O costs based on the properties of ghwvesi
scale-free graphs. We show that our method is much more effi-
cient and effective compared to the state-of-the-art tiectas, in
terms of both querying time and indexing costs. Our emgirica
study shows that our method can handle graphs that are mflers
magnitude larger than existing methods.

1. INTRODUCTION

We study the problem of point-to-point distance querying fo
massive scale-free networks or graphs. Given a scale-fiagghg
G = (V,E), we aim to answer queries about the distance of a
shortest path from a vertexto a vertex in the graph. Such query-
ing is a basic building block in the solutions of many praaitjgrob-
lems including page similarity in web graphs, keyword skaro
RDF graphs [21], and network analysis such as betweenness ce
trality computation [23]. Indirectly it is useful for commity de-
tection and locating influential users in the network. Weeghur
problem definition as follows.

Problem Definition Let G = (V, E) be a directed unweighted
graph, with vertex seV and edge sef’. Each edg€u,v) € F
has a length oflistc (u,v) = 1. Given an edgéu, v), we say that
v is anout-neighborof u, andw is anin-neighborof v. A path
p = (v1,...,v;) is a sequence dfvertices inV such that for each
vi(1 <4 <), (vi,viy1) € E. (We also denote by v; ~ v;.)
Thelengthof a pathp, denoted by (p), is the sum of the lengths of
the edges op. Givenu, v € V, thedistancefrom w to v, denoted
by dista(u, v), is the minimum length of all paths fromto v. If
no pathu ~ v exists, thendista (u, v) = co. A pathu ~ v with
a length ofdistc(u, v) is a shortest path from to v. We study the
following problem: given a static directed unweighted scale-free
graph G = (V, E), construct a disk-based index for processing
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point-to-point (P2P) distance queries, where a P2P distaqpaery
dist(s,t) is: givens,t € V, finddista (s, t).

Although distance querying can be readily handled by Digst
algorithm [16], the emergence of large networks such asbpet-
works, RDF graphs, and phone networks has created new chal-
lenges. The problem of P2P distance querying has been wel st
ied for road networks. Some previous works include [3, 28,919
27, 29, 31]. For other graph types, many indexing methods hav
been proposed. However, the previous works of [12, 14, 153@0
33, 34] can only handle relatively small graphs due to higtein
construction cost and large index storage space. For they@sia
real graphs tested in these studies, we h&Ye581K and E|/|V|
=2.45[12], andV| = 694K and|E|/|V'| = 0.45 [20], respectively.
The more recent works of IS-Label in [18] and the pruned land-
mark labeling (PLL) scheme in [7] can handle bigger graphsthB
are 2-hop labeling methods [15].

Challenges.While the labeling technique has been adopted by
the state-of-the-art indexing algorithms, there are sorm@nthal-
lenges related to this technique. The first challenge isrtbaxist-
ing work has been able to provide a guarantee of a small lateel s
The total label size i©)(|V|?) and in the worst case, this is the
same size as that of a pairwise distance table. For geneyahgyr
itis shown that there exist graplis= (V, E) for which any 2-hop
labeling index must have a total size @f|E||V'|*/?) [15]. This
high index space complexity will be impractical for largaghs.

The second challenge, which is related to the first, is thaAo
isting work has been able to give an acceptable bounded eaitypl
on the computation time and the runtime memory space retjuire
for the label construction. Most existing works are in-meynal-
gorithms and require huge memory consumption. The onlyiegis
work that has bounded memory consumption is IS-Label [18]. |
Label builds a hierarchy from the given graph by extractingeh
level an independent vertex set. The remaining graph at €aph
is augmented with edges to preserve distances among tharema
ing vertices. Labels are constructed top-down in the hibrarThe
hierarchy need not be completed so that a residual gégphmay
remain in memory and querying is handled by both the labalsaan
bi-Dijkstra search irG),. However, IS-Label has no guarantee of a
small label size, and also no guarantee on the scalabilitiyeofa-
bel construction time. Another problem of I1S-Label is thatimit
the number of iterationg;, during the label construction, instead
of building a full index, a residual grapf;. is kept in main mem-
ory. However, this is not a pure indexing method since it egu
loadingG'. before querying, and the size 6% can be large.

For the existing in-memory algorithms including [15, 33, Z)
the time complexity ranges fro@(|V'|?) to O(|E||V|). For the
PLL scheme in [7], the actual time performance is much b#ttan
the O(|E||V'|) bound. However, PLL is main memory based and



is not scalable because of a breadth first search processeyr e
vertex and a pruning process that requires the label indesside

in memory. Hence, a very large main memory is needed that not
only can hold the input graph but also the entire label inditix @x-

tra storage for computation. Using 48GB RAM, the biggesphra
reported in [7] to be handled by PLL is a little over 1GB in size
since the label size is 22GB. Except for 1S-Label, all of thewe
algorithms assume that the given graph can fit in memory, lwhic
may not be true for massive networks. Hence, scalabilityaiesa
major challenge.

We propose a new indexing method for distance querying td@ mee
the above challenges. Our design is based on the propeftigs o
weighted scale-free graphs, which are prevalent in thewedd
[1, 10, 17, 25]. Important applications such as social nétajo
web and most of the collected datasets in [1] belong to titis tf
graphs. We offer guaranteed complexity bounds on the labe| s
the computation costs and 1/O costs. With only 4GB RAM, we are
able to build an index for a graph of 9GB in size, with hundreds
of millions of vertices and edges. Our method is based on alnov
iterative process which minimizes the label size growthaaheit-
eration, leading to highly effective labeling for the index

Our main contributions are summarized as follows: (1) We pro
pose a novel 2-hop labeling indexing method for P2P distance
querying on unweighted directed graphs, and have develd@ed
efficient algorithms for index construction when the giveagh
and the index cannot fit in main memory. (2) Based on the proper
ties of unweighted scale-free graphs, we derive the foligudiom-
plexity bounds for our index: the index sizeG§h|V'|), the com-
putational cost i€ (|V |[logM (|V'|/M +1log|V])), and the /O cost
is O(|V]log|V|/M x |V|/B), whereh is a small constant}/ is
the memory size and is the disk block size. (3) We verify the
performance of our method with experiments on large realdvo
scale-free networks.

The paper is organized as follows. Section 2 discusses e re
vant properties of scale-free graphs. Section 3 introdagesnain
algorithm Hop-Doubling. Section 4 describes the 1/O-efiitial-
gorithms. Section 5 introduces the Hop-Stepping strategyér-
formance enhancement. Section 6 is a discussion about dptead
tions to undirected and weighted graphs, and about the userof
method for general graphs. We report our empirical studyeic-S
tion 7, and conclude in Section 8.

2. 2-HOP LABELING FOR SCALE-FREE
GRAPHS

The 2-hop labeling technique construtdbelsfor vertices, and
a distance query fog, t can be answered by looking up the labels
of s and¢ only. Eachlabel is a set of label entries and each la-
bel entry is a paiv, d) wherev € V andd is a distance value.
We say thaw is apivot. For a directed grapl = (V, E), we
create two labelL;, (v) and L...(v) for each vertex € V so
that if dista(s,t) # oo, then we can find a pivot: such that
(u7 dl) S Lout(s), (u7 dz) € [,Z”(t) andd; + do = diStG(S,t),
and there does not exist any such that(u’,d}) € Lout(s),
(v, db) € Lin(t) andd} + db < distc(s,t). We say that the pair
(s,t) is coveredby u. Hence, the distance quetlyst(s,t) can be
answered by looking ufi..+(s) andL;x (t) for such a pivot: with
the smallestl; + da.

The set of labels for all vertices is called2ehop cover The
complexity of finding a minimum 2-hop cover is shown to be NP-
hard [15], and known approximate algorithms are also vesflgo
[20]. However, in the following discussion, we will show theer-
tain ordering of vertices may give rise to a good 2-hop cawvbich
sheds some light on this hard problem.

L(a) | {(a,0),(®,1),(c,2),(d, 1), (e, 1)}
. £ | {0 (0 1) d2). (e 2)]
N o)) | 2@ | (o) (e3)
& = £ | {eor @)

Figure 1: A road graph Gr

- L(a) | {(a,0), (5, 1), (¢, 1), (d, 1),
(b) (e, 1), (f, 1)}
A T () L®) | {(6,0),(c,2), (d,2)}
IANGY £(e) | {(e,0),(d,2), (e,2)}
I L(d) | {(d,0),(e,2),(f,2)}
(e Td) L(e) | {(e;0),(f,2),(b,2)}
N £(f) | {(£,0), (5,2), (¢, 2)}

L(a) | {(a,0)}
L(a) | {(a,0)} L) | {(b,0),(a, 1)}
L(b) | {(b,0),(a, 1)} L(e) | {(¢,0),(a,1)}
['(C) {(C7 0),((1,2),(b 1)} L(d) {(d 0),((1,1)}
L(d) | {(d,0),(a,1)} L(e) | {(e,0),(a, 1)}
L(e) | {(e,0) (a, )} £(f) | {(£,0), (a, )}

Table 3: A small Gr index Table 4: A small G5 index

2.1 Ordering of Vertices for Labeling

The importance of the ordering of vertices can be illustidtg
some very simple graphs. In Figure 1, we show a gi@gtfor rep-
resenting a simple road systed is undirected, but we can treat
it as directed since each edge can be seen as bidirectiatde T
is a 2-hop cover folGr whereL(v) = Lin(v) = Lout(v). The
2-hop cover igminimal, meaning that we cannot delete any label
entry and still maintain the correctness of distance queajua-
tion. The entries of the fornfv, 0) are trivial but are needed for
query answering. In Figure 2, we show a star gra@h, Table 2
is a 2-hop cover fot7 s which is also minimal. For example, if we
delete(c, 2) from L(b), then for a query oflist(b, ¢), we would
return an incorrect distance of 4 frofd, 2) in £(b) and(d, 2) in
L(c). Note that one can add many useless entries to these covers
so that they are still correct but not minimal.

For a given graph, there can be many possible minimal 2-hop
covers, and in Tables 3 and 4, we show smaller minimal 2-hop
covers forGgr and Gs, which reduce the number of non-trivial
label entries by half or more when compared with those shawn i
Tables 1 and 2. Intuitively, for the road network, we are mgki
use of the hulz, which lies on the shortest paths for many pairs
of vertices. Similarly, we make heavy use of the centef the
star graph, which has a highest degree. The problem of finding
a minimum 2-hop cover is to find a smallest set of label entries
with pivots that cover the shortest paths for answeringiatbdce
queries, and in these special graphs, the hub or centeruabyio
hits the most number of shortest paths. We can set a rankitigeon
vertices in such a way that higher ranked vertices are lik@lyit
more shortest paths, and then use higher ranked verticps/tis,
as in the examples. This should result in a smaller label size

The above idea is more formally treated by the notionasfoni-
cal labelingin [4]. If shortest paths are not unique for givert, we
may define canonical labeling as follows. Given a total ragki()
of all vertices inV/, a labeling is canonical if a vertexis a pivot
in Lo.:(u) if and only if there exists a vertex such that-(v) is
the highest among all vertices in all shortest paths framw, and
similarly for £;,(u). The labeling is minimal since deleting any
pivot creates some uncovered pair of vertices. Canonibalitzg
calls for thepruning of any entry(v, d) in Lou:(u) if by looking
up Lout(u) and L, (v) we find a higher rank pivot’ that gives a



pathp = (u, ...,v’, ..., v) with a length< d. This is because if is
on a shortest path from to another vertexv which is made up of
p’ = (u,...,v) of lengthd andg = (v, ..., w), thenv’ will also be

on a shortest path fromato w, which is made up op andq. Since
r(v') > r(v), v should not be chosen as a pivot here.

Given the importance of ranking as illustrated in the above e
amples, we expect good indexing results from a good vertakra
ing. The independent set approach of IS-Label [18] effettiv
gives low ranking to low degree vertices. This ordering isnfd
to produce good label sizes. The pruned landmark schemenPLL i
[7] builds labels for an unweighted graph by a breadth firatce
(BFS) from vertices ordered in non-increasing degrees.s€aech
frontiers of BFS are halted at vertices where the label entare
pruned by previously entered entries as described in thgeabo
Note that such pruning has also been proposed in [4]. Thiriogl
by degree is found to be highly effective for many real graghs
the next subsection, we will derive reasons behind thisgffeness
for scale-free graphs. We make use of the definitiohitting sets
and a concept similar to tHa@ghway dimensiotintroduced in [5,
2] for road networks. However, we should point out that thareh
acteristics of a scale-free graph is very much differentnftbat of
a road network.

2.2 Hitting Sets in Scale-free Graphs

A function f(z) is said to bescale-freef f(bz) = C(b)f(z),
whereC(b) is some constant dependent only fonlt is common
to call a graph scale-free if the distribution of vertex asgr of the
graph follows apower law Prob(a vertex has degrég o k=<,
wherea is a positive real number. This is scale-free singif) =
cx™ %, thenf(bx) = c(bz)™ = b~ f(z). Typically,2 < o < 3
[13, 11, 17]. Existing works [10, 17, 1, 25] have shown thatyna
real world graphs do follow such power law distributionssBd on
the BA model [8] of scale-free graphs, Bollobas et al. [1@jvaed
that the diameteD of a scale-free random graph is asymptotically

D =log|V|/loglog|V| 1)

Although this is an asymptotical analysis, it gives veryuaate
prediction for many real world scale-free graphs [1, 32].

Newman et al. [25] studied the properties of scale-free ligap
by means of generating functions for the probability disttion of
vertex degrees. Let; be the average number of vertices that are
1 hops away from a randomly chosen vertex It is shown that
with very high probability,z., = (22/21)™ '2z1. Hencez,, =
(22/71)2zm—1. Thus, theexpansion facto? can be determined by
the average number of vertices that are 1 or 2 hops froraspec-
tively, i.e., R = z2/z1. With an expansion factor &, the diameter
of the graph can be estimated toBe= logr|V | = log|V|/logR.
From Equation (1), the expansion factor is given by

R =log|V| 2)

For a graphG = (V, E) that follows a power law distribution,
Faloutsos et al. [17] derived the following relationshipvaeen the
degreedeg,, of a vertexv in G and its rank in terms of the degree.
For a vertexo € V, v has ther(v)-th highest degree .

LEMMA 1. [17] The degreedeg,, of a vertexv, is a function
of the rank of the vertex,(v), and the rank exponent, as follows:

dego = ﬁ(r(vm ®

In the above;y is a small real number found to be betweef.8
and—0.7 for many real-world graphs [17]. According to Equation
(3), takingy = —0.8 for a scale-free graplis = (Vi, E1), if

|V1|=1M, then less than 500 vertices have degree above 500, and
the top-degree vertex, has a degree of 63095. From Equation
(2), the expansion factor is given By = log|Vi| &~ 20. Since
63095 x 20 > 1M, vo is expected to reach all vertices within 2
hops.

Let us call the number of hops (edges) on a pathdts length.
Given a set of path®, ahitting set for P is a set of verticess
such that each paghin P contains at least one vertexin S (we
say thatp is hit by v). For the above grapty;, a single highest
degree vertex is expected to hit all shortest paths withtlehg4.

In general, we make an assumption adraall hitting set forlong
shortest paths as follows.

AssuMPTION 1. Given an unweighted scale-free graph =
(V, E), there exist small integet andh, and a sef of the high-
est degree vertices W, such thatvu, v € V, if there exist shortest
pathsu ~ v with hop length> dj, then one such path is hit by
one ofh vertices inH.

In Assumption 1]H| > h. Given Equations (1) to (3), we can
show that Assumption 1 holds witth = 4 andh = 1 for any
undirected unweighted scale-free graph= (V, E) with |V| >
3, and rank exponent-0.8 < v < —0.7 (typical values in real
world graphs [17]). The analysis goes as follows. From Lemma
1, the degree ofy is given by|V|~” sincer(vo) = 1. With an
expansion factor oR, if (deg,, X R) > |V|, thenv, reaches all
vertices in 2 hops. This is the case wh¢f®|™” - R) > |V],
and from Equation 2R = log |V |; hence the inequality becomes
(V)" -1log|V]) > 1, and this holds for all values ¢¥| > 3
for —0.8 < v < —0.7. Therefore, whenV| > 3, the highest
degree vertex will reach all other vertices in 2 hops, whigans
that each vertex can reach any other vertex within 4 hopscéfen
do = 4andh = 1.

The above analysis is based on undirected unweighted graphs
However, the power law distribution is commonly found iredited
graphs by examining the in-degree and out-degree disiribaep-
arately [22, 26]. The study in [25] also considers directeapd,
and by focusing on the vertices that can be reached from anand
vertex, it is found that many results follow as in undirectedphs.
Hence, Assumption 1 is also for directed graphs.

Based only, we have two types of shortest paths: long ones (i.e.,
those of hop length at leadt) and short ones (i.e., those of hop
length belowd,). We have identified hitting sets for covering the
long shortest paths based on Assumption 1. Next, we will @&xam
how the shortest paths of hop length shorter #hacan be handled.

Let P be the set of all shortest patpssuch that/(p) < do,
and P> be the set of all shortest pathpssuch that{/(p) > do.
The do-inner-circle of a vertexv is defined to beN<(v) =
{p|pe€ P<Avep} We can visualizeV< (v) as the set of all
shortest paths passing througlwithin a ball with radiusd, cen-
tered atv, where each path has length less tidan Similarly, the
do-outer-circle of v is defined asV> (v) = {p | p € P> Av € p}.

We define a neighborhood for vertexo be used as a hitting set
for short shortest paths through Let N (v) = {u|dista(v,u) <
doVdistg(u,v) < do}, Ne(v) = N(v)NH, andN" (v) C N(v)
be vertices connected ¥ (v) so that for any vertex € N (v),
there is a shortest path fromto « or from « to v which contains a
vertex inNg (v). Then, the set of vertices df.(v) = ((N(v) —
N"(v)) U Nu(v)) is called theH-excluded neighborhood af If
there exists a shortest path= v ~» w« with hop length< do,
thenp is hit by a vertexw, wherew € N.(v) andw € N.(u).

If we include entries for all vertices iV, (v) in the label for each
vertexv, such a shortest path will be found from the labels of the 2



endpoint vertices of the path. We make an assumption/¥hét)
is small.

ASSUMPTION 2. In an unweighted scale-free grapty
(V, E), for a vertexv, the H-excluded neighborhood of N, (v),
contains at mosk vertices.

Given an expansion factor dR, for a scale free grapliy =
(V, E), |Ne(v)| for v € V is bounded byR%~*. If |V| = 1M,
then R ~ 20, and if —0.8 < v < —0.7, do 4. Then,
[Ne(v)] < 20° 8000. The actual size ofN.(v)| is much
smaller than this bound since high degree vertices coverge la
number of edges it and their expansions are excluded\a(v).

The smallh value assumption is substantiated by our experimen-
tal results on a large number of real graphs. We say that & drap
hub dimensionh if Yu € V, 3 a hitting setH . for N (u) such
that|H<| = O(h) and3 a hitting setH> for N> (u) such that
|[H>| = O(h). Intuitively, given hub dimensiom, there exists
for each vertex: a set of at mosO (k) vertices hitting all shortest
paths passing through which bounds the optimal label size of
by O(h). We state our assumption of small hub dimension.

ASSUMPTION 3. An unweighted scale-free graph has a small
hub dimensiorh.

In summary, we provide realistic assumptions for unweighte
directed/undirected scale-free graphs. Based on Assam@tithe
optimal label size is bounded l6y(h) for each vertex. Our empiri-
cal study in Section 7 shows that for all the scale-free veald
and synthetic graphs that we have tested, the label sizali-res
ing from our algorithm are very small compared to the gragk.si
Thus, the assumptions above are strongly supported byimerer
tal results. The remaining question is how to attain thie siaund.

2.3 Existing Algorithms with Vertex Ordering

As discussed in Section 2.1, ranking of vertices by theireieg
has been adopted in PLL [7], and less explicitly in IS-Lald][
However, as noted in Section 1, both of these methods areabt s
able. For PLL, the in-memory label construction involvesngna
iterations of breadth first search (BFS), and BFS does ndd yae
an efficient external algorithm to date [24]. More importgnto
be efficient, the label pruning in PLL requires a main memabat t
can hold the labeling index, which is typically much biggear
the given graph. Hence, it is an open problem to derive an-algo
rithm with scalable bounds on memory and computation copsum
tion and that produces bounded index sizes. We will focusian t
problem for scale-free graphs.

In[13], itis shown that high-degree vertices in power-laamghs
are useful for finding approximate shortest paths by a compat
ing scheme. Aouting tableis built for each vertex, which keeps
track of shortest paths to high-degree vertices callechiemkis and
to vertices closer to. However, the query evaluation in [13] does
not return exact answers. In the next sections, we shall mskef
vertex degree ordering to derive an 1/O efficient algoritlmifidex
construction for exact querying on a large scale-free gr@phr al-
gorithm does not require the knowledge fobut will seamlessly
attain the label size bound 6f(h|V'|) and scalable complexities.

3. PROPOSED SOLUTION

Our proposed solution is made up of the three major compenent
of algorithmic designs. We first give an outline of each cong.

1. The basic framework of our label index construction is an
iterative process with two steps in each iteration: (i) labe
entry generation based on a set of rules; and (ii) label pguni
to reduce the label size.

2. The second design component is an I/O efficient algorithm
for implementing the iterative process (see Section 4).

3. The third algorithmic design is an enhancement on the per-
formance based on the idea of hop-stepping (see Section 5).

In this section we describe the iterative process of labeére
tion and pruning. Based on the discussion in Section 2.2 esigd
our labeling algorithm with the assumption that the hittiegof the
majority of paths of longer lengths passing through a vertexa
small set ofh high degree vertices ifil. Since each label entry
should correspond to a shortest path, if we place the erftrigs!)
for verticesvy, in H in the relevant vertex labels, they would serve
most querying. Analogously, we should try to avoid creatatzel
entries for shortest paths= v ~+ u wherewvy, is in p for some
vertexv, € H, andv, ¢ {u,v}. From our assumptions, there
are many such paths, and hence many possible label enthiehy w
will lead to large label sizes. We will introduce the notidrtmugh
pathsfor these purposes.

Our strategy is to rank all vertices uniquely according ta-no
increasing degrees, with the highest rank given to the kigtie-
gree vertex. Next, our algorithm generates label entriesot@r
shortest paths with increasing number of hops. There aeralev
reasons for this strategy. Firstly, we need to search thghber-
hood of each vertex for the coverage of short shortest p&hs-
ondly, we need short shortest paths involvifigor pruning other
paths. Hence, we traverse from short to long paths. Thittly,
iterative approach can be realized by /0O efficient alganghwith
scalable 1/0 complexities, as we will show in Section 5. Wé wi
explain these points in the following discussion.

3.1 Iterative Labeling Algorithm

Given a directed unweighted grapt¥ (V,E), let
{v1,v2,...,un} be a ranking of the vertices i so that the rank
of v;, denoted by-(v;), is equal toi. We rank the vertices in non-
increasing order of their vertex degrees. Thus, veriekas the
highest degree. We break ties arbitrarily for vertices wlighsame
degree. Next we introduce the notion of a trough shortesét pat

DEFINITION1 (TROUGH SHORTEST PATH. A trough path
from v to u is a path passing through only vertices with ranks
smaller thanmax{r(u), r(v)}. A trough shortest path is a trough
path that is also a shortest path.

For example, inthe grapf in Figure 3 (a), if we rank vertices by
non-increasing degrees, then vertex 0 has the highestttegath
(3,7,2) is a trough shortest path, whi(é, 3, 7) is not. We create
labels for each vertex with the followinglabeling objectives
[O1] if there is a trough shortest path fromto u, wherer(u) >
r(v), then(u, distg (v, u)) € Lout(v);

[O2] if there is a trough shortest path fromto v, wherer(u) >

r(v), then(u, dist(u,v)) € Lin(v).

Notations: Given a label entrg; = (u,d;1) in Lin(v), it im-
plies thatr(u) > r(v) and there is a trough pagh from u to v
of lengthd;. e, is called anin-label entry We also denote; by
(u — v,d1). Ifthere is alabel entrys = (v, d2) in Lowt(u), then
r(v) > r(u) and there is a trough pajfa from v to v of lengthd..
ez is called arout-label entry and is also denoted by — v, d2).

In each case, we say that coversthe pathp;. Conversely, given
alabel entry(u — v, d), then(u, d) € Lin(v); given (u — v,d),
then(v,d) € Lou:(u). When the ranking is immaterial, we write
(u — v,d), which impliesr(u) > r(v) orr(u) < r(v).



Figure 3: (a) Given graphG = (V, E) (b) Trough paths covered
after the first iteration (arrows with dotted lines)
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Figure 4: Set of label entries generation rules

In our labeling algorithm, initially each vertexis assigned two
labelsLin (v) = {(v,0)} and Low:(v) = {(v,0)}. In the initial-
ization process, for each edge, v) € E, if r(u) < r(v), we add
label entrye = (v, dista(u,v)) t0 Lowt(w); if r(u) > r(v), we
adde = (u, dista(u, v)) t0 Lin(v).

Our algorithm iteratively generates label entries for alitices
until no more label entries can be formed. The first iteraton
the initialization process. In each remaining iteratiorg lave a
set of new label entries which have been generated in théopiev
iteration, which we denote bgrevLabel. Also we have a set of
all label entries generated from all previous iterations,refer to
this set asllLabel. In each iteration, we adopt 6 rules repeatedly
to generate all the possible label entries for the iterafidre rules
are encoded in Table 5. The first rule is derived from the finstin
the table as followsY(u — v, d) € prevLabel,¥(u1 — u,d1) €
allLabel, generatéu, — v, d1 + d). Similarly, the other 5 rules
can be derived from the table. The rules are illustrated gufe 4,
where each solid or dotted arrow indicates a label entry.

prevLabel all Label generate
Rulel| (u — v,d) | (u1 = u,d1) | (w1 — v,d1 +d)
Rule2| (u — v,d) | (u2 = u,d2) | (u2 = v,d2 +d)
Rue3| (u —v,d) | (v—us3,d3) | (u— u3,d3 +d)
Rule4 | (u = v,d) | (v — ua,ds) | (u— ug,ds +d)
Rule5| (u = v,d) | (v—us,ds) | (u— us,ds +d)
Rule 6| (u — v,d) | (ug = u,dg) | (usg — v,ds +d)

Table 5: Set of label entry generation rules

A generated label entrju. — v, d) becomes a new label entry
for the current iteration if there is no existing label erfoyu — v,
or d is a smaller distance compared with that in other generated o
existing label entries for — v. When we generate label entry
e from two label entriez; andes, and given that; covers path
p1 = (u1, ..., u;) andez covers pathpe = (us, ..., u;), then we say
thate coversthe path(ua, ..., us, ..., u;). We shall show that after
every two iterations, we double the hop length of trough t&sbr
paths that are covered by the label entries generated. Hesce
call this methodHop-Doubling Labeling (see Algorithm 1).
EXAMPLE 1. Given the unweighted graph in Figure 3(a). The
vertices are ranked by non-increasing degrees and gives 00b
7 accordingly, i.e., vertex 0 has the highest rank. Hop-Diogb
Labeling first creates one label entry for each edge: — 1,1),
(1 - 0,1), (2 — 0,1), ... In the first iteration, by Rule 1 or

Lin(0) [{(0,0)} Lout(0) [{(0,0)}
Lin(1) [{(1,0),(0,1)} || Lout(1) |{(1,0),(0,1)}
Lin(2) |1(2,0)} Lout(2) |{(2,0),(0,1),(1,2)"}
Lin(3) [{(3,0),(2, D)} || Lowe(3) [{(3,0),(1,1),(2,2)",(0,2)"}
Lin(4) |{(4,0)} Lout(4) |{(4,0),(0,1),(1,1),(3,2)*,
Lin(5) [{(5,0), (4, 1)} (2,4)%)
Lin(6) 1{(6,0), (0, 1), || Loue(5) [{(5,0),(3,1),(1,2)",(2,3),
(2,1)} (0,3)2}
Lin(7) [{(7,0),(3,1), Lout(6) [{(6,0)}
2.2)"} Lowe (D) [{(7.0), (2. 1)}

Figure 5: Labeling for graph G in Figure 3. The superscript of
an entry indicates the iteration in which the entry is generded.

4, we generatg2 — 1,2) from (2 — 3,1) and (3 — 1,1).
Similarly, (4 — 3,2) and (3 — 2,2) are generated. By Rule 2
or 3, we generaté5 — 1,2) and (3 — 0,2), and Rule 5 or 6
generateg2 — 7,2). In the second iteration, Rule 2 generates
(4 —2,4) from(4 — 3,2) and (3 — 2,2), Rule 2 also generates
(5 — 2,3)and (5 — 0,3). In the third iteration, no new label
entry is generated and the labeling is completed. The result
labels are shown in Figure 5. 0O

Algorithm 1: Hop-Doubling Labeling

Input :G=(V,E)
output : (Lin, Lout)
[/ Initialization

-

rank the vertices by non-increasing degrees;
2 allLabel = prevLabel = set of labels covering all edgesc E;

/] iterative construction
3 while prevLabel # () do
Updateprev Label, all Label using the set of label entry
L generation rules;

5 build index of (L;n, Lout) from all Label;

Next, we show that distance querying based on the labels con-
structed by the algorithm is correct. First, we need a lemma.

LeEmMMA 2. Hop-Doubling labeling achieves the labeling ob-
jectives of O1] and[O2] given in Section 3.1.

PROOF Consider a trough shortest paitfrom v to . Let the
path bep = (v = w1, w2, ...,wx = u). We show by induction
on the hop length ofP. The base case is trivial since we always
include(v, 0) in Ln (v) andLou:(v). Next, assume the statements
in [O1] and[O2] true for all paths of hop length 1 fo— 1. Consider
the pathp = (v = w1, wa, ..., w, = u). There are two possible
cases. Case An(wg) > r(w:i); Case Bir(wi) > r(wk). Let
use first consider Case A. Lefw;) > r(w;) for all j < k and
j # i. Sincep is a shortest path from to u, the sub-pathp;
= (w1, ..., w;) must be a shortest path fromy to w;. Similarly,
the sub-pattp. = (w, ..., wy) is a shortest path from; to wy,.
Clearly,distg (w1, wk) = dista(wi, w;) + dista(w;, wr). Since
r(w;) is the second highest rank in both p; andp. are trough
shortest paths. There are two subcases:

Case Al :r(w;) < r(w1) < r(wg). By the induction hypoth-
esis,e1 = (wy, dista(w;, wr)) Will be inserted iNtoL o (w;),
ande; = (wi,distg(wi,w;)) will be inserted intoL;r, (w;).
Note thate; = (w; — wg, dista(ws, wy)) andes = (w1 —
w;, distq(wy, w;)). er andez may be inserted at the same itera-
tion or at different iterations. I#; is inserted in a later round than
ez, then by Rule 1es = (wg, dista(wi, w;) + dista(wi, wy))
for Lou:(w1) will be generated. &, is inserted in a later round,
then by Rule 4¢3 will be generated for . (w1).
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Figure 6: 4 sufficient rules for label entry generation

Case A2 : r(w1) < r(w;) < r(wg). By the induc-
tion hypothesisg1 = (wy, dista(w;i, wy)) will be inserted into
Lout(w;), and ez = (w;, distg(wi,w;)) will be inserted into
Lout(w1). Note thate; (wi — wg,dista(w;, wr)) and
ex = (w1 — w;, dista(wy, w;)). If e1 is inserted before, then
whene; is newly added, by Rule %3 = (wy, distg(wi, w;) +
dista(ws, wy)) will be added tol o, (w1). If ez is inserted before
e1, thenes will be added tol,.:(w1) by Rule 2.

Similar arguments hold for Case B with subcase B1, whereRule
1 and 4 apply, and subcase B2, where Rules 5 and 6 apply

THEOREM 1. The labels constructed by Hop-Doubling Label-
ing return correct answers for point-to-point distance tas.

PROOF By construction, each label entry(w,d) in
Lin(v)(Lout(v)) covers a pathw ~ v (v ~ w) in the
graph with lengthi. Given a distance query fromto v, consider
a shortest patp from « to v. Letw be the vertex with the highest
rank inp. Note thatw can beu or v. Then the sub-paths ~ w
andw ~» v of p are trough shortest paths. From Lemma 2 we
have an entry(w, distg(u,w)) in Low:(u) and also an entry
(w, dista(w,v)) in Lin(v). Hence we get the correct distance
value ofdista (u,v) = distg(u, w) + distg(w, v) when we look
up the labels for, andw. 0O

3.2 Minimizing the Rules for Labeling

As illustrated by Figure 4, we use 6 rules for generating new
label entries. In this subsection, we show how to minimiz=gét
of rules to accelerate the generation of new entries. Fapligity,
here we refer to a labék — v, d) as(u — v).

LEMMA 3. Rules 1,2,4,5 generate the same results as Rules

1,2,3,4,5,6.

PROOF We first prove by induction that label entries generated

Higher Rank

Case 2 Lower Rank

Figure 7: Eliminating Rule 3

1 Vu — v,d)

r(v) > r(u1)

4. V(u — v,d) € prevLabel, V(v — u4,ds) € allLabel, where
r(u) > r(uq) > r(v), generatdu — uq,ds + d)

€ prevLabel, ¥(u1 — wu,d1) € allLabel, where
> r(u), generat§u; — v,d1 + d)

Previously, Rule 1 may also generatg (— wv), how it only
generate§u; — v). Similar change applies for Rule 4. The 4
simplified rules are illustrated in Figure 6.

LEMMA 4. The simplified Rules 1,2,4,5 generate the same re-
sults as the original Rules 1,2,4,5.

PROOF Consider Rule 1. Originally, we generate; — v)
from an old label entrfu; — u) and a label entryu — v) from
the previous iteration. (1) f(u1) < r(v), then(u; — v) is also
generated by the simplified Rule 1. (2)rfu:1) > r(v), then the
label (v — v) must have been generated by either Rule 1 or 2 from
(u — w) and(w — v) for somew. In the previous iteration or
earlier, we havgui — u), (u — w), and(w — v), by which we
also generatéu; — w). Then, the simplified Rule 4 will generate
(u1 — v). The arguments for Rule 4 are similar. 0O

With the above results, the set of rules in Algorithm 1 now-con
sists of the 4 simplified rules. We will show that after everit-2
erations, we double the maximum hop length of paths coveyed b
labeling. LetDg be the maximum number of edges among all the
pairwise shortest paths. We shall refed3g; as thehop diameter
of the graph.Dy is the diameter of the graph for an unweighted
graph. We call a path with hops or edges k-length path.

THEOREM 2. Forall 0 < ¢ < [log(Dg)], after the2i-th iter-
ation, for each positive integet < 2°, the label entries covering
all k-length trough paths are generated.

PROOF We say that a pathis processed if the label entry cover-
ing p is generated in the label sets. We prove by induction. The bas
case where = 0 is straightforward. Assume the statement true for

by Rule 3 can be generated by Rule 1 and Rule 2. Assume the; < j. We want to show that in th€; + 2)-th iteration, the label

lemma holds for all iterations up to thih iteration. Atthe(i+1)-
th iteration, suppose Rule 3 can genefate— us3) from (v — v)
and(v — u3) where(u — v) is generated in theth iteration and
(v — wua) isinallLabel, then there are two cases of hgw — v)
is generated in theth iteration. (See Figure 7.)

Case 1:(u — wv) is generated byu — w) and (w — v)
wherer(u) < r(w) < r(v). Hence in the-th iteration, we have
(u — w), (w — v) and(v — u3). By Rule 2 we havéw — ug3)
before the(: + 1)-th iteration. Hence, by Rule 2 we can generate
(w — ug) from (v — w) and(w — us).

Case 2 (u — v) is generated bju — w) and(w — v). Hence
in thei-th iteration, we havéu — w), (w — v) and(v — us).
Thus we also havew — ug3) before thegi + 1)-th iteration, and by
Rule 1 we can generafe — us) from (v — w) and(w — us).

Thus,(u — ug) can be generated in another way with Rule 1 or
Rule 2 in the same iteration. Similarly, we can prove thateRis
covered by Rule 4 and Rule 5. 0

entries for allc-length trough paths are generated where 271,
Consider a-length trough patlp =(v1,v2,..., vky1), k = 2911,
Without loss of generality, assumév:) < r(vi+1). Letwv; be the
midpoint of p, so thatp is divided into 2 path®: = (v1,...,v;)
andpz = (vy, ..., vk+1). Obviously,p. is a trough path and it has
a hop length o£’, and by induction, its label entry has been gen-
erated latest in thej-th iteration. Letv, be the vertex of highest
rank amongus, ...v;. Then, fromp;, we have two trough paths
P11 = (’U17 ...7’0}1) andp12 = (’Uh7 ...,Uj). The hOp Iengths 0f)1
andp, are bounded b®?, and hence both of them are processed
latest in the2j-th iteration. Hence latest at tH&;j + 1)-th iter-
ation, the label entries for the trough path linking. andp-, i.e.
(vh, ..., vet+1) Will be created. Therefore latest at t(y + 2)-th it-
eration, the patl which concatenates; 1 ,p12 andp2 will be found
and processed. The same argument appliek for2’ +* 0

3.3 Reducing Index Size by Label Pruning

Other than removing Rules 3 and 6, next, we show that Rules 1 While the iterative process generates new label entriesdagh

and 4 can be further simplified as follows.

shortest paths of increasing hop lengths, such a shortésppa



u ~ v may be hit by a higher degree vertex. We can discover
such a case if we find label entriég — w, d1) and(w — v, d2),
sincew is a higher degree vertex. We add a pruning step in order
to remove such generated label entries. This step is apaliat
generated label entries at each iteration after the labetrgéon
step at Line 4 of Algorithm 1.

Label Pruning: A label entry(u — v, d) is pruned if there exist
label entriefu — w, d1) and(w — v, d2) whered; + dz < d.

ExamMPLE 2. For our example in Figure 3, in the first iteration,
(2 — 1,2) is generated froni2 — 3,1) and(3 — 1, 1). However,
there exist label entrie$2 — 0,1) and (0 — 1,1) before this
iteration. By the above pruning ste@ — 1, 2) will be pruned

We want to show that with the pruning steps, the labelingltésu
still correct. A similar pruning step is used in PLL [7], butlPcre-
ates label entries by decreasing rank order of the pivots ttaurs,
the correctness follows from canonical labeling. It is nbvious
in our case since we do not create label entries in rank offter.
show the correctness, we need some definitions. For theargbel
without pruning, letZ (k) be the set of labels at the end of iteration
k, andL be the set of labels in the final index. For the labeling with
pruning, letL’ (k) be the set of labels at the end of iteratigrand
L' be the set of labels in the final index.

THEOREM3 (CORRECTNES$. Distance querying by the in-
dex built by Hop-Doubling labeling with pruning is correct.

PROOF Given a distance query fromto ¢ in G, consider the
setP of all shortest paths from to ¢. Letp € P contain the
highest ranked vertex,, in all paths inP. Note thatv,, can be
s ort. Then, subpathés ~ v,,) and (v, ~ t) in p are trough
shortest paths. By Lemma 2, = (s — vm, distg(s,vm)) and
e2 = (vm — t,distg(vm,t)) are generated id. We want to
show thate; andes are also inL’. We prove by contradiction.
Supposee; ¢ L/, then it has been pruned at some iteratiorso
thate;, € L(k) — L'(k). By the pruning mechanism, at itera-
tion k, there exist label entries — w,d1) and(w — vm, d2)
from previous iterations, and; + d2 = dista(s,vm). There-
fore there exists a paths, ..., w, ..., vm, ..., t) with a length of
dr + d2 + distg(vm,t) = dista(s,vm) + dista(vm,t), and it
is a shortest path fromto ¢. However,r(w) > r(vy). This con-
tradicts our assumption that, is the highest ranked vertex in all
shortest paths from to t. The argument for the case wherge ¢
L’ is similar. Hence, we conclude that ande, existin L’ and the
answer to the query is correct. 0O

COROLLARY 1. Latest at iterationk = 2[log Dy, for any
shortest pathu ~» v, there exist the label entrie@ — v, d1)
and (v, — v, d2) in L' (k) such thatd; + d> = diste(u,v).

The corollary follows from the above proof and Theorem 2,-con
sidering thatv,, is the highest ranked vertex among all shortest
pathsu ~ v. Now, we are ready to bound the number of iterations
of our algorithm.

THEOREM 4. The number of iterations of Hop-Doubling with
pruning is upper bounded Bflog Dx .

PROOF Consider iteratiork = 2[log Dy | + 1, if a label cov-
ering a pathp, (v — v, d), is generated by one of the 4 rules, then
there exists a trough patthh ~» v, and therefore a shortest path
from u to v. From Corollary 1, there exist i’ (k — 1) the label
entriese; = (u — vm,d1) andez = (vm — v,d2) such that

Algorithm 2: Candidate Generation (Rules 1 and 2)

Input  : prewv, old (label entries)
Output : candidate label entries

/] prev (u—wv) are sorted by uin file
/1l old (uir »u) are sorted by uin file
Il old (uz —u) are sorted by uz in file

1 allocate bufferBy, to load next batch oprev (v — v), (u — v’), ...
andold (u1 — u), (uy = w), ..., inBg;

2 allocate bufferBp to load old(uz — u), (u2z — v’)... , and
candidateguz — "), (uz = v'”)...,in Bg;

3 foreachblock By, do

4 sort the(u; — w) entries inBr, by u1;

5 foreach block B do

/] Generation by Rule 1
foreach old (uz = w3 — w) in By, do
foreach prev (v — v) in Br, do
8 generate candidate
L (ug = v) = (u2 = u1 = u — v);

~N o

/1 Generation by Rule 2
9 foreach (uz — u) in Bg do

10 foreach prev (v — v) in Br, do

| generate candidateiz — v) = (u2 — u — v);

dy + d2 = dista(u,v), and these entries will not be pruned in
L' (k). If vy = v, then(u — v,d1) € L'(k — 1), and(u — v,d)

will not be generated as a new label. Similarlyif, u. If

Um # v andv, # u, the label(u — v, d) will be pruned by

e1 andez, and will not survive as a new label. We conclude that
no new label will be generated afteflog D] iterations and the
process stops. 0

As we shall see in our empirical studies, the above boundns ve
helpful for some datasets which deviate from the small dtame
property of scale-free graphs.

4. /0 EFFICIENT ALGORITHMS

In this section, we describe the implementation of Hop-Diogb
with pruning and analyze the time complexity and 1/0O comipjex
There are two steps in each iteration: (1) label generatibich we
call candidate generatiohere, and (2) label pruning. For the anal-
ysis of I/O complexity, we adopt the following conventionsrh
[6]. Let scan(N) = ©(N/B), whereN is the amount of data
being read or written from or to disk{/ is the main memory size,
andB is the disk block siz¢1 << B < M/2).

4.1 Candidate Generation

We assume that main memory may not be able to hold the la-
bel index or even the input graph. Hence we devise an 1/O effi-
cient mechanism that resembles a nested loop join for catedid
generation. In the following, for clarity, we refer to a lalestry
(u — v,d) as(u — v). In each iteration, we have three types
of label entriesprev entriesare generated in the previous iteration
and survived pruningcandidatesare generated in the current it-
eration, andld entriesare all label entries that survived pruning
before the current iteration. Hence, the sebkf entries includes
theprev entries.

The pseudo code for candidate generation by Rules 1 and 2 is
shown in Algorithm 2. We loaghrev label entriesu — v) and
old label entrieu; — w) into memory in the outer loop, which
are sorted by in the corresponding files. We make sure that for
eachu where there is arev out-label entry(u — v), we load the



u related label entries into memory, i.eu — v), (u — v’), etc.,
and(ui — u), (u] — u), etc. Next, we sort all the loaded entries
(u1 — u) by ui. Note that theprev entries(uv — v) are still
sorted by the: values. In the inner loop, for eaeh where there is
anold entry (uz — u), we load all theold entries starting fron
into memory, i.e.(uz — u), (uz — u’), etc. Candidates are also
loaded in the inner loop block. After loading the 3 kinds ofris,
we generate label entries started frapgiby Rule 1 and Rule 2. For
generation by Rule 1, we fingd in-label entriegu: — ) loaded

in the outer loop block withix = w4 by a linear scan of the entries
(u1 — ...). For eachu, we use a binary search to locateev out-
label entriefu — v), and then enumerate them by a linear scan to
generatgus — v) from (uz = w1 — u) and(u — v). We avoid
duplicates of{uz — v) by a binary search among label entries of
(uz — ...). For generation by Rule 2, based og, we findprev
out-label entries. — v to generatus — v) from (uz — ) and

(u — v). Similarly, we generate candidates from Rules 4 and 5.

Next we analyze the CPU time complexity for candidate gen-
eration. We consider only Rule 1 since the other rules take si
ilar time. From Theorem 4, there af@(log D) iterations. In
each iteration, for each outer loop block, we scan &l la-
bel entries and any candidate label entries generated snitthi
eration so far. Letold|, |prev|, and|cand| stand for the to-
tal sizes ofold, prev, and candidate label entries, respectively.
There areD((|old|) /M) outer loop blocks. The total CPU time is
given byO(log Dy (Jold|)/M x |V ||label| x (log M + |label]) x
log |label|), where|label| bounds the label size of a vertex. The
term |V| comes from each, considered in the inner loop block.
For each suchuz, we scanl;,(uz2) in the outer block, thus in-
troducing the factor oflabel|. For each scanned entry, the binary
search and the linear scan introduce a factaii@f M + |label]).
Finally, O(log |label|) time is spent for each candidate to avoid
duplicates.

For the 1/0O complexity, we scasld andprev label entries once
in the outer loop, and for each outer loop block, we scanofide
and candidate label entries once. The total I/O cost is tivesidpy
O(log Dx[lold|/MT] x scan(|old| + |cand])).

4.2 Label Pruning

In each iteration, after the label candidate generationapre
ply the pruning step as discussed in Section 3.3. For 10 effici
computation, we adopt a nested loop join strategy. We prune a
out-label entry(u — v) of u by (v — w) and(w — v) where
r(w) > r(v) > r(u). A similar method is adopted for in-label
entry (u — v) wherer(u) > r(v).

We allocate half of the memory for the outer loop and another
half for the inner loop. In the outer loop, we loatli label entries
(u = w),(uw — w'),..., and candidatetu — v), (u — V'), ...,
both of which are sorted by, into memory. In the inner loop, we
scan all theold in-label entriew — v), (w' — v), ..., which
are sorted by. We scan eaclu — v) in the outer loop block.
For each(u — v), we findv related entriegw — v) in the inner
loop block by a binary search. Then, we linearly scarithelated
entries(u — w) in the outer loop block together with therelated
(w — v) for possible pruning ofu — v). After all (u — v)
entries are checked, we load another batcfuof- v) in the inner
loop to check the unprungd. — v) until all (w — v) have been
loaded into memory once for pruning all the possible— v) in
memory from the outer loop. We continue this process fortall t
remaining batches of label entries in the outer loop unélehd.

We analyze the CPU complexity for the pruning step. For each
candidate owld entry of (u — v), we perform a binary search
and a scanning of the labels farand forv, hence the time re-

quired isO(log Dg (|cand| + |old|)(log M + |label|)). For 1/O
complexity, in each iteration, all theld label entries are loaded
into memory forO([(|cand| + |old|)/M7) times, by nested loop.
With O(log D) iterations, it requiresO(log Dy ([(|cand| +
lold|)/M| x scan(|old|) + scan(|cand| + |old|))) I/Os.

5. ENHANCEMENT BY HOP-STEPPING

For Hop-Doubling labeling, the 1/0 complexity is given by
O(log Dy [(Jold] + |cand|)/M] x (|old| + |cand|)/B). Let
us considericand|. The candidates are generated from the la-
bels created in the previous round of execution. From Egnati
(2), the expansion factor iR = log |V/|. In each iteration, from
Theorem 4, the path hop length can expand by at nisgl/2,
where Dy is the hop diameter of the graph. Hen¢egnd| =
O(|prev|(log |V|)P#/?). The factor of(log |V'|)”#/2 can greatly
affect the I/O cost. Itis caused by the hop doubling properhere
in each iteration we may cover paths with hop lengths up tdkou
that in the previous round. To deal with this issue, we carsioh
alternative strategy whereby we increase the number oftnpae
in each iteration. We show that after each iteration, thellalze
is bounded byO(h|V|). SinceR = log |V, the value oflcand)|
in the complexity analysis becoméxh|V|log|V]). We call this
methodHop-Stepping

5.1 Hop Lengthi+1from iand 1

Hop-Stepping retains all the steps of the Hop-Doubling liage
method. However, the 4 rules as illustrated in Figure 6 forege
ating labels are refined as follows: at iteratios- 1, hop length
of the path covered by — v is 7; while we have unit hop length
for the paths covered by the following labels; — u in Rule
1, uz — win Rule 2;u — u4 in Rule 4; andu — us in Rule
5. Only edges inE’ have unit hop lengths. E.g., Rule 1 becomes
V(u — v,i) € prevLabel, V(ui — u,1) € allLabel, where
(u1,u) € Eandr(v) > r(u1) > r(u), generatéu; — v,7 + 1).

ExAMPLE 3. For the graphG in Figure 3, in the second itera-
tion of Hop Stepping(4 — 2, 4) will not be generated, since the
hop lengths of botlid — 3,2) and (3 — 2,2) are 2. (4 — 2,4)
is generated in the next iteration frofd — 5,1) and (5 — 2, 3).

Let us consider the correctness and other properties of Hop-
Stepping. First, we show that it generates label entriep#dhs
of unit increasing hop-lengths in subsequent iterationghé fol-
lowing, we refer to a path withhops as ari-length path.

LEMMA 5. For1 < ¢ < Dy, at thei-th iteration, the label
entries covering alt-length trough shortest paths are generated.

PROOF We prove by induction. The base case where 1 is
straightforward. Assume the statement trueffox ¢ < j. Con-
sider a(j + 1)-length trough shortest path= (v1,v2, ..., vj+2).
Supposer(vi) < r(vj42). pis made up of two sub-paths =
(v1,v2) andpz = (va, ..., vj+2). Obviouslyps is a trough shortest
path and it has a hop length gfby induction, the label entry cov-
ering p2 has been generated at th¢h iteration. p1 = (v1,v2) is
also a trough shortest path with a hop length of 1, so the ouyer
entry has also been generated. By the Hop-Stepping algurith
will be generated at thgj + 1)-th iteration by either Rule 1 or Rule
2. Similar arguments hold far(vi) > r(vj42) by using Rule 4
and Rule 5. 0O

Next, we add the pruning steps to each iteration. We show that
the resulting labeling is correct for distance querying.



THEOREM5 (CORRECTNES$. Distance querying by the in-
dex built by Hop-Stepping labeling with pruning is correct.

The proof is similar to that for Hop-Doubling. From Lemma 5,
we also have the following bound on the number of iterations.

THEOREM 6. The number of iterations of Hop-Stepping label-
ing with pruning is upper bounded by .

5.2 A Bound on the Label Size

In this section we derive a bound on the label size. First we
show that afted, iterations, only label entries involving vertices in
H (see Assumption 1) will be added to the labels of each vertex.

LEMMA 6. Let I(p) (u — v,d) be a label entry which
covers trough shortest path where the hop length of is £ and
k > do. Then]l(p) is pruned at iteratiork unlessu € Hor v € H.

PROOF From Lemma 5/(p) is generated at iteratioh. Since
p has a hop length of > do, by Assumption 1p is hit by some
vertex inH. Consider the seéP of all shortest paths from to v
with k& hops, letw be a vertex iriH with the highest rank if?. Let
h1 be the hop length of the shortest path frarto w andh. be that
fromw towv. So0,hy + he = k. Hencehy < kandhs < k. Letus
define label seté (i) and L’ (z) as in Section 3.3. From Lemma 5,
e1 = (u — w,diste(u,w)) andes = (w — v, distg(w,v)) are
generated at or before iteratién\We prove by contradiction thag
ande, are inL’ (k). Supposes; ¢ L' (k), then since itis inL(k),
it has been pruned. By the pruning condition, there existiglaeh
rank vertexz, with r(z) > r(w), such thap: = (u, ..., z, ..., w)
has a length oflistc(u,w). Thus,z is a higher ranked vertex
that is on a shortest path fromto v, compared tax andw, a
contradiction to the fact that has the highest such rank. Similarly,
we prove thak is in the label ofv in L' (k). Thus,(p) is pruned
at iterationk, except whenv = u orw = v. 0O

Assumption 2 in Section 2.2 states that paths of distanaawbel
do are hit by a small set of at mohktvertices in the close neighbor-
hood ifH is excluded. Thus, we derive the following.

LEMMA 7. For each label for each vertex in the label index
L, the number of entriegu, d) whereu ¢ H is bounded byh.

PROOF We need only consides ¢ H since otherwisdu, d)
cannot be in its labelsC,.+ (v) initially contains the entries involv-
ing out-neighbors of), then expanding to the close neighborhood
with increasing hop lengths. If no high degree vertex is exed,
this neighborhood is kept small. Consider a vertexc H in the
neighborhood at hops fromw. Thus,r(w) > r(v). Let the pattp
from v to w via thek hops be a shortest path of distanke Con-
sider an out-neighbat of w, wherer(u) < r(w), andu is k + 1
hops fromw. Let the path froms to u via p andw be a shortest path
of distanced; + d2. The candidate entrfu, d) will be generated
from p and (w, u) with d = d1 + d2 at the(k + 1)-th iteration.
From Lemma 5, the entrig® — w,d:) and(w — u,d2) have
been generated in previous iterations since their correpg hop
lengths are less thah + 1. Candidate(u, d) will be pruned by
(v — w,d1) and(w — u, dz) sinced; + d2 = d, and will not be
added toC,..(v). Similar arguments hold fo€;,, (v). The lemma
then follows from Assumption 2 and Lemma 6. 0O

THEOREM 7. Given an unweighted scale-free graghthe la-
bel size of any vertex at any iteration of Hop-Stepping witlmihg
is O(h).

Theorem 7 follows from Lemmas 6 and 7, and Assumptions 1 to
3. Note that this is an optimal label size if the valuehdf a tight
bound on the hitting set size. It is easy to show that Hop-Dingb
generates all the label entries that are generated in Heppig,
and by exhaustive pruning, the label size is the same asfthiam
Stepping and is bounded I6y().

5.3 Complexity Analysis

The detailed algorithm for Hop-Stepping with Pruning isitam
to that for Hop-Doubling, except that we only consider e la-
bel entries with only one hop. Thus, the analysis is simitathiat
described in Section 4, except that we hdvg iterations. From
Theorem 7|old| = |[prev| = O(h|V|). Since|cand| = |prev| X R,
whereR = log |V, |cand| = O(h|V|log|V|). Therefore, label
generation require® (D g [h|V|/M] x hlog h|V| x (log M +h))
CPU time and)(Dy [h|V|/M] x scan(h|V |log |V |) I/Os. Also,
in total label pruning take®(D g h|V|log |V])(log M + h) CPU
time andO(Dy x [h|V|log |V |/M] x scan(h|V])) I/Os.

THEOREM 8. With the assumptions of smalDy and h,
the total CPU time for Hop-Stepping with pruning is given
by O(|V]logM (|V|/M + log|V])), and the 1/O complexity is
O(|V[log|V|/M x |V|/B).

5.4 Hop-Stepping and Hop-Doubling

Itis possible to combine the strengths of Hop-Doubling itk
of Hop-Stepping. Hop-Stepping can trim the fast growth & th
lengths of paths covered by label entries at the earlieatitars,
when the hop lengths are small. For graphs where the hop thame
is not very small, a small fraction of the shortest paths héle
long hop lengths. In such a case, to avoid the larger number of
iterations, we can continue the growth by Hop-Doubling.

LEmMMA 8. If we begin the label construction with Hop-
Stepping and switch to Hop-Doubling after a number of itieras,
with the pruning step applied to all iterations, distanceegting
based on the resulting labeling is correct.

6. UNDIRECTED, WEIGHTED, AND GEN-
ERAL GRAPHS

Our algorithms can be easily extended to handle undirected
graphs. Instead of having two labels,, (v) and L. (v) for each
vertexv, we need only one labél(v). To cover an undirected path
of lengthd betweenu an v, wherer(u) < r(v), we use the la-
bel entry(v, d) in £(u). It is simpler than the directed case, since
Rule 1(2) will be identical to Rule 4(5), when the directioofs
paths are removed. Hence we only need Rules 1 and 2. For in-
stance, Rule 1 says that: frofm1 — wu,d1) and (v — v,d),
wherer(v) > r(ui) > r(u), generatgqu; — v,d1 + d). For
undirected graphs, this rule becomes: from, d:) € £(u) and
(v,d) € L(u), wherer(v) > r(u1), generatgv, di +d) in L(u1).
Rules 2 is similarly converted. For distance querying, tieels
L(s) andL(t) are looked up for a given query dist(s,t).

While our discussions so far have focused on unweightechgrap
all our mechanisms also apply to weighted directed/untiicec
graphs with positive edge weights. Though our complexitgl-an
ysis is based on unweighted scale-free graphs, our expesme
real weighted graphs show highly promising results.

For graphs that are not scale-free, the ranking by degreenotay
be effective. For example, road networks do not have highedeg
vertices. However, our algorithms are still relevant foe ten-
eral graphs since they work with any total ranking of vedicés
discussed in Section 2, higher ranked vertices should rargel



G=(V,E) ‘ v ‘ |E| ‘ Max |G| ‘| Index size (MB) [ Indexing time (sec) || Memory query time s) [[ Disk query time (ms)
’ deg G) | (MB) |[ is-Label [ PLL | HopDb |[ Is-Label [ PLL | HopDb || BIDIJ [ IS-Label [ PLL | HopDb || IS-Label [ HopDb
undirected unweighted
Delicious 5.3M | 602M 4M 9446 — — | 12748 — — | 31999 — — — — — 30.1
BTC 168M | 361M 106K 7550 — — | 13971 — — | 11401 — — — — — 28.4
FlickrLink 1.7M 31M 27K 452 — — 4068 — — 4284 || 25513 — — — — 22.7
Skitter 1.7M 22M 36K 344 — — 3732 — — 4888 5011 — — 3.06 — 24.6
CatDog 624K 16M 81K 231 — | 836 656 — | 145 1152 || 24127 — | 098] 0.78 — 16.3
Cat 150K 5M 81K 67 171 | 141 61 628 7 102 1880 23] 031] 022 15.7 7.3
Flickr 106K 2M 5K 30 — | 226 238 — | 42 269 1497 — | 2.06 | 2.06 — 12.6
Enron 37K | 368K 1K 5 138 33 10 37 0.5 3 108 48] 014 | 0.08 6.9 0.6
directed unweighted
wikiEng 17M | 240M 2M 4447 — — | 31904 — — | 99686 — — — — — 38.9
wikiFr 5.1M | 113M M 1964 — — 8661 — — | 18532 5317 — — — — 31.2
wikiltaly 2.9M | 105M 825K 1755 — | — 9707 — | — 132397 4384 — — — — 28.2
Baidu 2.IM 18M 98K 271 — | — 5184 — | — 6737 1842 — — — — 29.4
gplus 102K 14M 21K 182 — | — 337 — | — 623 717 — — | 241 — 11.6
wikiTalk 2.4M 5M 100K 74 — | — 1464 — | — 377 201 — — | 033 — 20.4
slashdot 77K | 517K 2K 7 1035 — 65 439 — 19 49 7.2 — 0.49 18.4 5.7
epinions 76K | 509K 3K 6 1126 — 68 517 — 20 76 9.2 — 0.61 19.1 4.5
EuAll 265K | 420K 2K 6 343 — 65 31 — 9 23 8.3 — 0.19 11.7 6.3
synthetic
synl 10M | 700M 3M 8998 — [ — 9030 — [ — T 49612 — — — — — 40.1
syn2 20M | 600M aM 8118 — | — [ 20272 — | — | 56460 — — — — — 37.9
syn3 15M | 450M 3M 5990 — | — [ 13552 — | — [ 31920 — — — — — 38.2
syn4 10M | 200M 2M 2633 — | — 6825 — | — 7804 — — — — — 35.5
syn5 M 5M 95K 61 7987 | 876 161 878 14 43 3685 40.4 | 0.26 0.14 24.4 15.4
syn6 100K M 18K 10 262 88 14 25 1.4 3 305 39| 0.18 0.08 11.2 1.2
undirected weighted
amaRating 3.3M 11M 12K 197 — — | 15934 — — | 22609 || 61450 — — — — 27.7
epinRating 876K | 27M 162K 376 — | — 1846 — | — 2994 || 12550 — — | 611 — 221
movRating 9746 2M 3K 24 120 [ — 23 452 | — 50 369 | 18672 — | 7.80 4.8 0.8
bookRating 264K | 867K 9K 13 4533 [ — 223 2444 [ — 99 112 — — | 2.28 25.4 14.8

Table 6: Performance comparision of BIDIJ, IS-Label, PLL and HopDb on complete 2-hop indexing for different graphsG.

number of shortest paths. The direct approach to deternicie s
a vertex ranking requires the computation of the shorteispgar
all pairs of vertices, which may not be practical for largairs.
Hence, some heuristical method to approximate this rankiag
be helpful. With such a ranking, our algorithms can be appked
all analyses hold except for those in Sections 5.2 and 5.8revh
assumptions based on scale-free graphs are adopted.

7. EXPERIMENTAL RESULTS

We implemented our algorithms in C++, and tested the perfor-
mance of our algorithms using a Linux machine with an Int8| 3.
GHz CPU, 4GB RAM and 7200 RPM SATA hard disk. We com-
pared with three state-of-the-art algorithms, 1S-Lab8] [PLL [7],
and HCL [20], with coding provided by their authors. We con-
ducted experiments on various real-world networks. We wsed
32-bit integer for each vertex in the vertex set and an 8ié-i
ger for the distance value in the graph. The information aktioe
datasets is listed in Table 6. Most of the datasets are @atdiom
the Stanford Network Analysis Project and KONECT [1]. We se-
lected graphs with power-law degree distributions. Weldhbel
our algorithm as HopDb. By default, we adopt the hybrid appho
where we apply Hob-Stepping with pruning in the first 10 itienas
and switch to Hob-Doubling with Pruning from the 11-th itiva
until the last iteration.

The networks tested in our experiment are as follows. Dmigi
is the user-tag network on delicious.com. BTC is the sernanti
graph from Billion Triple Challenge 2009. FlickrLink is tHak
network on flickr.com. Skitter is an Internet topology grajitat-
Dog and Cat are social networks. Flickr is the image sharitg n
work on flickr.com. Enron is an email communication network.
WikiEng/WikiFr/Wikiltaly is the wikilinks from Wikipedia Baidu
is the internal links network on baidu.com. Gplus and slashd
are social networks. wikiTalk records the discussions ¢dpedia

users. Epinions is a who-trust-who network. EUAll is a Euro-
pean email network. AmaRating and EpinRating are customer-
product rating networks. MovRating and BookRating are oeks

of movie rating and book rating, respectively. For direcjeaphs,

we rank vertices by non-increasing product of in-degree autd
degree due to its better performance. We have also condidere
synthetic scale-free networks generated based on the GeR-(G
eralized Linear Preference) model [11]. The GLP model istas
on the BA model [8] but allows more flexibility. The required-p
rametergn andm, are set to 1.13 and 10, respectively, as in [11],
which gives a power law exponent of 2.155. Unweighted undi-
rected graphs of varying vertex set sizes and densitiesearerg
ated, synl to syn6 are six such datasets.

Performance Comparison: We compared our algorithm with the
only external algorithm 1S-Label [18] which is capable oflbing

full indices. We also compared our algorithm with the twotbes
existing main memory based indexing methods, namely PLL [7]
and HCL [20]. We examined the index size, indexing time, disk
based querying time and memory based querying time (with in-
dex in memory). We measured the performance of IS-Label when
building the complete index. We also compared with basddine
Dijkstra search for in memory querying.

The PLL coding provided by the authors of [7] only handles
undirected unweighted graphs and it incorporated a bad{ehr
mechanism for efficient querying, which is applicable to @&y
hop index on undirected unweighted graphs. Hence, we hawe al
added an enhanced bit-parallel component in HopDb for livagndl|
the graphs that can be handled by PLL. The idea of bit-paialle
to select a small set of vertices as roots, e.g. 50 by defa&ltL's
code, and to merge the label entry of the fofmd) with (r,d’),
wherev is a neighbour of a root vertexin the given graph. More
details can be found in [7]. We also added a bit-wise method to
look up common roots in two labels for efficient query proaass
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From the results as shown in Table 6, HopDb outperformed the

other methods in nearly all aspects. HCL could not finishledl t
datasets after running for 24 hours, except for Enron, foickvh
all the costs are 3 orders of magnitude higher than HopDhbheso t
results are not included in Table 6. PLL has a smaller indgexin
time since it is a main memory based algorithm, while HopDB is
a disk based algorithm. However, PLL could not handle most of
the datasets because of the large main memory requirenrehefo
index construction. IS-Label could not finish the mediumargé
sized datasets after running for 24 hours. With the datagekrF
the intermediate graply; has grown to become bigger than the
original graph in the second iteration, and continued tavgrbis

is because the pruning strategy of I1S-Label is much lesstafée
compared with our pruning method.

For the smaller datasets, PLL, I1S-Label and HopDb built the
complete 2-hop index successfully, but the index sizes ofabu
gorithm are significantly smaller than those of IS-Label alvaays
smaller than PLL, and hence the querying efficiency of Hop®b i
also substantially better than 1S-Label and better than.PLL

We have also conducted experiments on weighted graphseWhil
we assume small hitting sets for unweighted graphs onlyeghgts
on weighted real graphs also indicate small hitting sete/&ighted
graphs. This is a promising evidence that the assumptiogsaisa
hold for many weighted scale-free graphs.

Results on Small Hitting Set: We verify the concept of small hit-
ting set in the real life datasets by showing small averagebau

of label entries |{abel|) per vertex and high coverage of label en-
tries by top vertices in Table 7. A label entfy, d) is said to be
covered byv. From our discussion in Section 5.2, the size of the
final label set can be bounded B)h|V'|) with a smallh, which is
consistent with the small averafebel| values listed in the table,
and is the guarantee for the high efficiency of our query Bsicg.
Moreover, from the label coverage by top vertices, we knaat &m
extremely small amount of top vertices, given by the peiages

in the last three columns of Table 7, can cover most labelesntr
like 70%, 80%, and90% listed in the table. The top% of vertices
often cover close t600% of the label entries, as shown in Figure
8. These top vertices formed the §&for the small hitting sets.

Graph numbgr of | Avg |label]| top vertices coverage
Iterations per vertex 70% 80% 90%
BTC 14 12 0.01% 0.01% 0.02%
Skitter 13 456 || 0.13% 0.21% 0.43%
CatDog 9 275 || 0.83% 1.55% 3.25%
Cat 6 104 || 0.78% 1.33% 2.79%
Flickr 7 515 || 7.62% | 13.80% | 16.72%
Enron 7 321 || 0.60% | 1.02% | 2.29%
wikiEng 15 192 || 0.03% | 0.05% | 0.13%
wikiltaly 15 343 || 1.69% 2.34% 3.73%
gplus 8 342 || 2.87% 4.37% 7.56%
wikiTalk 7 60 0.02% 0.04% 0.07%
slashdot 9 84 0.73% 1.12% 1.89%
epinions 9 91 [[ 0.89% | 1.31% | 2.10%
EUAll 7 22 || 0.04% | 0.06% | 0.09%

Table 7: Results supporting the assumptions of small hub di-
mensionh and small hitting sets (label| = number of label en-
tries)

Graph Indexing time (sec) number of iterations
Double Step | Hybrid || Double | Step | Hybrid
BTC — | 21081] 11401 — 38 14
Skitter — 6400 4888 — 21 13
wikiltaly — | 47558 | 32397 — 59 15
gplus 4205 642 642 5 8 8
wikiTalk 2221 378 378 5 7 7
slashdot 145 19 19 5 9 9
epinions 157 20 20 5 9 9

Table 8: Comparing Hop-Doubling, Hop-Stepping, and Hybrid

Results on Synthetic Scale-free DataWWe have generated scale-
free networks with different densities in GLP to show thelaoit
ity of HopDb. In our first experiment, the number of verticéshe
graphs is fixed to 10 million, and the densitigs|/|V| are varied
from 2 to 70. The number of iterations varies from 7 to 5, which
confirms our assumption of a small diameter for scale-frepiyr
The graph sizes and the average number of label entries inexve
are reported in Figure 9. As the graph size increases lindhd
average label size remains very small and approaches a lilet va
below 200. The results strongly support our assumptionsnaflls
hitting sets and small hub dimension for scale-free graphs.
Similarly, we tested the scalability of HopDb in scale-firest-
works with growing number of vertices by the GLP model. We set
the density E|/|V'| to 20, and varied the number of vertices from
2 millions to 30 millions. The greatest average label sizrdind
200, which is very small compared t&'|. This indicates that our
assumption of small hub dimension holds for all graph sizes.

Effects of Hop-Stepping and Pruning: To show the effectiveness
of the hop-stepping and pruning strategies, we compare@fthe
ficiency of adopting different strategies in Table 8 and FégloO.
We considered the three alternatives: only hop-doublinty, lbop-
stepping, and our default hybrid approach. The hybrid agro
achieved the best performance as listed in the column hyOidly
adopting doubling strategy may lead to too many candidatései
beginning, so it took a long time to finish the large dataséts.
the first 10 iterations, hybrid utilized the hop-steppingtggy to
limit the growth of candidates and label size. From the liteh
ation, the hybrid approach switched to hop-doubling to ecaete
the process of candidate growing and limit the number céitens.
In datasets with large diameters, the hybrid approach douitthe
number of iterations and finish the whole process earlier.

We analyze the running process of a large dataset, wiki-tng,
show the power of the pruning strategy and hop-steppinggorei
10. We introduce two numbers, i.e. growing factor and prgnin
factor, to show the effectiveness. For each iteration, tiogving
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