
Terrain-Toolkit: A Multi-Functional Tool for Terrain Data

Qi Wang? Manohar Kaul† Cheng Long, Raymond Chi-Wing Wong‡

?Zhejiang University †Aarhus University ‡The Hong Kong University of Science and Technology
?steveqiwang@zju.edu.cn †mkaul@cs.au.dk ‡{clong, raywong}@cse.ust.hk

ABSTRACT
Terrain data is becoming increasingly popular both in industry and
in academia. Many tools have been developed for visualizing ter-
rain data. However, we find that (1) they usually accept very few
data formats of terrain data only; (2) they do not support terrain
simplification well which, as will be shown, is used heavily for
query processing in spatial databases; and (3) they do not provide
the surface distance operator which is fundamental for many ap-
plications based on terrain data. Motivated by this, we developed
a tool called Terrain-Toolkit for terrain data which accepts a com-
prehensive set of data formats, supports terrain simplification and
provides the surface distance operator.

1. INTRODUCTION
Terrain which usually refers to the land surface (simply surface1)

is increasingly popular in industry. For example, Google (specif-
ically, Google Maps) and Microsoft (specifically, Bing Maps for
Enterprise) maintain a huge database of terrain data and use them
for better user experience of exploring the maps. Terrain data also
attracts extensive attention in academia. For example, researchers
have devoted considerable efforts to kNN queries, range queries
and shortest path queries (called shortest surface path queries in
the context of terrain data) based on terrain data [3, 6, 7, 9, 10].

The most intuitive way for using and analyzing terrain data is to
visualize it. In fact, many tools have been developed for visualiz-
ing terrain data. Some examples include MeshMan, CityGML, Ter-
raserver, Google Earth, and Spaceye3D (A comprehensive survey
could be found at http://vterrain.org/). Different tools have their
different major purposes. For example, Google Earth puts its fo-
cus usually on viewing the terrain data freely in many ways (multi-
layers, rotation, zoom-in and zoom-out) while some others put their
focuses on the visual effect, rendering process and so on.

However, we observe that these existing visualization tools have
several insufficiencies, especially from the perspective of comput-
ing with terrain data. We show them one by one as follows.

1In the following, we use “terrain” and “surface” interchangeably.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 13
Copyright 2014 VLDB Endowment 2150-8097/14/08.

First, one existing visualization tool alone usually does not cover
a rich enough set of models (and file formats) for the terrain data.
These file formats can be mainly classified as Raster (e.g. DEM,
GTiff and SDTS) and Non-Raster (e.g. XYZ, OFF, PLY) formats.
Raster formats require points with elevation values to be positioned
on a uniform-grid, while non-raster formats are free to position
their points anywhere. We classify collections of 2D/3D polygons
or triangles (i.e. mesh models) as non-raster files too. To the best
of our knowledge, there does not exist a single tool that supports all
the previously mentioned data formats and allows for conversions
between the formats.

Second, to the best of our knowledge, no existing visualization
tool supports surface simplification [5] which refers the process of
simplifying a given surface to a simpler one. Surface simplification
is used as a core component in many computations based on terrain
data [5,6], and the reason is that computations based on terrain data
are usually rather expensive (for example, the fastest algorithm for
computing the shortest surface path between two points has its time
complexity ofO(n2) where n is the number of vertices involved in
the model representing the surface) and the surface simplification
process helps to reduce the complexity of the surface considerably
such that the computations based on the simpler surface become
acceptably efficient.

Third, as far as we know, no existing visualization tool sup-
ports the surface distance operator which computes the length of
the shortest surface path between two given points. Note that sur-
face distance is usually not equal to the Euclidean distance, and in
fact, Euclidean distance corresponds to a lower bound of the sur-
face distance. Based on the surface distance, many queries have
been defined on terrain data, e.g., kNN queries, range queries and
shortest surface path queries [3, 6, 7, 9, 10].

Contributions. Motivated by the aforementioned insufficiencies of
the existing visualization tools for terrain data, in this paper, we de-
velop a new tool called Terrain-Toolkit which accepts a rich set of
models and file formats for terrain data, provides the surface sim-
plification functionality and supports the surface distance operator.

In the remainder of this paper, we first introduce our design of
Terrain-Toolkit in Section 2. Afterwards, we describe the demon-
stration setup in Section 3 and conclude with some future directions
in Section 4.

2. DESIGN
In this part, we give some background knowledge on terrain

in Section 2.1, present the architecture of Terrain-Toolkit in Sec-
tion 2.2, and then introduce three major components of Terrain-
Toolkit, namely model/format conversion, surface simplification
and shortest surface path computation in Sections 2.3, 2.4 and 2.5,
respectively.



2.1 Background Knowledge
A point in three-dimensional space is represented by an (x, y, z)

co-ordinate where z represents the elevation of the point.
A Digital Elevation Model (DEM) is a 3D geometric represen-

tation of the terrain. A DEM can either be represented as a raster
where 3D points are positioned on a uniform-grid structure or as a
Triangular Irregular Network (TIN). A TIN is a vector-based repre-
sentation of the terrain as a collection of non-overlapping triangles
(also referred to as faces). Each triangle/face is comprised of three
corner points called vertices that are connected to each other by
line segments called edges. Two faces are adjacent to each other if
they have share a common edge. Figure 1 illustrates a simple TIN
model with a few faces, where face F consists of vertices a,b and
c. For larger and more realistic TIN models, refer to Figure 3.

TIN representations are usually triangulated from raster grids.
Delaunay triangulation [2] is one of the most popular methods
of triangulation employed. In comparison to a raster grid, a TIN
model consumes more storage space but provides a superior ability
to describe the underlying surface at different levels of resolution.

Network Path
Surface Path

a

s

b t

c

F

Figure 1: Surface Path (bold lines) and Network Path along the
edges (dashed line).

The vertices and edges in a TIN already form a graph G, where
every vertex is associated with a 3D coordinate and the weight on
an edge is the 3D Euclidean distance between the two endpoint
vertices.

For an arbitrary pair of vertices s and t on a TIN, a surface path
is a path that traces along the surface of the TIN, while a network
path is a sequence of edges in the graph representation G of the
TIN. Figure 1 shows the two paths. Note that a surface path can cut-
across any face in the TIN, while a network path must be confined
to only the edges present in the TIN. The shortest surface path is
the surface path with the least length and the shortest network path
is the network path with least length.

2.2 Architecture of Terrain-Toolkit
The architecture of Terrain-Toolkit is shown in Figure 2. Terrain-

Toolkit accepts terrain data, stored either in a mesh file or in a point
file, as input. A mesh file stores terrain data by using a terrain
model (such as TIN) and a point file stores a set of raw points
which are usually sampled from the surface of terrain. With the
Model/Format Conversion utility, terrain data stored in a file for-
mat can be converted to terrain data stored in another file format.

The input of terrain data stored in a mesh file can be directly pro-
cessed via the Preprocessing utility to construct an Internal Terrain
Model which maintains the terrain data in our own way for better
manipulation (e.g., visualization, simplification, and shortest sur-
face path computation) while the input of terrain data stored in a
point file has to be triangulated first via the Triangulation utility
and then could be processed via the Preprocessing utility to con-
struct an Internal Terrain Model.

The Internal Terrain Model based on terrain data consists of two
parts. The first part is a triangulation model (TIN) which maintains
the vertices, edges and faces of the terrain and the second part is
a graph which is another structure for capturing the vertices and

Figure 2: Architecture of Terrain-Toolkit
edges of the terrain and is used for the purpose of computing the
shortest surface path.

The Internal Terrain Model can be visualized via the Terrain Vi-
sualization utility and simplified via the Surface Simplification util-
ity (we used OpenGL for our visualization purpose), whose results
can either be visualized or used for further computation. Given two
points on the surface of a terrain represented by either the Inter-
nal Terrain Model or the result of the Surface Simplification utility
which also corresponds to an Internal Terrain Model, the shortest
surface path can be computed via the Shortest Surface Path Com-
putation utility.

In the following, we explain three key utilities of Terrain-Toolkit
in detail.

2.3 Model/Format Conversion
The surface file formats can broadly be classified as Raster and

Non-Raster formats. In the context of 3D surfaces, a raster consists
of points laid out in a uniform grid-like fashion and each point has
a height (z-value) associated with it. In contrast, in a non-raster
format, the position of each point are not constrained to be in a
uniform grid. Next, we briefly describe each file format.
• USGSDEM: is a raster format with elevation values per grid

cell. We adopt the widely-used United States Geological
Survey (USGS) DEM format in this paper.
• GeoTiff (GTiff): uses a TIFF file format that stores raster

graphics and embeds geo-spatial information as metadata.
• Spatial Data Transfer Standard (SDTS): is a raster for-

mat and is primarily intended to be used for distribution and
archiving of spatial data in the form of rasters that are gener-
ated in adherence to an open standard.
• XYZ: is a non-raster format and is a list of raw (x, y, z) co-

ordinates generated from measurements of the actual land
surface.
• Geomview Object File Format (OFF): is a non-raster for-

mat and stores a description of 2D/3D surfaces comprising
of polygons.
• Polygon File Format (PLY): is a non-raster format and

stores 2D/3D surfaces and is a widely used and well-known
file format that is similar to the OFF file format.

Terrain-Toolkit allows convenient conversions among various
file formats.



2.4 Surface Simplification
Surface simplification is the process of reducing the number of

faces used in the surface while trying to keep the overall topology
preserved as much as possible. Reducing the number of faces in a
surface model can greatly speedup the visualization of the model
and also computations based on the model, e.g., shortest surface
path computations. Many surface simplification techniques have
proposed in the research literature (for a detailed survey, please
read [4]). We adopt the surface simplification method proposed
in [5] since it guarantees that the shortest surface distance based on
the simplified surface is within a bounded distance from the shortest
surface distance based on the original surface.

The method [5] is based on an iterative approach of removing
vertices from G. In each iteration, a chosen vertex v̄ together with
all edges connected to it are removed. After the removal, the set of
all remaining vertices adjacent to this v̄ forms a polygonal hollow.
This polygonal hollow is re-triangulated to complete the original
triangulation [2]. On completion of re-triangulation, two properties
are tested against to ensure that the removal of vertex v̄ does not
break our distance guarantee on the shortest network distance. The
properties are as following.
• Intra-distance property: The estimated network distance

between any two adjacent vertices in the neighborhood of v̄
should satisfy our distance guarantee.
• Inter-distance property: The estimated network distance

between any adjacent vertex of v̄ and a previously removed
neighbor of v̄ should satisfy our distance guarantee.

If removing a vertex and re-triangulating its polygonal neigh-
borhood satisfies both the intra-distance property and the inter-
distance property, then the vertex is removed and the simplified
surface is ready for the next iteration of vertex removal. Other-
wise, vertex v̄ along with all edges originally connected to it are
reinstated. For more detailed information about this surface sim-
plification algorithm, please refer to [5].

Terrain-Toolkit allows a user to input a real-valued error param-
eter, whose value has the range [1, 2]. The toolkit provides the user
with statistics about the number of vertices, faces and edges in the
surface prior to and after simplification. In addition, the toolkit also
provides the user a side-by-side visual comparison of the surface
before the simplification process and after. Figures 3(a) and 3(b)
show the before and after views, respectively.

2.5 Shortest Surface Path Computation
The computation of the shortest surface path between two points

s and t on 3D surfaces is a fundamental operation in applications
such as robotics, motion planning, geographic information systems
(GIS), and is an important topic in fields like computational geom-
etry and computer graphics.

The state-of-the-art exact shortest surface path computation al-
gorithm was proposed by Chen and Han (CH) [1]. This algorithm
has a O(n2) time complexity, where n is the number of vertices in
the polyhedral surface. The CH algorithm uses a technique called
planar unfolding. This time-consuming method rotates the faces of
the surface, so that all faces end up on the same level plane. Similar
to the computation of visibility graphs, the CH algorithm computes
shadows/projections of the source vertex s on each edge in the tri-
angulation and stores the results in a sequence tree that encodes
information about the shortest paths from the source s to points on
the edges. More recently, an improved CH algorithm was proposed
by Xin et al. [8] which has the same theoretical time complexity but
outperforms the original CH algorithm by orders of magnitude be-
cause it prunes a majority of unnecessary nodes from the sequence
tree. We adopt this improved CH algorithm in our system.

Terrain-Toolkit allows a user to pick vertices s and t from the
displayed surface model by clicking on the vertices. On comple-
tion of the shortest surface path computation, the path is displayed
to the user on the visualized surface model along with additional
statistics like the total path length and the number of vertices along
the path. The user also has the ability to click on faces that the path
cuts across to view additional information about the faces (e.g., face
IDs and vertices on the faces). Figures 3(c) and (d) show the short-
est surface paths computed on the simplified surface, while Fig-
ures 3(e) and (f) show the shortest surface path computed on the
original surface.

3. DEMONSTRATION
In this section, we demonstrate our Terrain-Toolkit in Section 3.1

and describe a use-case that highlights the main features of Terrain-
Toolkit in Section 3.2.

3.1 UI Demonstration
Terrain-Toolkit provides an easy-to-use and intuitive user in-

terface by allowing the user to interact with the system at var-
ious stages. For example, the user is allowed to better visual-
ize a 3D surface by rotating, scaling and translating the surface.
In addition, the user can choose a smaller rectangular region on
a large terrain for simplification and also shortest path computa-
tion. When doing Surface Simplification, the user is also allowed
to fine-tune the error parameter (β) to control the desired reso-
lution of the simplified surface. In addition, to further improve
the user experience, we provide the user with clear instructions
about how to use our system. Besides, meaningful statistics are
displayed after completion of procedures such as Surface Simpli-
fication and Shortest Surface Path Computation. We shot a video
for demonstrating the UI of Terrain-Toolkit which could be found
at http://www.cse.ust.hk/~raywong/paper/Terrain-Toolkit.mp4.

In the following, we illustrate a use-case of Terrain-Toolkit.

3.2 Use Case: Emergency Response
The use-case outlined in this part highlights the flexibility and

ease-of-use of our prototype in a real-life emergency response sit-
uation where computing the shortest surface path is critical. Con-
sider the following scenario.

The Search and Rescue team in Montana receives a distress call
from a hiker scaling the Bearhead mountain (BH) (located in the
“Glacier National Park, Montana, U.S.A”), who accidentally fell
into a deep crevice and needs immediate medical attention.

Sylvester, the team-leader of this rescue mission, instantly opens
up the 3D surface model of BH in Terrain-Toolkit with the intent
of finding the shortest and fastest path to reach the distressed hiker.

However, Sylvester realizes that the model has a very high res-
olution (i.e., with a large number of faces) and path computations
is slow. Hence, he decides to load a previously simplified surface
with much fewer faces to speed up this computation.

In the past, he had simplified the BH surface by loading the sur-
face model, choosing an error parameter (β) in the pop-up dialog
box and then clicking Simplify Terrain button (with the black-blue
spinning wheel icon). Since he chose larger values of β, he got sim-
plified models with fewer faces. He was able to compare the before
and after simplification terrains visually and then he chose to ei-
ther revert or save the simplified terrain based on his satisfaction.
Figures 3(a) and 3(b) show this comparative view.

Equipped with this knowledge, he browses his file system for a
simplified surface with the desired number of faces, loads it and
marks the last known location of the hiker on the terrain by double-
clicking and choosing one of the vertices on the terrain. He then



(a) (b)

(c) (d) (e) (f)
Figure 3: Effect of Surface Simplification and Shortest Surface Path Computation

visually locates the closest peak to this marked point, where the
rescue helicopter can land safely, from where the rescue team and
medics must navigate the terrain on foot to get to the hiker as soon
as possible.

Sylvester marks the nearest peak by picking another vertex and
clicks the Find Shortest Surface Path button (with the walking man
icon). He receives an immediate response within 1-2 seconds, with
the shortest path showing on the visualization as a bright yellow
path. Furthermore, he is given with the total distance of the path
and he can click on the faces that which the path cuts across to
extract further information. Figures 3(c) and 3(d) show the shortest
surface path on the simplified surface, viewed from two different
angles.

Sylvester immediately dispatches his helicopter rescue team.
The rescue team on the helicopter decides to utilize the journey
time to load a higher resolution model of BH and recompute the
shortest path from their landing location to the hiker’s last known
location. This computation takes longer (nearly 30-40 seconds),
but provides them with a more accurate path and distance to locate,
stabilize and rescue the hiker in distress. Figures 3(e) and 3(f) show
the shortest surface path on the original surface, viewed from two
different angles.

4. CONCLUSION
Motivated by the fact that there are very few toolkits available

for terrain/surface manipulation, we developed Terrain-Toolkit. We
demonstrate the techniques used in Terrain-Toolkit to efficiently

simplify surfaces [5] and compute shortest surface paths [8] on
them. There are several interesting features that can be added to
our demonstration proposal. First, the user can choose multiple
source points to reach a destination on the terrain. Second, various
other simplification algorithms can be implemented and visualized
using Terrain-Toolkit.
Acknowledgements: The research is supported by grant FS-
GRF14EG34.

5. REFERENCES
[1] J. Chen and Y. Han. Shortest paths on a polyhedron. In Proceedings of the sixth

annual symposium on Computational geometry, SCG ’90, pages 360–369, New
York, NY, USA, 1990. ACM.

[2] B. N. Delaunay. Sur la sphère vide. Bulletin of Academy of Sciences of the
USSR, (6):793–800, 1934.

[3] K. Deng, X. Zhou, H. T. Shen, Q. Liu, K. Xu, and X. Lin. A multi-resolution
surface distance model for k-nn query processing. VLDB J., 17(5), 2008.

[4] P. S. Heckbert and M. Garland. Survey of polygonal surface simplification
algorithms, 1995.

[5] M. Kaul, R. C.-W. Wong, B. Yang, and C. S. Jensen. Finding shortest paths on
terrains by killing two birds with one stone. PVLDB, 7(1):73–84, 2013.

[6] L. Liu and R. C.-W. Wong. Finding shortest path on land surface. In SIGMOD
Conference, pages 433–444, 2011.

[7] C. Shahabi, L. A. Tang, and S. Xing. Indexing land surface for efficient knn
query. PVLDB, 1(1):1020–1031, 2008.

[8] S.-Q. Xin and G.-J. Wang. Improving chen and han’s algorithm on the discrete
geodesic problem. ACM Trans. Graph., 28:104:1–104:8, September 2009.

[9] S. Xing, C. Shahabi, and B. Pan. Continuous monitoring of nearest neighbors
on land surface. In VLDB, 2009.

[10] D. Yan, Z. Zhao, and W. Ng. Monochromatic and bichromatic reverse nearest
neighbor queries on land surfaces. In CIKM, 2012.


