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ABSTRACT
Shortest path queries are ubiquitous in many spatial applications.

Existing solutions assign numerical weights to edges and compute

the path with the minimum sum of edge weights. However, in

practice, the road categories associated with edges (e.g., toll) can

make shortest paths undesirable, e.g., they may use unfavorable toll

roads. Augmenting each edge with a label to denote its category,

we study the Label-Constrained Shortest Path (LCSP) query that

finds the shortest path under the constraint that the edge labels

along the path should follow an input pattern expressed by a formal

language. There have been extensive LCSP solutions, but they are

either inefficient in query processing or limited to particular lan-

guages with low expressiveness capacity. In this paper, we propose

the index called Partially Constrained Shortest Path (PCSP), which

answers each query quickly by a small number of table lookups

and supports the more general regular languages. We also present

pruning techniques that further optimize query efficiency. Experi-

mental comparison with the state-of-the-art index demonstrates

the superiority of PCSP. It can answers each LCSP query in around

100 microseconds and runs faster than the best-known solution by

up to two orders of magnitude.
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1 INTRODUCTION
The point-to-point shortest path query is one of the fundamental

operations in road networks and is widely used in GPS naviga-

tion, online car-hailing and urban planning. Based on appropriate

numerical weights assigned to each edge (representing road seg-

ments), it provides users with the shortest path by minimizing the

sum of weights of the traversed edges. However, these shortest

paths regard all edges as the same and ignore different road cat-

egories behind edges (e.g., highways, toll roads and rural roads).

In most cases, users are more concerned with shortest paths that
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use specific types of roads following a flexible and realistic prede-

fined pattern. For example, commercial navigation products often

plan to use highways in the continuous middle part of a route.

Environmentalists are interested in shortest paths that combine

several public transport modes (e.g., shared bikes and subways).

Augmenting each edge with an additional “label” (apart from the

numerical edge weight) to represent its road category, we study the

Label-Constrained Shortest Path (LCSP) query that finds the shortest
paths of desired patterns.

LCSP is formalized in the context of formal languages [7]. Specif-

ically, all edge labels form the alphabet Σ, and the path label con-

catenated by the edge labels along the path can be seen as a word.
Given a formal language 𝐿 (defined on Σ) used to represent the

desired patterns, the LCSP query asks for the shortest path such

that its path label (or word) belongs to 𝐿. For example, web mapping

platforms (such as Google Maps) may be interested in the language

𝐵∗𝐴+𝐵∗, where 𝐴 and 𝐵 stand for highways and secondary roads,

respectively. The returned LCSP should first use secondary roads,

then highways, and finally secondary roads. Without the language

constraint, the recommended shortest paths could interleave high-

ways with some shortcut secondary roads to reduce distances, but

it is inconvenient for drivers to follow the paths. In the example of

multimodal-trip planning, the pattern can be described by 𝑏∗𝑦∗𝑏∗,
where 𝑏 and 𝑦 represent shared bikes and subways, respectively.

The LCSP answer satisfying the language constraint should use

bikes before and after subways.

Much research effort has been devoted to designing LCSP algo-

rithms [5–7, 24, 37, 43]. However, early index-free solutions were

inefficient in query processing [5–7]. Recent indexing approaches

focused on the restricted Kleene languages that only allow the use

of specific labels in an input label set without caring about their

order, frequencies, and more complex relationships [24, 37, 43].

This may result in many unreasonable paths, such as the previous

example of highways interleaved with shortcut secondary roads.

On the other hand, due to the limited expressiveness of Kleene

languages, it cannot satisfy users’ demand for more various and

realistic path patterns. Furthermore, their solutions did not fully

harness the indexing power to provide fast query processing. They

mainly preprocessed auxiliary data to prune the search space in

query time. However, when the data volume and device memory

increase, the indexes could directly store sufficiently many partial

path answers in hash tables to process queries quickly by few table

lookups. For example, the state-of-the-art index, called LSD [43], is

based on the tree decomposition (which is a popular technique for

path queries [35]) that allows us to focus on a “small set” of vertices

given a source and a destination, with the correctness guaranteed.

LSD’s query processing then recursively updates the distances from

the source (or destination) to the vertices in the “small set”. But,
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in fact, these search processes could be done in the preprocessing

phase by storing partial path answers for more efficient querying

based on table lookups.

Motivated by the above challenges, we aim to design an LCSP

index that supports faster querying for the more general regular
languages, which can express many flexible label constraints as

in previous examples. Specifically, we propose the index called

Partially Constrained Shortest Path (PCSP) that tries to find the

LCSP by concatenating two shortest paths (stored in the index)

that partially satisfy the label constraint (and fully satisfy it after

concatenation). We also utilize the tree decomposition to find the

small vertex set as in LSD. However, our main novelty lies in PCSPs,

which means that any other new techniques that provide this vertex

set can be adopted. For Kleene languages, LSD can extend the

idea for the unconstrained shortest path by maintaining several

distances w.r.t. different label sets (not just a single one in the

unconstrained case). However, for regular languages, we cannot

simply focus on several label sets as in LSD since there are various

regular languages that indicate different orders, frequencies, and
relationships of labels. It is nontrivial to preprocess useful PCSPs

for query processing. Therefore, we try to provide an index for a

given fixed regular language so that we can define some useful

PCSPs with the help of the deterministic finite automaton (DFA)

behind the fixed regular language. It is useful for applications with

clear purposes, e.g., online mapping wants to return paths without

unreasonable shortcuts, and a visitor prefers to travel through at

most three sightseeing spots (on some roads) in a day. In practice,

all popular regular languages can be preprocessed once since the

number of patterns of interest is often small. To further improve

query efficiency, we design pruning techniques that prune the

“small set” without affecting the correctness. The experiments in

real networks show that our index can answer LCSP queries faster

than the best-known LSD by up to two orders of magnitude. We

summarize our contributions as follows.

• We propose the index called PCSP, which is by far the

fastest known LCSP solution. It answers LCSP queries with

label constraints expressed by regular languages. We also

propose several efficient pruning techniques.

• We theoretically analyze the correctness and complexities

of the proposed index and pruning techniques.

• Experimental results show that PCSP answers each LCSP

query in around 100 microseconds and outperforms the

best-known LCSP solution by orders of magnitude.

The remainder of the paper is organized as follows. Section 2

states the problem. Section 3 gives an overview of the index and

query processing, detailed in Section 4 and Section 5, respectively.

Section 6 shows our experiments. Section 7 reviews the related

work. Section 8 concludes our paper.

2 PRELIMINARIES
2.1 Problem Statement

Definition 2.1 (Labeled Road Network). Let𝐺 (𝑉 , 𝐸, Σ, 𝑙, 𝑑) be an
undirected graph where 𝑉 and 𝐸 are the vertex and edge sets,

respectively, and the alphabet Σ is a finite nonempty set of labels.

Let 𝑛 = |𝑉 | and𝑚 = |𝐸 |. Each edge 𝑒 ∈ 𝐸 is associated with two

attributes: its label 𝑙 (𝑒) ∈ Σ and distance 𝑑 (𝑒) ∈ R+.
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Figure 1: A labeled road network 𝐺

Example 2.2. Figure 1 shows a labeled road network 𝐺 . Let Σ =

{𝑏,𝑦, 𝑐} where 𝑏,𝑦, 𝑐 represent bike, subway, and car, respectively.

Beside each edge 𝑒 , we show its distance 𝑑 (𝑒) and label 𝑙 (𝑒).

When a road segment is associated with multiple labels or dis-

tances, we create multiple edges for it. We will discuss how to

handle directed graphs in Section 5. The path pattern constraint is

formulated by a regular language [2, 7].

Definition 2.3 (Regular Expression and Regular Language). Given
an alphabet Σ disjoint from {𝜖, ∅, (, ),∪, ·, ∗}, we can define the

collection of regular expressions over Σ recursively. 1) The empty

set ∅, each 𝑎 ∈ Σ, and the empty string 𝜖 are regular expressions. 2)

If 𝐴 and 𝐵 are regular expressions, 𝐴∗ (Kleene Star), 𝐴 ∪ 𝐵 (union),

and 𝐴 · 𝐵 (concatenation) are regular expressions. We can similarly

define the corresponding regular languages by these notations. Each

regular language 𝐿 can be defined by a regular expression.

Definition 2.4 (Path). A 𝑢-𝑣 path 𝑝𝑢𝑣 of length 𝑘 is a finite se-

quence of vertices ⟨𝑣0 = 𝑢, 𝑣1, 𝑣2, . . . , 𝑣𝑘 = 𝑣⟩ such that each 𝑒𝑖 =

(𝑣𝑖−1, 𝑣𝑖 ) ∈ 𝐸 for 1 ≤ 𝑖 ≤ 𝑘 . Its distance is defined by 𝑑 (𝑝𝑢𝑣) =∑𝑘
𝑖=1 𝑑 (𝑒𝑖 ), where 𝑑 (𝑒𝑖 ) is the distance of edge 𝑒𝑖 , and its label is

defined by 𝑙 (𝑝𝑢𝑣) = 𝑙 (𝑒1) · 𝑙 (𝑒2) . . . 𝑙 (𝑒𝑘 ), which is the concatena-

tion of the edge labels along the path. Let 𝑝𝑠𝑣 ⊕ 𝑝𝑣𝑡 be the path
concatenation of 𝑝𝑠𝑣 and 𝑝𝑣𝑡 . We only consider simple paths.

Example 2.5. In Figure 1, the path 𝑝𝑣1𝑣2 = ⟨𝑣1, 𝑣3, 𝑣4, 𝑣7, 𝑣6, 𝑣2⟩
has its distance 𝑑 (𝑝𝑣1𝑣2 ) = 9 and label 𝑙 (𝑝𝑣1𝑣2 ) = 𝑏𝑦𝑦𝑏𝑦.

Definition 2.6 (Label-Constrained Path). Given a regular language
𝐿 over Σ, a path 𝑝 is a label-constrained path if its label 𝑙 (𝑝) satisfies
the language 𝐿, i.e., 𝑙 (𝑝) ∈ 𝐿.

Example 2.7. Consider a regular language 𝐿 defined by 𝑏∗𝑦∗𝑏∗,
which means that we can first ride a bike, then take the subway, and

finally ride a bike. In Figure 1, the path 𝑝𝑣1𝑣2 = ⟨𝑣1, 𝑣3, 𝑣4, 𝑣7, 𝑣6, 𝑣2⟩
is not a label-constrained path since its label 𝑙 (𝑝𝑣1𝑣2 ) = 𝑏𝑦𝑦𝑏𝑦 ∉

𝐿. We will not consider this path (which uses a bike to trans-

fer between subway stations) by using the regular language 𝐿.

In fact, using the Kleene language cannot express this require-

ment to avoid generating this unreasonable path. The path 𝑝𝑜𝑝𝑡 =

⟨𝑣1, 𝑣3, 𝑣4, 𝑣7, 𝑣9, 𝑣8, 𝑣6, 𝑣2⟩ is a label-constrained path since its label

𝑙 (𝑝𝑜𝑝𝑡 ) = 𝑏𝑦𝑦𝑦𝑦𝑦𝑦 ∈ 𝐿.

Definition 2.8 (Label-Constrained Shortest Path (LCSP) Problem).
Given a labeled network 𝐺 (𝑉 , 𝐸, Σ, 𝑙, 𝑑) and a regular language 𝐿,

we aim to build an in-memory index to answer the LCSP query

with a source 𝑠 and a destination 𝑡 by the LCSP 𝑝𝑜𝑝𝑡 such that it

has the shortest distance among all the label-constrained 𝑠-𝑡 paths.
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Figure 2: A DFA for 𝑏∗𝑦∗𝑏∗

Example 2.9. We still use the labeled road network and the reg-

ular language in the previous examples. Suppose that we want to

answer an LCSP query with 𝑠 = 𝑣1 and 𝑡 = 𝑣2. Without the con-

straint, the shortest path is ⟨𝑣1, 𝑣3, 𝑣4, 𝑣7, 𝑣6, 𝑣2⟩ with a distance of

9, but its label cannot be accepted by 𝐿. Under the constraint, the

LCSP is 𝑝𝑜𝑝𝑡 = ⟨𝑣1, 𝑣3, 𝑣4, 𝑣7, 𝑣9, 𝑣8, 𝑣6, 𝑣2⟩ with its label 𝑙 (𝑝𝑜𝑝𝑡 ) ∈ 𝐿
and the minimum distance 𝑑 (𝑝𝑜𝑝𝑡 ) = 14.

2.2 Deterministic Finite Automatons (DFA)
We will use the DFA to judge whether a path label 𝑙 (𝑝) can be

accepted by a regular language 𝐿.

Definition 2.10 (Deterministic Finite Automaton (DFA)). A deter-

ministic finite automaton (DFA) is a 5-tuple (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ), consist-
ing of 1) a finite set of states𝑄 , 2) a finite set of input labels, i.e., the

alphabet Σ, 3) a transition function 𝛿 : 𝑄 × Σ→ 𝑄 , which defines

the next state given the current state and a label, 4) an initial state

𝑞0 ∈ 𝑄 , and 5) a set of accepting or final states 𝐹 ⊆ 𝑄 .

Example 2.11. Figure 2 shows a DFA for the regular language

𝐿 defined by 𝑏∗𝑦∗𝑏∗, where 𝑄 = {𝑞0, 𝑞1, 𝑞2, 𝑞3}, 𝑞0 is the initial

state, and all states are final states, i.e., 𝐹 = 𝑄 . The state transition

function 𝛿 is shown by the arrows.

Each regular expression or regular language can be represented

by a DFA [3]. A path label is accepted by a regular language if and

only if on its corresponding DFA, we can start with the initial state,

use the edge labels one by one for transition, and halt on a final

state. We define an indicator function for a path label as follows.

Definition 2.12 (Indicator Function). Given a path label 𝑙 (𝑝), we
define an indicator function 1𝑞,𝑞′ (𝑙 (𝑝)) for state 𝑞 and 𝑞′ as 1 if

𝑙 (𝑝) can be accepted by the DFA from state 𝑞 to 𝑞′ (which uses the

edge labels of 𝑙 (𝑝) sequentially from state 𝑞 to 𝑞′) and 0 otherwise.

Clearly, for each label-constrained path 𝑝 with its label 𝑙 (𝑝),
1𝑞0,𝑞𝑓 (𝑙 (𝑝)) = 1 hold for at least one 𝑞𝑓 ∈ 𝐹 .

Example 2.13. Back to previous Example 2.9, 𝑙 (𝑝𝑜𝑝𝑡 ) = 𝑏𝑦𝑦𝑦𝑦𝑦𝑦
and 1𝑞0,𝑞2 (𝑙 (𝑝𝑜𝑝𝑡 )) = 1 since 𝑙 (𝑝𝑜𝑝𝑡 ) can be accepted by the DFA

in Figure 2 from state 𝑞0 to state 𝑞2 by using the labels sequentially.

Table 1 lists the main notations used throughout the paper.

3 OVERVIEW
Given two vertices 𝑠 and 𝑡 , we utilize a small set of vertices that lie

in each 𝑠-𝑡 path, called an 𝑠-𝑡 separator, to improve query efficiency.

Table 1: List of notations

Symbol Meaning

𝑉 , 𝐸 vertex and edge sets

Σ, 𝐿 the alphabet of all labels and the regular language

𝑄, 𝐹 the set of states and the set of final states

1𝑞,𝑞′ (𝑙 (𝑝)) the indicator function for state 𝑞 and 𝑞′

𝑙 (𝑒), 𝑑 (𝑒) the label and distance of an edge 𝑒

𝑙 (𝑝), 𝑑 (𝑝) the label and distance of a path 𝑝

𝑋 (𝑣), 𝐻 the tree node for 𝑣 and a separator

P1

𝑣𝑤 ,P2

𝑤𝑣 the two PCSP sets for 𝑋 (𝑣) and its ancestor 𝑋 (𝑤)
𝛼 , 𝐾 the ratio 𝛼 and the the top-𝐾 separators

𝐻 sour (𝐻, 𝑣) pruned separators for 𝐻 and 𝑣 as the source

𝐻des (𝐻, 𝑣) and the destination

Definition 3.1 (Separator). A 𝑢-𝑣 separator 𝐻 is a set of vertices

such that 𝑢 and 𝑣 are disconnected after we remove the vertices in

𝐻 . In other words, any 𝑢-𝑣 path must visit at least one vertex in 𝐻 .

Given an 𝑠-𝑡 separator 𝐻 , a natural idea is to divide the problem

into two subproblems of finding two subpaths. For example, for

an unconstrained shortest 𝑠-𝑡 path 𝑝
𝑜𝑝𝑡
𝑠𝑡 (where 𝐿 = (⋃𝑎∈Σ 𝑎)∗

that allows any label), we can compute the shortest distance by

𝑑 (𝑝𝑜𝑝𝑡𝑠𝑡 ) = minℎ∈𝐻 {𝑑 (𝑝
𝑜𝑝𝑡

𝑠ℎ
) + 𝑑 (𝑝𝑜𝑝𝑡

ℎ𝑡
)} (where 𝑝𝑜𝑝𝑡

𝑠ℎ
and 𝑝

𝑜𝑝𝑡

ℎ𝑡
are

the shortest 𝑠-ℎ and ℎ-𝑡 paths, respectively) since the shortest path

𝑝
𝑜𝑝𝑡
𝑠𝑡 must visit at least one vertex ℎ ∈ 𝐻 and any subpath of 𝑝

𝑜𝑝𝑡
𝑠𝑡

is also a shortest path [35]. The query processing can be fast if we

can obtain a small 𝑠-𝑡 separator 𝐻 quickly and have stored 𝑑 (𝑝𝑜𝑝𝑡
𝑠ℎ
)

and 𝑑 (𝑝𝑜𝑝𝑡
ℎ𝑡
) for each ℎ ∈ 𝐻 in the index.

However, given a regular language 𝐿, for the LCSP 𝑝
𝑜𝑝𝑡
𝑠𝑡 , we

cannot use the same idea because the label concatenation may not

satisfy the language 𝐿 (i.e., 𝑙 (𝑝𝑜𝑝𝑡
𝑠ℎ
) · 𝑙 (𝑝𝑜𝑝𝑡

ℎ𝑡
) ∉ 𝐿 though 𝑙 (𝑝𝑜𝑝𝑡

𝑠ℎ
) ∈ 𝐿

and 𝑙 (𝑝𝑜𝑝𝑡
ℎ𝑡
) ∈ 𝐿). Instead of storing just one shortest 𝑠-ℎ (or ℎ-𝑡 )

path, our Partially Constrained Shortest Path (PCSP) index stores

a set of partially constrained shortest 𝑠-ℎ paths (and ℎ-𝑡 paths)

that satisfy the language constraint partially. Specifically, the path

concatenated by an 𝑠-ℎ PCSP 𝑝 with 1𝑞0,𝑞 (𝑙 (𝑝)) = 1 and an ℎ-𝑡

PCSP 𝑝′ with 1𝑞,𝑞𝑓 (𝑙 (𝑝′)) = 1 for any 𝑞 ∈ 𝑄 and 𝑞𝑓 ∈ 𝐹 will satisfy

the language constraint completely since the label concatenation

𝑙 (𝑝) · 𝑙 (𝑝′) (or 𝑙 (𝑝 ⊕𝑝′)) can be accepted by the DFA from the initial

state𝑞0 to a state𝑞 and from𝑞 to a final state𝑞𝑓 ∈ 𝐹 . The LCSP 𝑝
𝑜𝑝𝑡
𝑠𝑡

is the one with the shortest distance among all the concatenated

paths for all ℎ ∈ 𝐻 . To obtain a small 𝑠-𝑡 separator 𝐻 quickly, we

will use the tree decomposition, which is a commonly used data

structure for separators [35, 38]. We will also call the vertices in 𝐻

as “hoplinks” since each vertex ℎ ∈ 𝐻 links one “hop” (i.e., a path)

from 𝑠 to ℎ and the other hop from ℎ to 𝑡 .

We observe that an 𝑠-𝑡 separator 𝐻 may use redundant hoplinks

that are irrelevant to finding the final LCSP 𝑝𝑜𝑝𝑡 . We prune a ho-

plink ℎ ∈ 𝐻 if whenever the LCSP 𝑝𝑜𝑝𝑡 traverses ℎ, we can always

find another hoplink ℎ′ ∈ 𝐻 such that 𝑝𝑜𝑝𝑡 also traverses ℎ′, which
means that ℎ′ also lies in the LCSP and checking ℎ′ is sufficient.

To further improve query efficiency, our PCSP index additionally

preprocesses some pruned separators for specific types of queries
and directly uses them in query processing.
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Figure 3: A tree decomposition of 𝐺

4 INDEX CONSTRUCTION
We first give some basics of the tree decomposition since we utilize

it and then explain how to preprocess PCSPs and pruned separators.

4.1 Tree Decomposition
Tree decomposition embeds the structural information of a graph

into a tree so that we can solve graph problems efficiently. Many

state-of-the-art solutions for path queries are based on it [13, 32,

35, 41, 43, 47]. Though it is irrelevant to edge labels, we can use it

to get a small separator to improve query efficiency.

Definition 4.1 (Tree Decomposition [38]). A tree decomposition of

a graph 𝐺 (𝑉 , 𝐸) is a rooted tree with its tree nodes {𝑋 (𝑣) |𝑣 ∈ 𝑉 }.
Each vertex 𝑣 is mapped to a tree node 𝑋 (𝑣) that represents a
vertex set that includes 𝑣 (i.e., 𝑋 (𝑣) ⊆ 𝑉 and 𝑣 ∈ 𝑋 (𝑣)). The tree
decomposition satisfies the following three conditions:

(1) ∪𝑣∈𝑉𝑋 (𝑣) = 𝑉 ;
(2) For each edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, there is a tree node 𝑋 (𝑣 ′) such

that 𝑢 ∈ 𝑋 (𝑣 ′) and 𝑣 ∈ 𝑋 (𝑣 ′);
(3) For each 𝑣 ∈ 𝑉 , the tree nodes that contain 𝑣 (i.e., {𝑋 (𝑣 ′) |𝑣 ∈

𝑋 (𝑣 ′)}) form a connected subtree.

Example 4.2. We plot the tree decomposition for the network

𝐺 of Figure 1 in Figure 3. Each tree node 𝑋 (𝑣) is a set of vertices
including 𝑣 , which we mark in a grey block. For example, 𝑋 (𝑣5) =
{𝑣5, 𝑣8, 𝑣10}.

For better clarity, we will use “node” for the tree decomposi-

tion and “vertex” for the graph. We define its treewidth as 𝜔 =

max𝑣∈𝑉 |𝑋 (𝑣) | and its treeheight 𝜂 as the maximum depth of a tree

node (i.e., the length of the simple tree path to the root node).

Lemma 4.3 ([13]). For any two vertices 𝑠 and 𝑡 such that 𝑋 (𝑠)
and 𝑋 (𝑡) have no ancestor-descendant relationship, the least common
ancestor (LCA) of 𝑋 (𝑠) and 𝑋 (𝑡), denoted by 𝑋 (𝑐), is a separator. Let
𝑋 (𝑐𝑠 ) and 𝑋 (𝑐𝑡 ) be the two child nodes of 𝑋 (𝑐) in the two branches
containing 𝑋 (𝑠) and 𝑋 (𝑡), respectively. Then, both 𝑋 (𝑐𝑠 )\{𝑐𝑠 } and
𝑋 (𝑐𝑡 )\{𝑐𝑡 } are separators.

Example 4.4. For 𝑣1 and 𝑣2,𝑋 (𝑣7) is the LCA of𝑋 (𝑣1) and𝑋 (𝑣2).
Thus, 𝑋 (𝑣7) = {𝑣7, 𝑣8, 𝑣9, 𝑣10} is a separator for 𝑣1 and 𝑣2. Since

𝑋 (𝑐𝑠 ) = 𝑋 (𝑣4) and 𝑋 (𝑐𝑡 ) = 𝑋 (𝑣6), 𝑋 (𝑐𝑠 )\{𝑐𝑠 } = {𝑣7, 𝑣10} and
𝑋 (𝑐𝑡 )\{𝑐𝑡 } = {𝑣7, 𝑣8} are two separators.

Minimum Degree Elimination (MDE). The tree decomposi-

tion can be built by the MDE algorithm (Algorithm 6 in [35] adapted

from [10]). It first creates tree nodes iteratively and then links them

by a tree. In the first phase, in each iteration of creating a tree

node, it first finds the vertex 𝑣 with the minimum degree in the

graph 𝐺 ′ (which is initially 𝐺). Then, 𝑋 (𝑣) is formed by 𝑣 and its

current neighbors in 𝐺 ′. It next removes 𝑣 and its incident edges

and adds an edge between each pair of 𝑣 ’s neighbors in 𝐺 ′ if the
edge does not exist. In this way, any two neighbors of 𝑣 are still

connected after we remove 𝑣 and all 𝑣 ’s incident edges (since they

are connected via 𝑣 before the removal). In the second phase, the

parent of each node 𝑋 (𝑣) is set to the node 𝑋 (𝑣 ′) where 𝑣 ′ is the
first removed vertex in 𝑋 (𝑣)\{𝑣}.

Example 4.5. MDE first creates𝑋 (𝑣1) = {𝑣1, 𝑣3} since 𝑣1’s degree
is currently the minimum. It removes the edge (𝑣1, 𝑣3) and adds

no new edge. It similarly creates 𝑋 (𝑣2). For 𝑋 (𝑣3) = {𝑣3, 𝑣4, 𝑣10},
it removes the two edges (𝑣3, 𝑣4) and (𝑣3, 𝑣10) and adds (𝑣4, 𝑣10).
Similarly, it creates 𝑋 (𝑣4), 𝑋 (𝑣5), . . . , 𝑋 (𝑣10). Next, MDE links all

nodes. The parent of 𝑋 (𝑣1) is 𝑋 (𝑣3) because 𝑣3 is the first removed

vertex in 𝑋 (𝑣1)\{𝑣1}. We can similarly do the rest steps and finally

get the tree decomposition in Figure 3.

4.2 Partially Constrained Shortest Path
4.2.1 Two PCSP Sets. Formally, for each node 𝑋 (𝑣), whenever
𝑋 (𝑤) is an ancestor of 𝑋 (𝑣), our PCSP preprocesses the following

two sets of PCSPs:

(1) The first set P1

𝑣𝑤 = {(𝑞, 𝑝1𝑞𝑣𝑤) |𝑞 ∈ 𝑄, 𝑆
1𝑞
𝑣𝑤 ≠ ∅}, where 𝑆1𝑞𝑣𝑤 =

{𝑝𝑣𝑤 |1𝑞0,𝑞 (𝑙 (𝑝𝑣𝑤)) = 1} is the set of all 𝑣-𝑤 paths 𝑝𝑣𝑤 whose

labels 𝑙 (𝑝𝑣𝑤) can be accepted by the DFA from the initial state 𝑞0

to the state 𝑞, and 𝑝
1𝑞
𝑣𝑤 = argmin

𝑝∈𝑆1𝑞𝑣𝑤
𝑑 (𝑝) is the one in 𝑆1𝑞𝑣𝑤 with

the shortest distance.

(2) The second set P2

𝑤𝑣 = {(𝑞, 𝑝2𝑞𝑤𝑣) |𝑞 ∈ 𝑄, 𝑆
2𝑞
𝑤𝑣 ≠ ∅}, where

𝑆
2𝑞
𝑤𝑣 = {𝑝𝑤𝑣 |∃𝑞𝑓 (𝑞𝑓 ∈ 𝐹 ∧1𝑞,𝑞𝑓 (𝑙 (𝑝𝑤𝑣)) = 1)} is the set of all𝑤-𝑣

paths 𝑝𝑤𝑣 whose labels 𝑙 (𝑝𝑤𝑣) can be accepted by the DFA from

the state 𝑞 to a final state 𝑞𝑓 ∈ 𝐹 , and 𝑝
2𝑞
𝑤𝑣 = argmin

𝑝∈𝑆2𝑞𝑤𝑣
𝑑 (𝑝) is

the one in 𝑆
2𝑞
𝑤𝑣 with the shortest distance.

The two sets P1

𝑣𝑤 and P2

𝑤𝑣 store a set of shortest 𝑣-𝑤 paths

𝑝
1𝑞
𝑣𝑤 from the initial state 𝑞0 to some states (which will be used in

the “first” 𝑠-ℎ subpath) and a set of shortest 𝑤-𝑣 paths 𝑝
2𝑞
𝑤𝑣 from

some states to final states (which will be used in the “second” ℎ-𝑡

subpath), respectively. They can be fetched by looking up a hash

table w.r.t. the node𝑋 (𝑣) and its ancestor𝑋 (𝑤). Note that the order
of 𝑣 and𝑤 in the subscript is important because the labels of 𝑣-𝑤

paths are different from the labels of 𝑤-𝑣 paths. Also, note that

“1” and “2” in the superscript indicate whether the path label is

accepted by the DFA from an initial state to intermediate states or

from intermediate states to final states. We do not need to store

P2

𝑣𝑤 and P1

𝑤𝑣 since they will never be used in query processing.

Example 4.6. For 𝑋 (𝑣1), its ancestors are 𝑋 (𝑣10), 𝑋 (𝑣9), 𝑋 (𝑣8),
𝑋 (𝑣7), 𝑋 (𝑣4), and 𝑋 (𝑣3). For its ancestor 𝑋 (𝑣10), we store P1

𝑣1𝑣10

and P2

𝑣10𝑣1
. In P1

𝑣1𝑣10
, for 𝑞2, 𝑝

1𝑞2
𝑣1𝑣10 = ⟨𝑣1, 𝑣3, 𝑣4, 𝑣7, 𝑣9, 𝑣10⟩ because



𝑣
𝑤𝑢

…

𝑋 𝑣 \{𝑣}

…

𝒫𝑢𝑤, 𝒫𝑤𝑢

𝑃𝑣𝑢 , 𝑃𝑢𝑣

…

Figure 4: The simplified graph 𝐺 ′ in the iteration for 𝑋 (𝑣)

it has the shortest distance of 8 with its label 𝑙 (𝑝1𝑞2𝑣1𝑣10 ) = 𝑏𝑦𝑦𝑦𝑦 and

1𝑞0,𝑞2 (𝑙 (𝑝
1𝑞2
𝑣1𝑣10 )) = 1. In P2

𝑣10𝑣1
, for 𝑞0, 𝑝

2𝑞0
𝑣10𝑣1 = ⟨𝑣10, 𝑣9, 𝑣7, 𝑣4, 𝑣3, 𝑣1⟩

with its label 𝑙 (𝑝2𝑞0𝑣10𝑣1 ) = 𝑦𝑦𝑦𝑦𝑏 and 1𝑞0,𝑞3 (𝑙 (𝑝
2𝑞0
𝑣10𝑣1 )) = 1. For 𝑞1

and 𝑞2, 𝑝
2𝑞1
𝑣10𝑣1 = 𝑝

2𝑞2
𝑣10𝑣1 = 𝑝

2𝑞0
𝑣10𝑣1 .

Given 𝑠 and 𝑡 , if 𝑋 (𝑡) (or 𝑋 (𝑠)) is an ancestor of 𝑋 (𝑠) (or 𝑋 (𝑡)),
we first fetch P1

𝑠𝑡 (or P2

𝑠𝑡 ) from the hash table. Then, we only need

to consider 𝑝
1𝑞
𝑠𝑡 ∈ P1

𝑠𝑡 with 𝑞 ∈ 𝐹 (or 𝑝
2𝑞
𝑠𝑡 ∈ P2

𝑠𝑡 with 𝑞 = 𝑞0) and

return the one with the shortest distance as the LCSP since its label

can be accepted by the DFA from the initial state to a final state.

If 𝑋 (𝑠) and 𝑋 (𝑡) have no ancestor-descendant relationship, we

set a separator𝐻 as the one with a smaller size between𝑋 (𝑐𝑠 )\{𝑐𝑠 }
and𝑋 (𝑐𝑡 )\{𝑐𝑡 } by Lemma 4.3. By the property of the tree decompo-

sition [38], for each ℎ ∈ 𝑋 (𝑐𝑠 )\{𝑐𝑠 } and ℎ ∈ 𝑋 (𝑐𝑡 )\{𝑐𝑡 }, 𝑋 (ℎ) is an
ancestor of both 𝑋 (𝑠) and 𝑋 (𝑡). Thus, for each ℎ ∈ 𝐻 , we can fetch

P1

𝑠ℎ
and P2

ℎ𝑡
from the hash tables at nodes 𝑋 (𝑠) and 𝑋 (𝑡), respec-

tively. Next, for each ℎ ∈ 𝐻 , we find the path 𝑝
𝑜𝑝𝑡

ℎ
with the shortest

distance among {𝑝1𝑞
𝑠ℎ
⊕ 𝑝2𝑞

ℎ𝑡
|𝑞 ∈ 𝑄, (𝑞, 𝑝1𝑞

𝑠ℎ
) ∈ P1

𝑠ℎ
, (𝑞, 𝑝2𝑞

ℎ𝑡
) ∈ P2

ℎ𝑡
},

where the concatenation requires that the two paths share the same

hoplink ℎ and the same state 𝑞. Finally, we compare the distances of

all 𝑝
𝑜𝑝𝑡

ℎ
for ℎ ∈ 𝐻 and return the LCSP with the shortest distance.

4.2.2 Preprocessing PCSP Sets. For each node𝑋 (𝑣) and each𝑋 (𝑣)’s
ancestor 𝑋 (𝑤), we need to preprocess the two sets P1

𝑣𝑤 and P2

𝑤𝑣

of PCSPs. Instead of directly deriving them, we consider their two

supersets so that we can perform concise recursive computations

in a top-down manner in the tree. We will finally extract the two

sets from their supersets.

Specifically, for each node 𝑋 (𝑣) and each 𝑋 (𝑣)’s ancestor 𝑋 (𝑤),
we consider two supersets P𝑣𝑤 = {(𝑞, 𝑞′, 𝑝𝑞𝑞

′
𝑣𝑤 ) |𝑞, 𝑞′ ∈ 𝑄, 𝑆

𝑞𝑞′
𝑣𝑤 ≠ ∅}

(for 𝑣-𝑤 paths) and P𝑤𝑣 (for 𝑤-𝑣 paths) similarly, where 𝑆
𝑞𝑞′
𝑣𝑤 =

{𝑝𝑣𝑤 |1𝑞,𝑞′ (𝑙 (𝑝𝑣𝑤)) = 1} is the set of all 𝑣-𝑤 paths 𝑝𝑣𝑤 whose

labels 𝑙 (𝑝𝑣𝑤) can be accepted by the DFA from state 𝑞 to state 𝑞′,

and 𝑝
𝑞𝑞′
𝑣𝑤 is the one in 𝑆

𝑞𝑞′
𝑣𝑤 with the shortest distance, i.e., 𝑝

𝑞𝑞′
𝑣𝑤 =

argmin
𝑝∈𝑆𝑞𝑞

′
𝑣𝑤

𝑑 (𝑝). We can easily extract P1

𝑣𝑤 and P2

𝑤𝑣 from P𝑣𝑤
andP𝑤𝑣 by considering the initial state and final states, respectively.
Note that one shortest path 𝑝

𝑞𝑞′
𝑣𝑤 in P𝑣𝑤 may not be in P𝑤𝑣 since it

may not be a shortest𝑤-𝑣 path when its label 𝑙 (𝑝𝑞𝑞
′

𝑣𝑤 ) is reversed.
The main idea of deriving P𝑣𝑤 and P𝑤𝑣 is that in the MDE

algorithm, in the iteration of creating the node 𝑋 (𝑣) that includes
𝑣 and 𝑣 ’s neighbors in 𝐺 ′, we can regard all 𝑣 ’s neighbors in 𝐺 ′

(i.e., 𝑋 (𝑣)\{𝑣}) as a separator between 𝑣 and𝑤 in 𝐺 ′, as shown in

Figure 4. Since the shortest paths in P𝑣𝑤 and P𝑤𝑣 must visit at

least one 𝑣 ’s neighbor 𝑢 ∈ 𝑋 (𝑣)\{𝑣}, we can concatenate each of

Algorithm 1: PCSPJoin
input :Two path sets 𝑃1 and 𝑃2 and a joined path set 𝑃res
output :Updated joined path set 𝑃res

1 foreach (𝑞1, 𝑞′
1
, 𝑝1) ∈ 𝑃1 do

2 foreach (𝑞2, 𝑞′
2
, 𝑝2) ∈ 𝑃2 where 𝑞′

1
= 𝑞2 do

3 if there exists no (𝑞1, 𝑞′
2
, 𝑝) in 𝑃res or

𝑑 (𝑝1) + 𝑑 (𝑝2) < 𝑑 (𝑝) then
4 𝑝 ← 𝑝1 ⊕ 𝑝2
5 Update (𝑞1, 𝑞′

2
, 𝑝) in 𝑃res

6 𝑃res ← 𝑃2 (or 𝑃1) if 𝑃1 (or 𝑃2) is a set of 𝑣-𝑣 paths for any 𝑣

𝑣 ’s incident edges (𝑣,𝑢) with the shortest 𝑢-𝑤 and𝑤-𝑢 paths (i.e.,

P𝑢𝑤 and P𝑤𝑢 ) to update P𝑣𝑤 and P𝑤𝑣 , respectively.
For the latter P𝑢𝑤 and P𝑤𝑢 , we can follow a top-down man-

ner recursively in the tree and obtain them from the previously

computed hash table w.r.t. the node 𝑋 (𝑢) and its ancestor 𝑋 (𝑤)
(if 𝑋 (𝑤) is the ancestor of 𝑋 (𝑢)) or the node 𝑋 (𝑤) and its an-

cestor 𝑋 (𝑢) (otherwise). For the former 𝑣 ’s incident edges, one

problem is that some incident edges (𝑣,𝑢) are newly added be-

fore the iteration of creating 𝑋 (𝑣). For example, in the iteration

of creating 𝑋 (𝑣 ′), we may add (𝑣,𝑢) if both (𝑣, 𝑣 ′) and (𝑣 ′, 𝑢) ex-
ist. Moreover, (𝑣, 𝑣 ′) and (𝑣 ′, 𝑢) may also be newly added edges

in the previous iterations. We associate two path sets 𝑃 (𝑣,𝑢 ) and
𝑃 (𝑢,𝑣) with each existing and new (undirected) edge (𝑣,𝑢) to pre-

serve the information about the shortest paths when removing

edges. Initially, for each 𝑒 = (𝑣,𝑢) ∈ 𝐸, as a path with a sin-

gle edge, 𝑃 (𝑣,𝑢 ) = {(𝑞, 𝑞′, ⟨𝑣,𝑢⟩) |𝑞, 𝑞′ ∈ 𝑄,1𝑞,𝑞′ (𝑙 (𝑒)) = 1} and
𝑃 (𝑢,𝑣) = {(𝑞, 𝑞′, ⟨𝑢, 𝑣⟩) |𝑞, 𝑞′ ∈ 𝑄,1𝑞,𝑞′ (𝑙 (𝑒)) = 1}. Each time two

edges (𝑣, 𝑣 ′) and (𝑣 ′, 𝑢) are removed, we join 𝑃 (𝑣,𝑣′ ) and 𝑃 (𝑣′,𝑢 ) to
update 𝑃 (𝑣,𝑢 ) and 𝑃 (𝑢,𝑣′ ) and 𝑃 (𝑣′,𝑣) to update 𝑃 (𝑢,𝑣) . When con-

catenating each of 𝑣 ’s incident edge (𝑣,𝑢) with paths in P𝑢𝑤 and

P𝑤𝑢 , we are joining 𝑃 (𝑣,𝑢 ) and P𝑢𝑤 to update P𝑣𝑤 and P𝑤𝑢 and

𝑃 (𝑢,𝑣) to update P𝑤𝑣 .
To join two path sets, we concatenate two paths in the two re-

spective sets such that they share a common intermediate state.

For a pair (𝑞, 𝑞′) with 𝑞, 𝑞′ ∈ 𝑄 , we only maintain the shortest

path 𝑝 with 1𝑞,𝑞′ (𝑙 (𝑝)) = 1. For example, 1𝑞0,𝑞2 (𝑙 (⟨𝑣7, 𝑣6, 𝑣8⟩)) =
1𝑞0,𝑞2 (𝑙 (⟨𝑣7, 𝑣9, 𝑣8⟩)) = 1, and we only need to maintain ⟨𝑣7, 𝑣6, 𝑣8⟩
with a smaller distance w.r.t. (𝑞0, 𝑞2). Let 𝑃res denote the result of
joining two path sets. For the concatenated path 𝑝1 ⊕ 𝑝2 with

1𝑞,𝑞′ (𝑙 (𝑝1 ⊕ 𝑝2)) = 1, if there is no (𝑞, 𝑞′, 𝑝) ∈ 𝑃res w.r.t. the

pair (𝑞, 𝑞′), we directly put (𝑞, 𝑞′, 𝑝1 ⊕ 𝑝2) in 𝑃res. If there exists
(𝑞, 𝑞′, 𝑝) ∈ 𝑃res and 𝑑 (𝑝) > 𝑑 (𝑝1 ⊕ 𝑝2), we update 𝑝 as 𝑝1 ⊕ 𝑝2.
Algorithm 1 describes the operation called PCSPJoin. In Line 1,

we iterate the shortest path 𝑝1 in 𝑃1 with 1𝑞1,𝑞
′
1

(𝑙 (𝑝1)) = 1 for

(𝑞1, 𝑞′
1
) and only need to concatenate it with those 𝑝2 in 𝑃2 with

1𝑞2,𝑞
′
2

(𝑙 (𝑝2)) = 1 for (𝑞2, 𝑞′
2
) where 𝑞′

1
= 𝑞2 in Line 2. In Lines 3–5,

if we have not stored a shortest path with 1𝑞1,𝑞
′
2

(𝑙 (𝑝1) · 𝑙 (𝑝2)) = 1

for (𝑞1, 𝑞′
2
), we put it in the resulting path set 𝑃res. Otherwise, we

update the shortest path for (𝑞1, 𝑞′
2
) if the sum of the two paths’ dis-

tances is smaller than the current one. In Line 6, we handle a special

case where 𝑢 = 𝑤 that may happen in Lines 19–20 of Algorithm 1.

Algorithm 2 summarizes the whole procedure of preprocessing

PCSPs. In Lines 1–3, we initialize 𝑃 (𝑣,𝑢 ) and 𝑃 (𝑢,𝑣) by considering



Algorithm 2: Preprocessing PCSPs

input :A road network 𝐺

output :A tree decomposition and P𝑣𝑤 and P𝑤𝑣 for each
node 𝑋 (𝑣) and each 𝑋 (𝑣)’s ancestor 𝑋 (𝑤)

1 foreach 𝑒 = (𝑣,𝑢) ∈ 𝐸 do
2 𝑃 (𝑣,𝑢 ) ← {(𝑞, 𝑞′, ⟨𝑣,𝑢⟩) |𝑞, 𝑞′ ∈ 𝑄,1𝑞,𝑞′ (𝑙 (𝑒)) = 1}
3 𝑃 (𝑢,𝑣) ← {(𝑞, 𝑞′, ⟨𝑢, 𝑣⟩) |𝑞, 𝑞′ ∈ 𝑄,1𝑞,𝑞′ (𝑙 (𝑒)) = 1}
4 𝐺 ′ ← 𝐺

5 while 𝐺 ′ is not empty do
6 𝑣 ← the vertex in 𝐺 ′ with the smallest degree

7 create a node 𝑋 (𝑣) by 𝑣 and 𝑣 ’s current neighbors
8 foreach pair (𝑢,𝑤) where they are 𝑣 ’s neighbors do
9 if the edge (𝑢,𝑤) does not exist in 𝐺 ′ then
10 add an new edge (𝑢,𝑤)
11 𝑃 (𝑢,𝑤 ) ← PCSPJoin(𝑃 (𝑢,𝑣) , 𝑃 (𝑣,𝑤 ) , 𝑃 (𝑢,𝑤 ) )
12 𝑃 (𝑤,𝑢 ) ← PCSPJoin(𝑃 (𝑤,𝑣) , 𝑃 (𝑣,𝑢 ) , 𝑃 (𝑤,𝑢 ) )
13 Remove 𝑣 and its incident edges in 𝐺 ′

14 foreach node 𝑋 (𝑣) do
15 set 𝑋 (𝑣)’s parent as 𝑋 (𝑣 ′) where 𝑣 ′ is the first

eliminated vertex in 𝑋 (𝑣)\{𝑣}
16 foreach node 𝑋 (𝑣) in a top-down manner do
17 foreach ancestor 𝑋 (𝑤) of 𝑋 (𝑣) do
18 foreach 𝑢 ∈ 𝑋 (𝑣)\{𝑣} do
19 P𝑣𝑤 ← PCSPJoin(𝑃 (𝑣,𝑢 ) ,P𝑢𝑤 ,P𝑣𝑤)
20 P𝑤𝑣 ← PCSPJoin(P𝑤𝑢 , 𝑃 (𝑢,𝑣) ,P𝑤𝑣)

all state pair (𝑞, 𝑞′). Specifically, for each edge 𝑒 = (𝑣,𝑢), since we
can only use one label 𝑙 (𝑒), we only need to consider each 𝑞 ∈ 𝑄
and its next state 𝑞′ that could be reached by using 𝑙 (𝑒). In Lines 4–

10 and 13–15, we follow the standard procedure of building the

tree decomposition. In Lines 11-12, we update 𝑃 (𝑢,𝑤 ) and 𝑃 (𝑤,𝑢 ) by
joining the path sets related to the two edges (𝑢, 𝑣) and (𝑣,𝑤). In
Lines 16-18, we consider a tree node 𝑋 (𝑣), its ancestor 𝑋 (𝑤), and
the separator 𝑋 (𝑣)\{𝑣}. Finally, in Lines 19–20, we obtain P𝑣𝑤 and

P𝑤𝑣 by joining the two path sets 𝑃 (𝑣,𝑢 ) and 𝑃 (𝑢,𝑣) related to the

edge (𝑣,𝑢) and those related to 𝑢-𝑤 and𝑤-𝑢 paths.

Example 4.7. We still use Example 2.9. For ease of presentation,

we will identify each path 𝑝 by its distance 𝑑 (𝑝). The path retrieval

procedure is given in Section 5. In Lines 1–3, we initialize 𝑃 (𝑣,𝑢 )
and 𝑃 (𝑢,𝑣) for each 𝑒 = (𝑣,𝑢) ∈ 𝐸. For example, for (𝑣3, 𝑣4), we set
𝑃 (𝑣3,𝑣4 ) = {(𝑞0, 𝑞2, ⟨𝑣3, 𝑣4⟩), (𝑞1, 𝑞2, ⟨𝑣3, 𝑣4⟩), (𝑞2, 𝑞2, ⟨𝑣3, 𝑣4⟩)} and
similarly 𝑃 (𝑣3,𝑣4 ) . For ease of presentation, we will identify each

path 𝑝 by its distance 𝑑 (𝑝), and the path retrieval by using 𝑑 (𝑝) is
given in Section 5. In Lines 5–13, we build the tree decomposition.

We add no new edge when creating 𝑋 (𝑣1) and 𝑋 (𝑣2). For 𝑋 (𝑣3),
for the pair (𝑣4, 𝑣10), we add a new edge (𝑣4, 𝑣10) with 𝑃 (𝑣4,𝑣10 ) and
𝑃 (𝑣10,𝑣4 ) . We join 𝑃 (𝑣4,𝑣3 ) = {(𝑞0, 𝑞2, 3), (𝑞1, 𝑞2, 3), (𝑞2, 𝑞2, 3)} and
𝑃 (𝑣3,𝑣10 ) = {(𝑞0, 𝑞2, 7), (𝑞1, 𝑞2, 7), (𝑞2, 𝑞2, 7)} to obtain 𝑃 (𝑣4,𝑣10 ) =

{(𝑞0, 𝑞2, 10), (𝑞1, 𝑞2, 10), (𝑞2, 𝑞2, 10)}. We similarly create the other

nodes and path sets. In Lines 16–20, for 𝑋 (𝑣9) and its ancestor

𝑋 (𝑣10), we create P𝑣9𝑣10 = 𝑃𝑣9𝑣10 and P𝑣10𝑣9 = 𝑃𝑣10𝑣9 since P𝑣10𝑣10 =
∅. For 𝑋 (𝑣8), we similarly build P𝑣8𝑣10 and P𝑣10𝑣8 for its ancestor

𝑋 (𝑣10) and P𝑣8𝑣9 and P𝑣9𝑣8 for its ancestor 𝑋 (𝑣9). We can then

process the remaining nodes similarly.

Theorem 4.8. Algorithm 2 correctly builds P1

𝑣𝑤 and P2

𝑤𝑣 .

Proof. It suffices to prove that we correctly build P𝑣𝑤 and

P𝑤𝑣 since they are supersets of P1

𝑣𝑤 and P2

𝑤𝑣 , respectively. We

first prove by induction that in each iteration of creating 𝑋 (𝑣),
any LCSP between vertices in 𝐺 ′ can be found by using 𝑃 (𝑢,𝑤 )
and 𝑃 (𝑤,𝑢 ) for each 𝑒 = (𝑢,𝑤) ∈ 𝐸 (𝐺 ′). Next, we can prove the

correctness of P𝑣𝑤 and P𝑤𝑣 by induction on the tree about using

the separator 𝑋 (𝑣)\{𝑣} to concatenate the incident edge with path

sets, as stated previously. For the first statement, the base case for

𝐺 ′ = 𝐺 holds since 𝑃 (𝑢,𝑤 ) and 𝑃 (𝑤,𝑢 ) for each 𝑒 = (𝑢,𝑤) ∈ 𝐸 only

store the corresponding edge information. Now assume that any

LCSP can be found before 𝑣 ’s incident edges are removed. After

they are removed, any LCSP either traverses 𝑣 or not. The latter

case holds due to the hypothesis. For the former one, the LCSP

consists of an 𝑠-𝑢 subpath, (𝑢, 𝑣) and (𝑣,𝑤), and a𝑤-𝑡 subpath. The

first one and the last one can be restored by the hypothesis, and

the middle one (𝑢, 𝑣,𝑤) can be restored by using 𝑃 (𝑢,𝑤 ) and 𝑃 (𝑤,𝑢 )
since we integrate the shortest path information in Lines 11–12. □

Theorem 4.9. Algorithm 2’s time complexity is O(|𝑉 | log |𝑉 | +
|𝑉 |𝜔2 |𝑄 |2 + |𝑉 |𝜂𝜔 |𝑄 |2)), where 𝜔 and 𝜂 are the treewidth and tree-
height, respectively, and |𝑄 | is the number of states. The space cost of
PCSPs is O(|𝑉 |𝜂 |𝑄 |2).

Proof. The first term in the time complexity represents the

time cost of selecting the vertex with the smallest degree (Line 6),

which is implemented by a priority queue. The second term uses 𝜔

to bound the number of 𝑣 ’s neighbors and |𝑄 |2 for the PCSPJoin
operation (Algorithm 1). The third term is the time cost of Lines 16–

20, where 𝜂 and𝜔 are upper bounds of the number of ancestors and

|𝑋 (𝑣)\{𝑣}|, respectively. The space cost is O(|𝑉 |𝜂 |𝑄 |2) because we
store P𝑣𝑤 and P𝑤𝑣 for each node 𝑋 (𝑣) and its ancestor 𝑋 (𝑤). □

It can be observed that both time and space complexities are

related to the number of states |𝑄 |. Thus, we performDFAminimiza-

tion to reduce |𝑄 |, which can be done by Hopcroft’s algorithm [26].

Moreover, our PCSP index only needs to storeP1

𝑣𝑤 andP2

𝑤𝑣 (not the

two supersets) for query processing, which would use O(|𝑉 |𝜂 |𝑄 |)
and O(|𝑉 |𝜂 |𝑄 | |𝐹 |) space, respectively.

4.3 Pruned Separator
Assume that we have known that the sources of some LCSP queries

are all 𝑣𝑠 ∈ 𝑉 (or the destinations are 𝑣𝑡 ∈ 𝑉 ) in advance. Given a

separator𝐻 from the node in the tree decomposition used to answer

these queries, we can prune some hoplinks in 𝐻 beforehand. The

main idea of pruning a hoplink ℎ ∈ 𝐻 is that each of the shortest

𝑣𝑠 -ℎ (or ℎ-𝑣𝑡 ) paths in P1

𝑣𝑠ℎ
is not superior to one 𝑣𝑠 -ℎ

′
(or ℎ′-𝑣𝑡 )

path via another hoplink ℎ′ ∈ 𝐻 , which indicates that it is sufficient

to check ℎ′ during query processing. We will then select some

important separators and preprocess pruned separators for them.

Note that we do not assume that we know both the source and the

destination at the same time beforehand because it would require

us to preprocess pruned separators for nearly |𝑉 |2 queries, which
is infeasible and prohibitive on large road networks.



Algorithm 3: Separator Pruning for Sources
input :A separator 𝐻 and a source 𝑣

output :A pruned separator 𝐻 sour (𝐻, 𝑣)
1 foreach ℎ ∈ 𝐻 in the decreasing order of min𝑝∈P1

𝑣ℎ
𝑑 (𝑝) do

2 foreach (𝑞, 𝑝1𝑞
𝑣𝑠ℎ
) ∈ P1

𝑣𝑠ℎ
do

3 ConditionFlag[𝑞] ← 𝑓 𝑎𝑙𝑠𝑒

4 foreach ℎ′ s.t. min𝑝∈P1

𝑣ℎ′
𝑑 (𝑝) < min𝑝∈P1

𝑣ℎ
𝑑 (𝑝) do

5 if 𝑑 (𝑝) = 𝑑 (𝑝1𝑞
𝑣𝑠ℎ
) where (𝑞, 𝑝) ∈ P1

𝑣𝑠ℎ
′ℎ

then
6 ConditionFlag[𝑞] ← 𝑡𝑟𝑢𝑒

7 Prune ℎ if all ConditionFlag[𝑞] is true

4.3.1 Pruning Rules. Let P𝑣𝑠ℎ′ℎ denote the result of PCSPJoin (Al-

gorithm 1) on P𝑣𝑠ℎ′ and Pℎ′ℎ . Let P1

𝑣𝑠ℎ
′ℎ

= {(𝑞′, 𝑝) | (𝑞, 𝑞′, 𝑝) ∈
P𝑣𝑠ℎ′ℎ, 𝑞 = 𝑞0} be the set of paths in P𝑣𝑠ℎ′ℎ that starts with the

initial state 𝑞0. We similarly define Pℎℎ′𝑣𝑡 and P2

ℎℎ′𝑣𝑡
. Then, we

check if ℎ can be pruned by comparing P1

𝑣𝑠ℎ
and P1

𝑣𝑠ℎ
′ℎ

(or P2

ℎ𝑣𝑡

and P2

ℎℎ′𝑣𝑡
). Specifically, we propose the following two pruning

rules for sources and destinations:

(1) Given a source 𝑣𝑠 ∈ 𝑉 , a hoplink ℎ ∈ 𝐻 can be pruned if

for each (𝑞, 𝑝1𝑞
𝑣𝑠ℎ
) ∈ P1

𝑣𝑠ℎ
, there exists one ℎ′ ∈ 𝐻 such that for

(𝑞, 𝑝) ∈ P1

𝑣𝑠ℎ
′ℎ
, 𝑑 (𝑝) = 𝑑 (𝑝1𝑞

𝑣𝑠ℎ
).

(2) Given a destination 𝑣𝑡 ∈ 𝑉 , a hoplink ℎ ∈ 𝐻 can be pruned

if for each (𝑞, 𝑝2𝑞
ℎ𝑣𝑡
) ∈ P2

ℎ𝑣𝑡
, there exists one ℎ′ ∈ 𝐻 such that for

(𝑞, 𝑝) ∈ P2

ℎℎ′𝑣𝑡
, 𝑑 (𝑝) = 𝑑 (𝑝2𝑞

ℎ𝑣𝑡
).

Note that in either rule, the hoplinkℎ′ that satisfies the condition
can be different for each (𝑞, 𝑝1𝑞

𝑣𝑠ℎ
) ∈ P1

𝑣𝑠ℎ
or (𝑞, 𝑝2𝑞

ℎ𝑣𝑡
) ∈ P2

ℎ𝑣𝑡
. The

following lemma shows the correctness of the two rules.

Lemma 4.10. Assume w.l.o.g. there is only one 𝑝𝑜𝑝𝑡 . Given a sepa-
rator𝐻 , if oneℎ ∈ 𝐻 can be pruned w.r.t. 𝑝𝑜𝑝𝑡 ’s source 𝑠 or destination
𝑡 and 𝑝𝑜𝑝𝑡 traverses ℎ, then 𝑝𝑜𝑝𝑡 traverses another ℎ′ ∈ 𝐻 .

Proof. Consider the case of 𝑝𝑜𝑝𝑡 ’s source 𝑠 . Let 𝑝 be the 𝑠-

ℎ subpath of 𝑝𝑜𝑝𝑡 . There is only one 𝑞 such that 1𝑞0,𝑞 (𝑙 (𝑝)) =

1 and 𝑑 (𝑝) must be the minimum among all 𝑠-ℎ paths 𝑝𝑠 with

1𝑞0,𝑞 (𝑙 (𝑝𝑠ℎ)) = 1, which indicates that (𝑞, 𝑝) ∈ P1

𝑠ℎ
and 𝑝 = 𝑝

1𝑞

𝑠ℎ
for 𝑞. According to the pruning rule, there is one ℎ′ and a path

𝑝′ via ℎ′ such that 𝑑 (𝑝′) = 𝑑 (𝑝), which suggests that 𝑝𝑜𝑝𝑡 also

traverses ℎ′. For the case of 𝑝𝑜𝑝𝑡 ’s destination 𝑡 , we can similarly

consider the ℎ-𝑡 subpath of 𝑝𝑜𝑝𝑡 . Note that when there are several

LCSP 𝑝𝑜𝑝𝑡 with the same distance, we can find one of them. □

By Lemma 4.10, we can prune one ℎ ∈ 𝐻 since the LCSP 𝑝𝑜𝑝𝑡

also traverses another hoplink in 𝐻 . After pruning ℎ, we can find

the next hoplink according to the pruning rule and repeat the

procedure again. Note that we cannot alternatively use the two

rules since no vertex can be both the source and the destination.

For the first pruning rule, if there exists ℎ′ such that there are 𝑝𝑣𝑠ℎ′

and 𝑝ℎ′ℎ with 𝑑 (𝑝𝑣𝑠ℎ′ ⊕ 𝑝ℎ′ℎ) = 𝑑 (𝑝
1𝑞

𝑣𝑠ℎ
), we can easily derive that

𝑑 (𝑝𝑣𝑠ℎ′ ) < 𝑑 (𝑝
1𝑞

𝑣𝑠ℎ
). To find such ℎ′, a heuristic idea is to first sort

all the hoplinks ℎ in the increasing order of their unconstrained

Algorithm 4: Preprocessing Pruned Separators

input :A set 𝑅 of random queries and a parameter 𝛼

output :𝐻 sour (𝐻, 𝑣) and 𝐻des (𝐻, 𝑣) for top-𝐾 separators

1 foreach (𝑠, 𝑡) ∈ 𝑅 do
2 𝑋 (𝑐) ← the LCA of 𝑋 (𝑠) and 𝑋 (𝑡)
3 if 𝑋 (𝑐) = 𝑋 (𝑠) or 𝑋 (𝑐) = 𝑋 (𝑡) then
4 continue

5 Let 𝑐𝑠 and 𝑐𝑡 be the two child nodes of 𝑋 (𝑐) in the two

branches containing 𝑠 and 𝑡 , respectively

6 𝐻 ← argmin𝐻 ′∈{𝑋 (𝑐𝑠 )\{𝑐𝑠 },𝑋 (𝑐𝑡 )\{𝑐𝑡 }} |𝐻 ′ |
7 𝑁 (𝐻 ) ← 𝑁 (𝐻 ) + 1

|𝑅 |
8 Sort all 𝐻 in the decreasing order of 𝑁 (𝐻 ) to get 𝐻1, 𝐻2, . . .

9 for 𝑖 = 1, 2, . . . , argmin𝐾
∑𝐾
𝑖=1 𝑁 (𝐻𝑖 ) ≥ 𝛼 do

10 foreach 𝑣 s.t. 𝑋 (𝑣) is the descendent of 𝐻𝑖 do
11 Get 𝐻 sour (𝐻𝑖 , 𝑣) by Algorithm 3 and similarly

𝐻des (𝐻𝑖 , 𝑣)

distances without the label constraint, i.e.,min𝑝∈P1

𝑣𝑠ℎ
𝑑 (𝑝). We then

find ℎ′ among those hoplinks with smaller unconstrained distances.

Algorithm 3 gives the procedure of pruning a separator 𝐻 and a

source 𝑣 . Let 𝐻 sour (𝐻, 𝑣) denote the pruned separator. We omit a

similar procedure for a destination 𝑣 to get𝐻des (𝐻, 𝑣). In Line 1, we

check the hoplinks in the decreasing order of their unconstrained

shortest distances. In Lines 2–6, for each (𝑞, 𝑝1𝑞
𝑣𝑠ℎ
) ∈ P1

𝑣𝑠ℎ
, we assign

ConditionFlag[𝑞] as true if the pruning rule is discovered and false

otherwise. We prune ℎ finally in Line 7 if all flags are true.

Example 4.11. Given a separator 𝐻 = {𝑣7, 𝑣10} and a source

𝑣1, we show how to get 𝐻 sour (𝐻, 𝑣1) by Algorithm 3. We can get

P1

𝑣1𝑣7
= {(𝑞2, 6), (𝑞3, 16)} and P1

𝑣1𝑣10
= {(𝑞2, 8)}. Since we have

min𝑝∈P1

𝑣
1
𝑣
10

𝑑 (𝑝) = 8 ≥ min𝑝∈P1

𝑣
1
𝑣
7

𝑑 (𝑝) = 6, we first process 𝑣10.

Let ConditionFlag[𝑞2] = 𝑓 𝑎𝑙𝑠𝑒 . For (𝑞2, 8) ∈ P1

𝑣1𝑣10
, we can find

ℎ′ = 𝑣7 such that (𝑞2, 8) ∈ P1

𝑣1𝑣7𝑣10
and set ConditionFlag[𝑞2] =

𝑡𝑟𝑢𝑒 . We finally prune 𝑣10 and set 𝐻 sour (𝐻, 𝑣1) = {𝑣7}.

Theorem 4.12. Algorithm 3 needs O(|𝐻 | log |𝐻 | + |𝐻 |2 |𝑄 |) time.

Proof. The first term is because we sort all the hoplinks. The

second term corresponds to the three for-loops. □

4.3.2 Preprocessing Pruned Separators. Algorithm 3 shows how to

prune a separator. However, it is inefficient to preprocess𝐻 sour (𝐻, 𝑣)
and 𝐻des (𝐻, 𝑣) for all the possible separators since each child of

each branching node (with two or more children) can be a possi-

ble separator and the number of vertices |𝑉 | can be large. It has

been shown that there are some important branching nodes in the

tree decomposition that would be selected as the LCA with high

probabilities [13] due to the tree structure. Therefore, we would

use a set 𝑅 of random queries with sources and destinations that

are randomly generated from𝑉 to find the set of separators with 𝐾

largest frequencies.

Algorithm 4 describes the procedure of preprocessing pruned

separators. In Lines 1–6, we find the corresponding separator used

for each random query. We use 𝑁 (𝐻 ) to denote the frequency of
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Figure 5: PCSP’s query processing

𝐻 over the total number |𝑅 | and update it in Line 7. In Line 8,

we sort all the separators 𝐻 in the decreasing order of 𝑁 (𝐻 ) to
get 𝐻1, 𝐻2, . . .. In Lines 9–11, we only consider the top-𝐾 frequent

separators with 𝐾 largest 𝑁 (𝐻 ) such that the sum of their 𝑁 (𝐻 ) is
at least 𝛼 , where 𝛼 ∈ (0, 1) is a user parameter to control the ratio

of queries that we would like to cover. We then apply the pruning

rules (Algorithm 3) to obtain pruned separators 𝐻 sour (𝐻, 𝑣) and
𝐻des (𝐻, 𝑣) for all vertices.

Example 4.13. Consider𝛼 = 0.6 and𝑅 = {(𝑣1, 𝑣2), (𝑣3, 𝑣6), (𝑣3, 𝑣5)}.
For the first two queries, they all use𝑋 (𝑣4)\{𝑣4} and𝑁 (𝑋 (𝑣4)\{𝑣4}) =
2

3
. For (𝑣3, 𝑣5), they use 𝑋 (𝑣5)\{𝑣5} and 𝑁 (𝑋 (𝑣5)\{𝑣5}) = 1

3
. We

use the top-1 separator𝑋 (𝑣4)\{𝑣4} since 𝑁 (𝑋 (𝑣4)\{𝑣4}) ≥ 0.6. We

prune it by Algorithm 3 as stated before.

Theorem 4.14. Algorithm 4 takesO(|𝑅 |+𝐵 log𝐵+𝐾 |𝑉 | ( |𝐻 | log |𝐻 |+
|𝐻 |2 |𝑄 |)) time andO(𝐾 |𝑉 | |𝐻 |) space, where𝐻 is atmost the treewidth
𝜔 and 𝐵 is the number of nodes that has two or more child nodes.

Proof. Lines 1–7 uses O(|𝑅 |) time since in each iteration, we

can find the LCA in O(1) time [9], set 𝐻 and update 𝑁 (𝐻 ) in O(1)
time. Lines 8 needs O(𝐵 log𝐵) time to sort at most 𝐵 separators

since only branching nodes can be the LCA. The two for-loops in

Lines 9–10 consider 𝐾 separators and at most |𝑉 | descendants of
𝐻 . Line 11 follows Theorem 4.12. The space cost is because for the

top-𝐾 separators, we store a flag for each hoplink w.r.t. a vertex. □

5 QUERY PROCESSING
Algorithm 5 summarizes how to process a query (𝑠, 𝑡) by our PCSP

index, which consists of PCSPs stored inP1

𝑣𝑤 andP2

𝑤𝑣 for each node

𝑋 (𝑣) and its ancestor 𝑋 (𝑤) and pruned separators 𝐻 sour (𝐻, 𝑠) and
𝐻des (𝐻, 𝑡) for𝐾 separators. For ease of presentation, let𝐻 sour (𝐻, 𝑠)
and 𝐻des (𝐻, 𝑠) be 𝐻 if we do not preprocess them. In Lines 1–5, if

𝑋 (𝑠) is the descendant or ancestor of 𝑋 (𝑡), we directly return the

LCSP from P1

𝑠𝑡 or P2

𝑠𝑡 as stated in Section 3. Otherwise, we find the

separator 𝐻 with a smaller size from 𝑋 (𝑐𝑠 )\{𝑐𝑠 } and 𝑋 (𝑐𝑠 )\{𝑐𝑠 } in
Lines 6–7. In Line 8, we select the pruned separator with a smaller

size as the set of hoplinks. We find 𝑝
𝑜𝑝𝑡

ℎ
by concatenating paths in

Lines 9–10 and return the LCSP among all 𝑝
𝑜𝑝𝑡

ℎ
in Line 11.

Example 5.1. Back to Example 2.9, for the query (𝑣1, 𝑣2), the LCA
of 𝑋 (𝑣1) and 𝑋 (𝑣2) is 𝑋 (𝑣7). Then, 𝑋 (𝑐𝑠 ) = 𝑋 (𝑣4) and 𝑋 (𝑐𝑡 ) =
𝑋 (𝑣6) with equal sizes. The procedure is also shown in Figure 5. we

set 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 = 𝐻 sour (𝑋 (𝑣4)\{𝑣4}, 𝑣1) = {𝑣7}. For ℎ = 𝑣7, we fetch

P1

𝑣1𝑣7
= {(𝑞2, 6), (𝑞3, 16)} and P2

𝑣7𝑣2
= {(𝑞0, 3), (𝑞1, 3), (𝑞2, 8)} from

Algorithm 5: Query Processing

input :A query (𝑠, 𝑡), PCSPs, and pruned separators

output :LCSP 𝑝𝑜𝑝𝑡

1 𝑋 (𝑐) ← the LCA of 𝑋 (𝑠) and 𝑋 (𝑡)
2 if 𝑋 (𝑐) = 𝑋 (𝑡) or 𝑋 (𝑐)=X(s) then
3 return 𝑝

1𝑞
𝑠𝑡 in P1

𝑠𝑡 with 𝑞 ∈ 𝐹 or 𝑝
2𝑞
𝑠𝑡 in P2

𝑠𝑡 with 𝑞 = 𝑞0

4 Let 𝑐𝑠 and 𝑐𝑡 be the two child nodes of 𝑋 (𝑐) in the two

branches containing 𝑠 and 𝑡 , respectively

5 𝐻 ← argmin𝐻 ′∈{𝑋 (𝑐𝑠 )\{𝑐𝑠 },𝑋 (𝑐𝑡 )\{𝑐𝑡 }} |𝐻 ′ |
6 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 ← argmin𝐻 ′∈{𝐻 sour (𝐻,𝑠 ),𝐻 des (𝐻,𝑡 ) } |𝐻 ′ |
7 foreach ℎ ∈ 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 do
8 𝑝

𝑜𝑝𝑡

ℎ
← the shortest path in

{𝑝1𝑞
𝑠ℎ
⊕ 𝑝2𝑞

ℎ𝑡
|𝑞 ∈ 𝑄, (𝑞, 𝑝1𝑞

𝑠ℎ
) ∈ P1

𝑠ℎ
, (𝑞, 𝑝2𝑞

ℎ𝑡
) ∈ P2

ℎ𝑡
}

9 return 𝑝𝑜𝑝𝑡 ← argminℎ∈𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 𝑑 (𝑝
𝑜𝑝𝑡

ℎ
)

the index. We obtain 𝑑 (𝑝𝑜𝑝𝑡𝑣7 ) = 14 by concatenating (𝑞2, 6) and
(𝑞2, 8) and finally return 𝑝𝑜𝑝𝑡 = 𝑝

𝑜𝑝𝑡
𝑣7 with 𝑑 (𝑝𝑜𝑝𝑡 ) = 14.

Theorem 5.2. Algorithm 5’s time complexity is O(|𝑄 |𝜔).

Proof. Note that the LCSPs in Lines 3 and 5 can be preprocessed

in the index and given in O(1) time in query processing. Therefore,

the query time mainly depends on Lines 9–10 with O(|𝑄 | |𝐻 |) time

(by the hashing technique), which is bounded by O(|𝑄 |𝜔). □

Theorem 5.3. Algorithm 5 correctly returns the LCSP 𝑝𝑜𝑝𝑡 .

Proof. If 𝑋 (𝑡) (or 𝑋 (𝑠)) is an ancestor of 𝑋 (𝑠) (or 𝑋 (𝑡)), we
correctly find it since 1𝑞0,𝑞𝑓 (𝑙 (𝑝𝑜𝑝𝑡 )) = 1 for one 𝑞𝑓 ∈ 𝐹 and it

must be in P1

𝑠𝑡 or P2

𝑠𝑡 by definitions. Otherwise, we can find a

separator 𝐻 , and 𝑝𝑜𝑝𝑡 must traverse one ℎ ∈ 𝐻 . However, since we

use the pruned separator as 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 , ℎ may not exist in 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 .

By Lemma 4.10, we know that 𝑝𝑜𝑝𝑡 also traverses one ℎ′. If ℎ′ is
not in 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 , we could apply Lemma 4.10 repeatedly until one

ℎ′′ that is in 𝐻𝑜𝑝𝑙𝑖𝑛𝑘𝑠 and considered by Lines 10–11. Consider

the 𝑠-ℎ′′ subpath 𝑝1 and ℎ′′-𝑡 subpath 𝑝2 of 𝑝𝑜𝑝𝑡 , we can find the

only state 𝑞 such that 1𝑞0,𝑞 (𝑙 (𝑝1)) = 1 and 1𝑞,𝑞𝑓 (𝑙 (𝑝2)) = 1 for

𝑞𝑓 ∈ 𝐹 . Since 𝑝1 and 𝑝2 must be the shortest paths w.r.t. the state 𝑞

(otherwise we can get a contradiction), 𝑝1 and 𝑝2 are in P1

𝑠ℎ
and

P2

ℎ𝑡
, respectively. We must consider 𝑝𝑜𝑝𝑡 in Line 11. □

Path Retrieval. To save space cost, our PCSP index only stores

five values for each shortest path 𝑝 : its distance 𝑑 (𝑝), source, desti-
nation, and a pair of states (𝑞, 𝑞′) such that 1𝑞,𝑞′ (𝑙 (𝑝)) = 1. They

are sufficient for all the algorithms. Finally, we also get these five

values of the LCSP 𝑝𝑜𝑝𝑡 . To retrieve 𝑝𝑜𝑝𝑡 as a sequence of vertices,

we store two more values 𝑣𝑚 (𝑝) and 𝑞𝑚 (𝑝) for each shortest path

𝑝 ∈ P𝑣𝑤 ,P𝑤𝑣 to be the middle vertex 𝑤 in Lines 19–20 of Algo-

rithm 2 and the middle state 𝑞′
1
in Lines 11–12 of Algorithm 1 used

to link 𝑝 , respectively. For each edge 𝑒 = (𝑢, 𝑣), as a path of a single

edge, we set the two values for ⟨𝑢, 𝑣⟩ and ⟨𝑣,𝑢⟩ as null. Each time we

call PCSPJoin, in Line 5 of updating a path 𝑝 concatenated by two

paths 𝑝1 and 𝑝2, we update 𝑣
𝑚 (𝑝) and 𝑞𝑚 (𝑝) accordingly. Finally,

when retrieving the LCSP 𝑝
𝑜𝑝𝑡
𝑠𝑡 , we can unfold this 𝑠-𝑡 path 𝑝𝑜𝑝𝑡



Table 2: Datasets

Dataset Region |𝑉 | |𝐸 | Storage

NY New York City 264,346 733,846 17.9 MB

BAY San Francisco Bay 321,270 800,172 19.6 MB

COL Colorado 435,666 1,057,066 26.4 MB

FLA Florida 1,070,376 2,712,798 68.5 MB

by adding 𝑣𝑚 (𝑝𝑜𝑝𝑡 ) in the middle (i.e., (𝑠, 𝑣𝑚 (𝑝𝑜𝑝𝑡 ), 𝑡)) and recur-

sively unfold the 𝑠-𝑣𝑚 (𝑝𝑜𝑝𝑡 ) path and 𝑣𝑚 (𝑝𝑜𝑝𝑡 )-𝑡 path by using

the middle vertex and state until the middle vertex is null.

Directed Graphs.We still build the tree decomposition by re-

garding each directed edge as undirected, which can only increase

the connectivity and make all results about separators hold [13].

However, in Algorithm 2, we only maintain 𝑃 (𝑣,𝑢 ) for each directed

edge 𝑒 = (𝑣,𝑢) (instead of building 𝑃 (𝑣,𝑢 ) and 𝑃 (𝑢,𝑣) in Lines 11–12

of Algorithm 2) and concatenate two paths by considering their

directions in PCSPJoin. We use the same Lines 16–20 of Algorithm 2

to generate P𝑣𝑤 and P𝑤𝑣 for 𝑣-𝑤 and𝑤-𝑣 PCSPs, respectively, and

then extract the two set P1

𝑣𝑤 and P2

𝑤𝑣 from them. The separator

pruning and query processing algorithms remain the same because

all these sets P𝑣𝑤 ,P𝑤𝑣,P1

𝑣𝑤 ,P2

𝑤𝑣 use directed edges.

6 EXPERIMENTS
6.1 Experimental Setup
We conducted all experiments on a machine with two Intel Xeon

E5-2650 v4 2.2 GHz processors and 512 GB RAM running CentOS

Linux distribution. All algorithms were implemented in C++ and

compiled with GNU C++ compiler.

Datasets. Following existing work [43], we mainly used four

publicly available real road networks from DIMACS [1] with their

statistics shown in Table 2. For each edge (also a road segment), its

spatial distance (in meters) and road category were used as the edge

weight and label in our experiments, respectively. The road category

code has two digits, where the first one denotes four main road

types: 1) A, Primary Highway With Limited Access; 2) B, Primary

Road Without Limited Access; 3) C, Secondary and Connecting

Road; and 4) D, Local, Neighborhood, and Rural Road, and the

second digit ranging from 1 to 5 represents a finer classification of

roads. For example, the code “D1” denotes a local road, which is

the most frequent edge label in any network.

Algorithms. We compared the following three LCSP solutions:

• Dijkstra [7]: a Dijkstra-based algorithm that searches the

network by storing distances for vertex-state pairs.

• LSD [43]: the state-of-the-art index that searches the ver-

tices in the tree decomposition and maintains the shortest

distances w.r.t. different label sets.

• PCSP: our proposed index based on efficient table lookups

and separator pruning.

For PCSP, we set the parameter |𝑅 | = 1,000,000 and 𝛼 = 0.9 in

Algorithm 4 which makes the pruned separators cover around 90%

of the random queries in 𝑅. Note that PCSP is built based on all

possible queries that satisfy the default language 𝐿. We studied the

effect of 𝛼 and justified this setting in Section 6.2. For the efficiency

of LSD, we implemented set operations by bit operations.

6.2 Query Efficiency
Exp-1: Query efficiency when varying the query distance.

This experiment aims to evaluate algorithms’ query efficiency by

varying the shortest distance between sources and destinations of

queries. Following [43], for each network, we generated 10 query

sets with increasing query distances. Specifically, we first found

the maximum distance 𝑙𝑚𝑎𝑥 between any two vertices in a network

and set a variable 𝑥 = (𝑙𝑚𝑎𝑥/𝑙𝑚𝑖𝑛)1/10 where 𝑙𝑚𝑖𝑛 = 1, 000, e.g.,

𝑙𝑚𝑎𝑥 = 154, 745 and 𝑥 = 1.6556 in NY. We then generated 10 query

sets 𝐷1, 𝐷2, . . . , 𝐷10, where the query distances in 𝐷𝑖 lie in (𝑙𝑚𝑖𝑛 ×
𝑥𝑖−1, 𝑙𝑚𝑖𝑛 ×𝑥𝑖 ] for 1 ≤ 𝑖 ≤ 10. Following [43], to compare LSD that

only supports Kleene languages, we set the default language 𝐿 =

(∪𝑎∈Σ10𝑎)∗ where Σ10 is the set of the top-10 frequent labels. Here,
the frequency refers to number of edges in all the road networks

having this label. We report the average query time in Figure 6.

For each network, it can be observed that Dijkstra and LSD tend

to have a larger query time as the query distance increases. This

is because they are all search-based solutions that search vertices

from the source and destination to update distances recursively. As

the query distance becomes larger, they all need to search more

vertices. However, PCSP’s query time is independent of the query

distance since it preprocesses partial path answers in the hash

tables and performs table lookups when checking very few related

hoplinks. The query time is basically stable since the number of

related hoplinks does not increase. Moreover, PCSP is the fastest

one among the three algorithms. It can answer each LCSP query

in around 100 microseconds and outperform LSD by almost two

orders of magnitude on 𝐷10 of COL.

Exp-2: Query efficiency when varying the number of al-
lowed labels. We used 𝐷10 as the default query set because the

query distances of 𝐷10 are longer than those of the others, which

implies that 𝐷10 is the hardest set and covers the whole range of

the network. We tested the effect of the number of allowed labels

in the Kleene languages by setting 𝐿 = (∪𝑎∈Σ𝑘𝑎)∗, where Σ𝑘 is

the set of the top-𝑘 frequent labels for 𝑘 = 1, 2, . . . , 10. Figure 7

presents the average query time. It can be seen that all algorithms

are insensitive to the number of allowed labels. The main reason is

that we use the same query set with the same query distance. The

label-constrained shortest distances for most queries do not vary

much with more allowed labels. The search space of Dijkstra and

LSD remains unchanged. For PCSP, it only uses a small number of

hoplinks, which is independent of the number of allowed labels.

We can draw a similar conclusion about the superiority of PCSP.

Exp-3: Query efficiencywhen varying the number of states.
Since the number of states |𝑄 | is an important factor in query pro-

cessing, we also studied its effect by considering the linear regular
language in the form 𝑎∗

1
𝑎∗
2
. . ., which is also widely used [6, 37].

It has a useful property that the number of states is equal to the

number of used labels (or the half length of the regular expression),

which we vary from 1 to 10 by using the top-10 frequent labels in-

crementally. We still use 𝐷10 as the query set and show the average

processing time in Figure 8. We omit LSD here because LSD cannot

handle linear regular languages.

It can be discovered that the query times of Dijkstra and PCSP are

irrelevant to the number of states. For Dijkstra, the query distance

is the dominant factor in query efficiency, but it is the same for all
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Figure 6: Query processing time (ms) when varying the query distance 𝐷
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Figure 7: Query processing time (ms) when varying the number of allowed labels |Σ𝐴 |
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Figure 8: Query processing time (ms) when varying the number of states |𝑄 |
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Figure 9: Complex languages on NY

settings since we all use 𝐷10. For PCSP, the number of hoplinks

mainly affects its query time. Similarly, it is the same since we all

use 𝐷10. PCSP still runs fast within 100 microseconds.

Exp-4: Query efficiency on complex languages. Following
existing work [5], we also evaluated the performance for some com-

plex languages. Let the label set ΣA = {A1,A2,A3,A4,A5} and
define ΣB , ΣC , and ΣD similarly. We consider two languages [5]: 1)

highway usage, (∪𝑎∈ΣC∪ΣD𝑎)∗ (∪𝑎∈ΣA∪ΣB𝑎)+ (∪𝑎∈ΣC∪ΣD𝑎)∗ (since
it only allows us to use highways and primary roads in the mid-

dle) and 2) regional transfer, (∪𝑎∈ΣB∪ΣC∪ΣD𝑎)∗ (since highways
of type A are forbidden). The results on query sets of increasing
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Figure 10: Ablation study on NY

query distances are reported in Figure 9. We have similar findings

to previous ones. Dijkstra’s query time increases since the distance

increases due to larger search space, whereas PCSP is still efficient

with stable and small query processing times.

Exp-5: Ablation study of separator pruning. We studied the

effect of our proposed separator pruning technique by considering

four variants, called “PCSP-w/o Pruning”, “PCSP-𝛼=0.8”, “PCSP-

𝛼=0.85”, “PCSP-𝛼=0.9”, where the first one does not utilize the

pruning technique, and the later three preprocess Top-𝐾 separators

by varying 𝛼 in {0.8, 0.85, 0.9} in Algorithm 4. The average number

of used hoplinks per query for 𝐷10 is shown in Figure 10. Note



Table 3: Index construction cost

Data Alg. 𝜔 , 𝜂 Index Time Pruning Time Index Size

NY

LSD

148, 330

37s - 34.2 MB

PCSP 87s 13s 2.3 GB

BAY

LSD

100, 238

14s - 27.8 MB

PCSP 70s 8s 2.0 GB

COL

LSD

221, 400

24s - 40.2 MB

PCSP 173s 27s 4.8 GB

FLA

LSD

149, 399

34s - 109.0 MB

PCSP 410s 30s 10.3 GB

EST

LSD

222, 1113

259s - 327.2 MB

PCSP 1,917s 438s 76.8 GB

WST

LSD

257, 1094

344s - 547.0 MB

PCSP 3,552s 571s 130.5 GB

that as 𝛼 increases, 𝐾 increases since we need to preprocess more

separators with 𝐾 largest 𝑁 (𝐻 ) to cover a ratio 𝛼 of the random

queries in Algorithm 4.

We can find that the number of hoplinks for PCSP-w/o Pruning
is always around 65 because we use the same default query set

𝐷10. In Figure 10a, for Σ5, the number of hoplinks is reduced by

15 and 20 when we consider 𝛼 = 0.8 and 𝛼 = 0.85, respectively.

The reason is that more preprocessed separators would make more

queries available for pruning, hence a reduction in the number of

used hoplinks. However, using 𝛼 = 0.9 further does not reduce

the number of hoplinks compared with using 𝛼 = 0.85. Their lines

overlap with each other. This is because the 1000 queries in 𝐷10 are

basically all covered by the 1,000,000 random queries. In Figure 10b,

where we vary |𝑄 |, we can obtain similar findings. In practice, using

𝛼 = 0.9 to preprocess top-𝐾 separators would cover most queries,

and using a larger 𝛼 would increase preprocessing costs but gain

little improvement over query efficiency.

6.3 Index Cost
Index construction cost.We summarized the index construc-

tion costs of PCSP and LSD for the default language in Table 3. Note

that Dijkstra builds no index. We also evaluated index construc-

tion costs on larger networks of Eastern USA (“EST” for short with

3,598,623 vertices and 8,778,114 edges) andWestern USA (“WST” for

short with 6,262,104 vertices and 15,248,146 edges) from DIMACS.

The third and fourth columns show the treewidth 𝜔 and treeheight

𝜂 of the tree decomposition, respectively. They are the same for LSD

and PCSP for all data since we use the same tree decomposition. For

PCSP, we separately report the indexing (Algorithm 2) and pruning

(Algorithm 4) time costs in the fifth and sixth columns, respectively.

The index sizes are given in the last column.

For high query efficiency, PCSP consumes much space, but it

achieves orders of magnitude improvement over the query effi-

ciency, and it can handle more complex languages. Moreover, it

is common that the index cost is large for shortest path problems

with complex constraints [32, 33, 41]. The indexing cost can be

readily acceptable for modern machines with powerful computa-

tional capability and large memory space. Furthermore, the source

and destination of each query are usually located within the same

city and not far from each other in most scenarios.

 300

 320

 340

 360

 380

 400

 420

 440

1 5 10 15 25
 2000

 2050

 2100

 2150

 2200

 2250

 2300

 2350

 2400

T
im

e
 c

o
s
t 

(s
)

In
d

e
x
 s

iz
e

 (
M

B
)

|Q|

Indexing Time
Index Size

(a) Indexing cost (Alg. 2)

 0

 50

 100

 150

 200

 250

 300

0.75 0.8 0.85 0.9 0.95
 0

 20

 40

 60

 80

 100

 120

 140

T
im

e
 c

o
s
t 

(s
)

P
ru

n
e

d
 s

e
p

a
ra

to
r 

s
iz

e
 (

M
B

)

α

Pruning Time
Pruned Separator Size

(b) Pruning cost (Alg. 4)

Figure 11: PCSP’s index cost on NY

Use an inconvenient 

shortcut between highways 

Use highways consistently

Figure 12: Case study on NY

Exp-6: Indexing cost when varying the number of states.
Since the number of states |𝑄 | is an important factor in both the

time and space complexities, we explored its effect on the indexing

cost (Algorithm 2) by using the linear regular languages introduced

before in Figure 11a with 𝐾 = 10. Note that the indexing time and

index size follow the left and right y-axes, respectively. It can be

seen that both the indexing time and size become larger as |𝑄 |
increases. Their results are consistent with complexities. When |𝑄 |
reaches 10, the index time and size do not increase because the

top-10 frequent labels cover nearly 99% of labels, as stated before.

Since all labels are used sequentially in the linear regular languages,

the remaining 1% would make little difference in the index cost.

Exp-7: Pruning cost when varying the number of pruned
separators. We reported the pruning cost (Algorithm 4) when

varying the ratio 𝛼 ∈ (0.75, 1) in Figure 11b with |𝑄 | = 10. Note

that the pruning time and pruned separator size follow the left

and right y-axes, respectively. As 𝛼 increase, we need to process

more separators (the top-𝐾 separators with 𝐾 largest frequencies)

to ensure that the sum of their frequencies should be larger than the

ratio 𝛼 . It can be deducted from the complexities that the pruning

time and pruned separator size increase as 𝐾 increases. Besides, we

find that the pruned separator size is much smaller than the index

size in Figure 11a since we only need to store a Boolean flag for

each hoplink in each pruned separator.

Exp-8: Case study. Figure 12 demonstrates a case study of LCSP

queries in New York. We use blue and red lines to represent edges

with labels in ΣA ∪ ΣB (for primary highways) and ΣC ∪ ΣD
(for local roads), respectively. The top figure shows the shortest

path returned by LSD when all labels are allowed, whereas the

bottom one presents the LCSP (with the same 𝑠 and 𝑡 ) returned by

PCSP under the regular language constraint of highway usage, i.e.,
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Figure 13: PCSP’s index cost for more labels on NY

(∪𝑎∈ΣC∪ΣD𝑎)∗ (∪𝑎∈ΣA∪ΣB𝑎)+ (∪𝑎∈ΣC∪ΣD𝑎)∗, as introduced before.
We can observe that the path returned by LSD uses an inconvenient

shortcut between two parts of highways, which is unrealistic since

highways can charge drivers a toll twice. The LCSP returned by

PCSP can overcome this weakness by specifying a regular language

to express the routing requirement of using highways consistently.

Specifically, we do not allow local roads among highways since we

remove the labels of ΣC ∪ ΣD in the middle part (∪𝑎∈ΣA∪ΣB𝑎)+.
Exp-9: Index cost when varying the number of labels. Since

we evaluated the index cost for the top-10 frequent labels Σ10 pre-
viously by default, we also studied the effect of more labels by

varying 𝑘 in {12, 14, 16, 18, 20} in 𝐿 = (∪𝑎∈Σ𝑘𝑎)∗ in Figure 13. Note

that Σ20 = Σ uses all labels. It can be observed that both the in-

dexing cost (Algorithm 2) and pruning cost (Algorithm 4) are not

affected by the number of labels. This is mainly because all the

factors in the time and space complexities of Algorithms 2 and 4

(Theorems 4.9 and 4.14, respectively) all remain the same.

7 RELATEDWORK
7.1 Shortest Path
Without additional constraints, the classical shortest path prob-

lem has been extensively studied since Dijkstra’s algorithm [18].

Early index-free solutions included bidirectional search [14] and

A* search [23], which mainly reduce the search space in Dijkstra’s

framework (by starting two simultaneous searches from the source

and destination and utilizing goal-directed priority weights, respec-

tively). However, they run slowly in large road networks because

they need to update many distances from scratch. Subsequent re-

search focused on designing indexes for higher efficiency, such as

ALT [21], Arc Flags [25], Transit Nodes [8], and Reach [22]. State-

of-the-art indexes could be divided into two categories: 1) pruning

Dijkstra’s search space by abstracting detailed paths in different

hierarchies [12, 17, 20, 36, 39, 42] and 2) looking up a small number

of relevant paths preprocessed in hash tables [4, 13, 28–30, 35, 44–

47]. Those of the former category incur less index cost (in terms

of time and space) but have longer query processing times than

those of the latter. Among those of the latter one based on table

lookups, [35] proposed H2H to first use the tree decomposition in

road networks due to its small treewidth, which allows us to focus

on a small separator set of hoplinks, as introduced in Section 4.1.

Although we also adopted the tree decomposition to find this small

separator to improve query efficiency, H2H is significantly differ-

ent from our PCSP. In the unconstrained shortest path problem, it

is clear that the index should store only one single shortest path

between each vertex 𝑣 ∈ 𝑉 and each hoplink in the separator. For

LCSP, especially for the more complicated regular languages, it is

unclear what kinds of paths could be preprocessed efficiently in the

index and further used to answer queries quickly by table lookups.

Our proposed PCSP clearly defines such paths and gives a query

procedure that utilizes them properly.

7.2 Label-Constrained Shortest Path
Given a regular language, the problem of finding label-constrained

paths in graph databases were first proposed by [34]. The hardness

of different problem variants were analyzed in [7]. It also proposed

the first polynomial LCSP algorithm for regular languages, which

mainly runs Dijkstra’s search on a composite graph where each

vertex is now a vertex-state pair, and each edge exists only when

there are connections on both the network and NFA. An imple-

mentation of this algorithm was later evaluated for linear regular

languages [6]. It was also shown that the composite graph does not

have to be built explicitly [40]. Note that they adopted NFA for its

simple implementation, we used a minimized DFA that usually has

fewer states [26]. Later, many successful techniques for shortest

path queries were shown to be useful for LCSP. Their extensions

for LCSP were based on bidirectional and A* search [5], Transit

Nodes [15], Contraction Hierarchies [16, 37], ALT [27]. There were

also some approximate LCSP solutions [11, 31] and work for dy-

namic index maintenance [19, 24, 37]. They were beaten by later in-

dexes in terms of query efficiency. [24] proposed the Edge-Disjoint

Partitioning (EDP) index for Kleene languages, which links paths

from some partitions of the network. The state-of-the-art index

LSD [43] outperforms EDP by orders of magnitude. It mainly uses

the tree decomposition to reduce the search space. It recursively

updates the distances from 𝑠 (or 𝑡 ) to vertices in the tree nodes along

the simple tree path between 𝑠 (or 𝑡 ) to the LCA node. Note that

though LSD is also based on the tree decomposition, our PCSP is

entirely different since we directly looks up the hash tables for the

shortest distances to provide fast query processing.. LSD’s query

time complexity is O(𝜂𝜔𝜌), where 𝜌 is the number of shortest

distances maintained in each node, whereas ours is O(|𝑄 |𝜔) with
|𝑄 | ≤ 𝜌 . Our proposed PCSP could run faster than LSD by orders

of magnitude and also support the more general regular languages.

8 CONCLUSION
In this work, we present PCSP, a practical index that answers LCSP

queries efficiently in road networks with label constraints expressed

by regular languages. PCSP mainly preprocesses two types of short-

est paths whose labels can be accepted by the DFA from an initial

state to an intermediate state and from an intermediate state to a

final state. In this way, we can process each query by concatenating

two PCSPs. We also propose a pruning technique that can prune

the set of related hoplinks further. Extensive experiments on real

networks show that PCSP answers each query within 100 microsec-

onds. For future work, we may explore how to efficiently maintain

the index to dynamically update edge labels and distances.
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