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ABSTRACT

In many applications of session-based recommendation, social net-
works are usually available. Since users’ interests are influenced by
their friends, recommender systems can leverage social networks
to better understand their users’ preferences and thus provide more
accurate recommendations. However, existing methods for session-
based social recommendation are not efficient. To predict the next
item of a user’s ongoing session, the methods need to process many
additional sessions of the user’s friends to capture social influences,
while non-social-aware methods (i.e., those without using social
networks) only need to process one single session. To solve the ef-
ficiency issue, we propose an efficient framework for session-based
social recommendation. In the framework, first, a heterogeneous
graph neural network is used to learn user and item representa-
tions that integrate the knowledge from social networks. Then,
to generate predictions, only the user and item representations
relevant to the current session are passed to a non-social-aware
model. During inference, since the user and item representations
can be precomputed, the overall model runs as fast as the original
non-social-aware model, while it can achieve better performance
by leveraging the knowledge from social networks. Apart from
being efficient, our framework has two additional advantages. First,
the framework is flexible because it is compatible with any ex-
isting non-social-aware models and can easily incorporate more
knowledge other than social networks. Second, our framework can
capture cross-session item transitions while existing methods can
only capture intra-session item transitions. Extensive experiments
conducted on three public datasets demonstrate the effectiveness
and the efficiency of the proposed framework. Our code is available
at https://github.com/twchen/SEFrame.
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1 INTRODUCTION

The task of Session-based Recommendation (SR) is to predict the
next action given the previous actions in the same session, where a
session is a sequence of actions in close temporal proximity. When
SR was initially proposed in [5], user IDs were not utilized because
SR was intended for the use cases where user IDs cannot be tracked
or most users generate only one or two sessions [6]. In these cases,
it is impossible or not meaningful to provide recommendations by
mining user-item interactions. Instead, SR learns user preferences
from sequential transition patterns in anonymous sessions.

If user IDs can be tracked and most users generate a sufficient
number of sessions for the recommender system to learn reliable
user preferences, SR can still be applied because it is a common
phenomenon that user actions in the same session share a com-
mon objective and user actions in different sessions have a weak
correlation [2]. Therefore, it is better to provide recommendations
based on sessions. Apart from capturing user interests from sequen-
tial properties as in standard SR, user IDs can be utilized so that
customized recommendations can be made for users with different
preferences when the same session prefix is given. This variant of
SR can be called personalized session-based recommendation (PSR).
Since the aforementioned phenomenon exists in many online ser-
vices such as e-commerce and video sharing websites, SR has great
practical value and therefore has attracted much attention recently.

In the scenarios where PSR is applicable, there is usually a social
network between users. The service provider itself may have its
own social network. For example, in the image sharing app Insta-
gram, the following and being followed relationships between users
define a social network. Even if there is no explicit social network
in the service, it is still possible to construct a social network by
either associating users to external social media platforms (e.g.,
Facebook) or using existing users’ interactions (e.g., in Reddit, two
users can be connected if they have replied to each other). The so-
cial relationships in the social network can be leveraged to provide
more accurate recommendations because users’ interests are influ-
enced by their friends and connected users tend to share similar
preferences [9, 21, 25]. Therefore, the recommender systems can
better understand their users’ preferences using the social network.
Following the convention [14], we call this variant of SR session-
based social recommendation (SSR), which has a broad application
due to the prevalence of online social networks.
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Figure 1: An overview of the proposed framework SEFrame

The general topic, social recommendation, has been greatly stud-
ied and many effective methods have been proposed. However,
there is not yet much related work on the specific topic SSR because
it is relatively new. Existing methods for social recommendation
are not suitable for SSR because they do not consider the sequential
order of user behaviors. DGRec [14] is currently the only method
for SSR but it is not efficient. To capture social influences, DGRec
uses a GNN to aggregate the preferences of neighbors for each
user. Each user’s preferences depend on those of their neighbors
and the dependency is recursive. If an L-layered GNN is used, the
current user’s preferences recursively depend on those of at most
N" users, where N is the number of sampled neighbors for each
user at each layer. Since users’ preferences are characterized by
their most recent sessions, the model needs to process at most N
sessions to predict the next item of a single session. In contrast,
non-social-aware methods are much more efficient because they
only need to process the current session.

To solve the efficiency issue of DGRec, we propose an efficient
framework for SSR, called Social-aware Efficient Framework (SE-
Frame), whose overview is shown in Figure 1. First, we build a
heterogeneous knowledge graph from the social network and all
historical user behaviors. Then, we use a heterogeneous graph net-
work to learn user and item representations that fuse the knowledge
from social relationships, user-item interactions and item transi-
tions. Given a user and his/her current session, the relevant user
and item representations are retrieved and passed to a PSR model.
Since the user and item representations are social-aware, the PSR
model can leverage the knowledge from the social network to pro-
vide recommendations. In this way, we have adapted a PSR model
to a SSR model. The framework is efficient because the social-aware
user and item representations can be precomputed for inference.
Therefore, during inference, the SSR model just need to process the
current session, which is as efficient as the original PSR model.

We summarize our contributions as follows.

e We propose an efficient framework for SSR called SEFrame.
Using this framework, any existing models for SR can be
adapted for SSR. The adapted models can leverage the knowl-
edge from the social network to provide more accurate rec-
ommendations, while being as efficient as the original models
during inference.

o SEFrame is highly flexible because any existing SR models
can be plugged in and it is straightforward to integrate more
knowledge in addition to the social network.

e Due to the way that the knowledge graph is constructed,
SEFrame can capture cross-session item transitions, while
existing methods can only capture intra-session item transi-
tions.

e We also propose an effective model that implements SE-
Frame. The proposed model could give a higher prediction
accuracy than both the baselines that are simple adaptations
of existing SR models and the state-of-the-art SSR model,
DGRec.

e We conducted extensive experiments to verify the effective-
ness and the efficiency of SEFrame. SSR models adapted from
existing SR models using SEFrame consistently give a higher
prediction accuracy than the original models, while they are
as efficient as the original models.

2 RELATED WORK

In this section, we review the related work of session-based recom-
mendation and social recommendation.

Session-based Recommendation: Session-based Recommenda-
tion is a sequential modeling problem, for which recurrent neu-
ral networks (RNNs) are natural solutions. Hidasi et al. [5] first
formally defined session-based recommendation and proposed a
multi-layered GRU model. Li et al. [7] incorporated the attention
mechanism into GRU to capture users’ sequential behaviors and
main purposes. Ren et al. [11] considered the repeat consumption
phenomenon using a GRU-based model with a repeat-explore mech-
anism. Convolutional neural networks (CNNs) are also powerful
sequential modeling tools. [23] applied dilated convolutional layers
to effectively modeling long-range dependencies. Recently, graph
neural networks (GNNs) have achieved superior performance in a
variety of tasks including session-based recommendation. Wu et al.
[19] represented sessions as graphs and applied a gated graph neu-
ral network to capture complex item transitions. Chen and Wong
[2] solved two information loss problems of graph neural networks
methods for session-based recommendation. Since these methods
assume that the sessions are anonymous, they could not provide
personalized recommendations.

Various attempts have been made to utilize user information in
session-based recommendation. Quadrana et al. [10] proposed a
hierarchical RNN model to capture users’ evolving interests. Wu
et al. [20] extended SR-GNN [19] for personalized session-based
recommendation and used the attention mechanism to explicitly
model the effect of user’s historical interests on the current session.



Guo et al. [4] enhanced GRU with matrix factorization to model
users’ long-term interests. These methods could provide more tai-
lored recommendations by modeling users’ long-term and evolving
interests, but they could not capture the influences between users
in social networks.

Social Recommendation: Many previous studies attempted to
leverage social networks to improve the recommendation results.
Ma et al. [9] incorporated social networks into recommender sys-
tems by regularizing the latent user factors so that connected users
have similar latent factors. Zhao et al. [25] extracted additional
training instances from the social network for matrix factorization.
Wang et al. [17] distinguished and learned the personalized prefer-
ences between strong and weak ties in social networks. Xiao et al.
[21] adopted transfer learning to model user-item interactions and
social relationships simultaneously. Wang et al. [16] enhanced user
modeling by integrating the knowledge from multiple heteroge-
neous social networks. These methods only utilize collaborative
information from user-item interactions without considering the
sequential order of interactions, and thus they are not suitable for
session-based recommendation. Currently, the only method for
session-based social recommendation is DGRec [14], which models
dynamic user behaviors with an RNN and context-dependent social
influences with a graph attention network. However, this method
is inefficient because it needs to process many additional sessions
to predict the next item of the current session.

3 PROBLEM DEFINITION

In this section, we formally define three variants of session-based
recommendation, including anonymous session-based recommen-
dation, personalized session-based recommendation, and session-
based social recommendation.

Anonymous Session-based Recommendation (ASR): Let [
be the set of items. The dataset of users’ historical behaviors D is
a set of anonymous sessions. Each session S € D is a sequence of
items clicked by an anonymous user, where S[t] € I denotes the
tt" item in session S.

Personalized Session-based Recommendation (PSR): Let U
and I be the sets of users and items, respectively. The dataset of
users’ historical behaviors D contains all sessions of all users. Each
user u € U is associated with a set of sessions denoted by D% =
{84, S;‘, e S‘I;D,,‘}, where S%f is the T*" session of u. Each session
S7 is a sequence of items clicked by user u, where S/.[t] € I denotes

the ! item in session S7. For brevity, we may drop the superscript
u and/or the subscript T in S7. if there is no ambiguity.

Session-based Social Recommendation (SSR): In addition to
the dataset of the historical behaviors (i.e., D) in PSR, we have a
social network which is a graph S = (U, E). The set of nodes in
S is the user set U, and the set E of edges represents the social
relationships between users. An edge (u,v) from u to v means that
u is followed by .

The objective of all variants is to predict the next item of a
new session S ¢ 9. The prediction model can access all relevant
information in D (and S if the problem is SSR).

Following previous studies [7, 11, 14, 19], we embed the user
IDs and item IDs into low-dimensional latent spaces. To make
analysis easier, we set the same dimensionality d for both user and

item embeddings. All the embeddings are randomly initialized and
learned with other model parameters.

4 SOCIAL-AWARE EFFICIENT FRAMEWORK

In this section, we introduce our efficient framework for SSR called
SEFrame. SEFrame has three components. The first component
learns user and item representations from a heterogeneous knowl-
edge graph. We call this component the Knowledge Graph Embed-
ding (KGE) component (Section 4.1) because the learned represen-
tations can be viewed as embeddings which fuse knowledge from
the heterogeneous graph. The second component called the Per-
sonalized Session Embedding (PSE) component (Section 4.2) takes as
input the relevant user and item representations of a given session
and produces a session-specific embedding that captures the user
current interests and items’ contextual information. The third com-
ponent called the prediction component (Section 4.3) generates a
probability distribution of the next item from the session embed-
ding, the user embedding and the item embeddings. Next, we detail
each component of SEFrame in Sections 4.1 to 4.3. We present the
training process of SEFrame in Section 4.4.

4.1 Knowledge Graph Embedding (KGE)
Component

This KGE component involves two tasks. The first task is to con-
struct a heterogeneous knowledge graph K from all historical user
behaviors O and the social network S. The second task is to learn
user and item representations that fuse the knowledge from K
using a heterogeneous graph neural network (HGNN).

Formally,let K = (V, &, A, R, §, ) be the heterogeneous knowl-
edge graph. The node set V = U U I consists of all users and items
involved in O and S. The edge set & contains four types of di-
rected edges, namely user-user edges, user-item edges, item-user
edges and item-item edges. We reuse the symbols for sets of users
and items to denote the types of nodes and edges. Specifically,
the set of node types is A = {U, I} and the set of edge types is
R = {UU,UL1U,II}. Each edge in & is associated with a weight
which is an integer. ¢ : V +— A is a function that maps a node to
its type and ¢ : & = R is a function that maps an edge to its type.

The user-user edges represent social relationships between users.
A user-user edge (u,v) € & if user u is followed by user v. We use
“is followed by” instead of “follows” because GNNs update node
representations using incoming edges and users are more influenced
by the users they follow than those following them. The weight of
a user-user edge is defined to be 1. The user-item and item-user
edges represent user-item interactions. A user-item edge (u, i) and
an item-user edge (i, u) are in & if user u has clicked item i in some
sessions. The weight of each of these two edges is defined to be
the number of times that the interaction happens. The item-item
edges represent item transitions [19]. An item-item edge (i, j) € &
if there is a transition from i to j in any session. The weight of this
edge to be the number of times that the transition happens.

We include the nodes and edges that must be available under the
setting of SSR. It is possible and easy to add other types of nodes
and edges that are useful to predict the next items. For example,



if we know the categories of items, we can add nodes for the cate-
gories and add edges between items and categories. Therefore, it is
straightforward to integrate more knowledge into our framework.
After we obtain the heterogeneous knowledge graph, we do
the second task. The second task is to apply a HGNN to learn
representations of users and items, where the user representations
capture user preferences and the social influences, and the item
representations capture collaborative information from user-item
interactions and cross-session item transition patterns. We call these
representations knowledge graph embeddings (KG embeddings).

4.2 Personalized Session Embedding (PSE)
Component

The KG embeddings capture the global knowledge in all sessions
and the entire social network, without capturing the session-specific
context information. However, in SR, user behaviors in the current
session S are important to capture the user’s dynamic interests.
Therefore, the PSE component generates a personalized session-
specific embedding that captures the user’s current preferences and
the items’ contextual properties. It involves two tasks.

The first task is to perform an operation called embedding lookup
to extract the relevant KG embeddings of the current user and
the items in S from the KGE component. These extracted KG em-
beddings includes (1) the KG embedding of the current user in S,
denoted by uX€, and (2) the KG embeddings of all items in S, de-
noted by $X“[¢t] where t = 1,2, - -. The second task is to perform
an operation called personalized session embedding extraction to
compute a personalized session-specific embedding according to
the extracted KG embeddings. Specifically, this operation is a func-
tion © that takes u®“ and $¥ as input and computes a personalized
session-specific embedding s”°". That is, s**" = @(uX, §X°).

Any existing SR model, including existing models for PSR and
existing modes for ASR, can be easily plugged into our framework.
Firstly, existing models for PSR can be directly plugged into our
function © because the KG embeddings u*® and $¥€ can be used
as the user and item embeddings required by these models. The
session representation generated by a PSR model can be used as
the personalized session-specific embedding required by this PSE
component. Secondly, although original models for ASR does not
consider any user information, we could adapt each ASR model to a
PSR model by appending the user KG embedding u* to each item
KG embedding $¥“[¢] to obtain the personalized representation of
item §%[1], so that this model could be plugged into our framework
too. The personalized item representations are passed as input
to the original ASR model. Then, the ASR model can utilize the
user information from this personalized item representations and
become a PSR model. Thus, this model could be plugged into our
framework too.

4.3 Prediction Component

After we obtain the personalized session embedding s”", the pre-
diction component can use it to generate a probability distribution
of the next item. Since the user KG embedding u*® can be viewed
as the user’s long-term interests, which has been shown to be useful
to predict the next item in many previous studies [4, 15, 20], we

obtain the final session representation s from both s”" and u*¢:
s = MLP (s7*"||u*9) (1)

where || denotes concatenation and MLP(-) is a neural network
that transforms the concatenated vector to a vector that has the
same dimensionality as item embeddings.

To generate the probability distribution of the next item, for each
item i with embedding i, we compute its score of being the next
item of the current session as follows:

zi=ils (2)

Then, the scores in z are normalized using softmax to obtain a
probability distribution ¢. That is, § = Softmax(z). The items with
the top-K probabilities are recommended as the candidates of the
next item.

4.4 Training

Let y be the ground-truth probability distribution of the next item,
which is a one-hot vector. The loss function is defined to be the
cross-entropy of the prediction and the ground truth:

L(y9) =-y" logy 3)

Then, all parameters including the embeddings are randomly initial-
ized and jointly trained in an end-to-end manner using mini-batch
stochastic gradient descent.

Therefore, existing SR models can be easily adapted for SSR
using our framework. The adapted social-aware models can give
a higher prediction accuracy than the original non-social-aware
models and even the state-of-the-art SSR model. However, we do
not stop here. We further propose a model that implements the
framework SEFrame and is able to have a better prediction accuracy
than these simple adaptions.

5 SOCIAL-AWARE EFFICIENT
RECOMMENDER

In this section, we propose a model called Social-aware Efficient
Recommender (SERec) that implements SEFrame by concretely
defining the KGE and PSE components. The same prediction com-
ponent and training step described in Sections 4.3 and 4.4 are used.

5.1 Implementing KGE Component

For the first task of the KGE component, we adopt the same method
to construct the heterogeneous knowledge graph described in Sec-
tion 4.1. For the second task of the KGE component, to learn the
representations of user and item nodes in the graph called the KG
embeddings, we design a HGNN based on the attention mechanism,
which consists of L layers.

Let H! [0] denote the representation of node v at layer [, where
v could be either a user or an item. The initial node representations
HO are the user and item embeddings. In the following, we describe
the recursive procedure that computes the new node representa-
tions H' at layer [ from the old node representations H =1 gt layer
I-1.

At layer I, we compute the new user representations based on
two concepts, namely social influences and user preferences. Firstly,
we compute the messages passed between users to capture social



influences. The message from user v that u follows is computed as a
linear transformation of the node representation of v at layer [ — 1:

Messagel,, (v,u) = W, H " [v] + bl )

where W, € R%? and b, € R are learnable parameters.

Secondly, we compute messages passed from items to users to
capture user preferences. The message from item i that u has clicked
before is computed as follows:

MessageiU(l’, u) = WIIUHI_1 [i] + b1lu ®)

where W}, € R%*? and b, € R? are learnable parameters. Note
that since we consider user preferences which represent how a user
prefers different items (or equivalently, how items influence a user),
we consider only message passing from items to users (denoting
how items influence a user) and thus, we do not need to consider
message passing from users to items (denoting how users affects
the click of an item).

To consider both social influences and user preferences, it is com-
mon to apply a hierarchical aggregation scheme [18, 24]. Specifically,
two different aggregation functions are applied to gather the social
influences from all neighboring users and the user preferences on
all neighboring items:

Gg, [u] = Aggregatei,u (Message{,u(o, u)) 6)
veN;’r(l(u)ﬂU

Gf [u] = Aggregatefu (Messagefu(i, u)) @
ieNX (u)nr

where Nl’fl (u) denotes the in-neighbors of u in K.
Then, the aggregated information from neighboring users and
items is merged using a second-level aggregation:

f'[u] = Aggregatel, (G}, [u], G}[u]) ®)

However, we found that this hierarchical aggregation scheme
has a problem because the numbers of neighboring users and items
of a user may be imbalanced. For example, user u may have clicked
many items but just follow one or two users. In this case, the in-
formation from neighboring users is noisy while the information
from neighboring items is more reliable. To handle this problem, we
propose the attention aggregation scheme which can automatically
decide to trust the more reliable information source. Specifically,
we directly aggregate the messages from both neighboring users
and items:

ﬁl[u] = Aggregatel (Messagel (v,u)) 9)
s v V(e
veEN;, (u),e=(v,u)

where ¥/(e) is the type of edge e.

We define the aggregation function using the attention mech-
anism. Specifically, we first compute the importance score of the
message passed along the edge e = (v, u) as follows:

Importance‘l',/(e) (v,u) = (q{/,(e))T o (Wl//(@ (Hl_1 [0] ||Hl_1 [u]) + el)
(10)

€ R9%2d gre Jearnable parameters. o

! d 1
where q,,,, € R" and W, ,
denotes the sigmoid activation function and el € RY is the feature

vector of edge e at layer I. Here, for each layer /, we embed the

weight of each edge into a dense vector as the feature vector e!

of this edge instead of using its original weight value because the
influence of the edge on the attention scores may not be monotonic.
Note that the same edge could have different feature vectors at
different layers to have a higher modeling capacity.

The importance scores are normalized using softmax to obtain
the attention weights:

Attentionf#(e) (v,u) = Softqr;lax (Importancelwe) (v, u)) (11)
veEN;, (u)

Then, the influences from all neighboring nodes are computed
as the weighted sum of all messages:

Hu=

UEN;]'S (u),e=(ov,u)

i1 I
Attentiony,,, (v, u) - Message,,,, (0, u)

(12)

The aggregation information from all neighboring nodes of items

can be computed similarly to that of users. To handle more types of

nodes and edges, we generalize the aggregation scheme as follows.

To aggregate the information from all neighboring nodes of a

target node u, we first compute the message passed from each
neighboring node v € N;’fl(u) along the edge e = (v, u):

Message‘l/,(e) (vo,u) = Wgzl,@Hl_l [v] + bfme) (13)

which applies an edge-type-specific linear transformation on the
feature vector of the source node v, so that feature vectors from
different node types are transformed into the same feature space.

W‘/I/(e) € R9%d gnd b‘lm) € R¥ are learnable parameters for the edge
type ¥ (e).

Then, the aggregated information H![u] that gathers the mes-
sages from all neighbors in le’f1(u) can be computed using Equa-
tions (10) to (13). Therefore, it is straightforward to add more types
of nodes and items.

The final step is to compute the new node representation from
the aggregated information and the old node representation. To do
so, we apply a simple node-specific linear transformation followed
by the ReLU activation function:

H'[u] = ReLU (W}, (' [ullH'7'[u]) +B},)  (9)

where Wj)(u) € R9%2d and bi(u) € R? are learnable parameters for
the node type ¢(u).

In this way, we obtain the node representation H! |u] at the
Ith HGNN layer for each node u, which captures both social in-
fluences from neighboring users and the user’s own preferences
on neighboring items. By stacking L such HGNN layers, the final
node representations HX, called the KG embeddings, capture highly
contextualized information within the L-hop community of each
node, which are fed into the PSE component to learn personalized
session-specific preferences.

5.2 Implementing PSE Component

The objective of the PSE component is to extract the current user’s
dynamic and personalized preferences in the current session. To do
so, we propose a GNN model to learn a personalized session-specific
embedding s”*". It involves three tasks.

The first task is to construct a weighted directed graph called
the session-specific graph G = (V, E) based on an ongoing session S
of a user u. Specifically, the node set V contains the unique items



in S and edge set E contains an edge (i, j) if there is a transition
from item i to item j in S. The weight of edge (i, j), denoted by w;;,
is the number of occurrences of i — j in S.

The second task is to learn a contextualized feature vector of each
item in S for user u, representing u’s current interests on items,
by performing message passing on the session-specific graph G.
The message content of a node in G for the message passing is
initialized based on KG embeddings, including both the item KG
embeddings (i.e., $¥°[1],5%¢[2], ...) and the user KG embedding
(i.e., u®%), which could capture u’s personalized preferences on
items in S. Note that for each item in S (represented by S¥[¢]),
there is a corresponding node i in G. The initial message content
is modeled by an initial feature vector of node i, denoted by x;,
corresponding to item S¥[¢] as follows.

xi = SKO 1] |

The message passing mechanism, which could help to capture u’s
current interests by using the session-specific graph G, is modeled
as follows. Let N (i) and Ng; , (i) denote the incoming and outgo-
ing neighbors of node i in G, respectively. To learn the contextual-
ized feature vector of i, inspired by [19], we gather the information
from both N (i) and Ng; . (i):

1

W S 2a MWk (19
keNi (D) Pk LeNG (i)
1
a?ut = > " Wik - Wourxg (16)
KENG (0K keNE, (1
a; = a"||a?"! (17)

where Wiy, Woyr € R9%2 are learnable parameters and a; denotes
the aggregated information from i’s neighboring nodes.

Then, we obtain the contextualized feature vector by applying a
gating mechanism to incorporate the information from neighboring
nodes (i.e., @;) and the initial feature vector (i.e., x;):

‘}:i = tanh (Wh (ai||x,~) +bh) (18)
ri = o (Wr (aillx;) + br) (19)
hi=r; O;l'i +(1— ri) O Wyx; (20)

where Wy, W, € R9x4d W, e R9%2d 4 by, by € R4 are learnable
parameters. © denotes element-wise multiplication, and h; is the
contextualized feature vector of node i.

The third task is to obtain the personalized session-specific em-
bedding s”*" by aggregating the contextualized feature vectors of
all nodes using the attention mechanism. Specifically, inspired by
[19], we use the last item to select the important items in S. Let by,
be the contextualized feature vector of the last item in S. Besides,
since u’s long-term interests are also important to understand u’s
current focus, we also consider the user KG embedding uX¢ when
the attention mechanism is considered. The importance score of
node i is defined as:

€ = pl o (W (Rillhyasllu®) +7) (21)

where p,r € R? and W € R?34 are learnable parameters.

Then, the personalized session-specific embedding s7* is com-

puted as the weighted sum of all contextualized feature vectors:

s = Z ﬁithit (22)
1<t<|S]

Bi, = Softmax(e;,) (23)
1<t<|S|

where i; is the node corresponding to the item at time step ¢ in S.

6 COMPUTATIONAL COMPLEXITY

In this section, we show that the methods that implement SEFrame
have lower computational complexities than the state-of-the-art
SSR model, DGRec, during both training and inference in a mini-
batch setting. We do not include into analysis the step that com-
putes the probability distribution of the next item (i.e., Equation (2))
because this step is the same for all models.

Training Phase: Consider the training phase of DGRec. In Sec-
tion 1, we have established that DGRec needs to process at most N
sessions to generate recommendations for each session, where N
is the number of sampled neighboring users for each user at each
layer and L is the number of GAT layers. Given a batch of B sessions,
DGRec needs to process O(BNL) sessions. Since DGRec employs
LSTM to process sessions, the total running time is O(BNLZ), where
L is the average session length.

Consider the training phase of the methods that implement SE-
Frame. Given a batch of B sessions, the first step is to obtain the
KG embeddings of the users and items involved in the batch (Sec-
tion 5.1). Since the KG embeddings are not related to a specific
session, we just need to find the KG embeddings of the unique
users and items, denoted by Q. Suppose that we apply an L-layered
HGNN to learn the KG embeddings so that each user can be influ-
enced by his/her L-order neighboring users as in DGRec. For each
node g € Q, we sample N neighboring nodes of g for each type of
neighbors to obtain its final embedding H"[q]:

H'[q] = f{H""[0] : v € {q} UN; (9)}}) (24)

where N£(q) is the sampled neighbors of g at layer L, and f com-
poses the functions defined in Equations (10) to (14). It is easy to
verify that the complexity of f is O(INL(g)|) = O(N), which is
proportional to the number of sampled neighbors. Since we sample
O(N) neighbors for each node in Q, there are in total O(|Q|N)
neighbors sampled. Thus, the complexity at layer L is O(|Q|N).

Since H! recursively depends on H!~!, we need to recursively
sample neighbors. As a result, layer 1 has the largest total number
of neighbors sampled, and thus the complexity of the first whole
step is dominated by that of this step at layer 1. Since the total
number of sampled neighbors at layer 1 is O(|Q|NL), the running
time of the first whole step is O(|Q|NL).

The second step is to generate session-specific embeddings (Sec-
tion 5.2). Existing methods that are based on GNNs, CNNs and
RNNs can compute the session-specific embedding for session S in
O(|S]) time, where |S| denotes the number of items in S. Therefore,
since L is the average session length, the total running time in this
step is O(BL).

The remaining steps which are prediction and training can be
finished in O(B) time.



Therefore, the total computational complexity of SEFrame is
O(|QIN" + BL + B) = O(|Q|N" + BL).
Comparison: Since the number of unique users and items is usually
less than the number of item occurrences in all sessions (i.e., |Q| <
BL) and N > 1, we derive that |Q|NL + BL is smaller than BN L.
Therefore, methods that implement SEFrame can be faster than
DGRec during training.
Inference Phase: Consider the inference phase of the methods that
implement SEFrame. We can precompute the KG embeddings, so the
computational complexity at inference time is simply dominated
by that of the second step in the training phase (i.e., O(BL)).

Consider the inference phase of DGRec. Since most recent ses-
sions of neighboring users could be different even for the different
sessions of the same user, precomputation could not be done in
DGRec. Thus, the running time of DGRec in the inference phase is
the same as that in the training phase (i.e., O(BNLZ)).
Comparison: Therefore, methods that implement SEFrame runs
much faster than DGRec during inference.

7 EXPERIMENTS

In this section, we first describe the experimental settings, and then
make detailed analysis on the experimental results.

7.1 Experimental Settings

In this subsection, we describe datasets, compared methods and
evaluation metrics for experimental settings.

7.1.1  Datasets. We conducted our experiments on the following

three public real-world datasets which are commonly used in the lit-
erature of SR and social recommendation [4, 14, 19]: (1) Gowalla [13]
contains the check-in data and social network on a location-based

social networking website. Following [2, 4], we consider two check-
-in records in different sessions if the time interval between them is

longer than 1 day. (2) Delicious [1] was collected from an online

bookmarking system where users can assign a variety of semantic

tags to bookmarks. Following [14], we consider a sequence of tags

with timestamps assigned to a bookmark as a session and the task is

to provide personalized tag recommendations. (3) Foursquare [22]

is another large-scale check-in dataset. The social network is col-
lected from an external social media platform. Similar to Gowalla,
we set the splitting interval to 1 day.

For each dataset, we kept the first 60% sessions as the training
set. The remaining sessions were evenly divided into the validation
set and the test set. Following [2, 7, 8, 11, 19], we first filtered short
sessions and infrequent items and then applied a data augmentation
technique described in [2, 7, 8, 19]. Some statistics of the datasets
after preprocessing are shown in Table 1.

7.1.2  Compared Methods and Evaluation Metrics. To evaluate the
performance of the proposed framework and model, we used the
following representative SR methods: (1) ItemKNN [3] is a com-
monly used baseline that recommends items that are most similar to
the last item. Each item i is represented as a binary vector x; € RM,
where M is the number of sessions and x; j = 1 if item i appears
in the j session. The similarity between two items is defined to
be the cosine similarity between their binary vectors. For LBSN
datasets, we also used a variant of ItemKNN denoted by “ItemKNN

Table 1: Statistics of datasets used in the experiments

Statistic Gowalla Delicious Foursquare
# clicks 1,218,599 266,190 3,627,093
# sessions 258,732 60,397 888,798
# users 33,661 1313 39,302
# items 41,229 5793 45,595
# social links 283,778 9130 304,030

(geo)” which measures the similarity between items by their geo-
graphical distances. (2) FPMC [12] is a Markov-chain based method
for next-basket recommendation. To adapt it for SR, we consider
the next item as the next basket. (3) NextItNet [23] is a CNN-based
method for ASR that models long-range dependencies by dilated
convolution. (4) NARM [7] is an RNN-based method for ASR that
integrates attention into GRU to capture users’ main purposes and
sequential behaviors. (5) STAMP [8] is an ASR model that applies
the attention mechanism to better capture users’ short-term in-
terests. (6) SR-GNN [19] is a method for ASR that utilizes gated
graph neural network to capture complex item transitions inside
sessions. (7) SSRM [4] is the state-of-the-art method for streaming
SR. Its MF-based attentive session recommender could be used for
PSR. (8) DGRec [14] is the state-of-the-art method for SSR that
captures users’ dynamic interests and context-dependent social
influences using RNNs and a graph attention network. We did not
include the methods for social recommendation because they are
uncompetitive as shown in [14].

Following [2, 8], we applied grid search to find the optimal
hyper-parameters for all models using the validation sets. The
values we searched were: {32, 64, 96, 128} for the embedding size
d, {107%,1073,... , 1071} for the learning rate n, and {1, 2, 3} for
the number of GNN layers L. We used the Adam optimizer to train
the models and the batch size was set to 128. We reported models’
performance under their optimal hyper-parameter settings.

Following [2, 4, 7, 8, 19, 23], we adopted the commonly used
HR@K (Hit Rate at K) and MRR@K (Mean Reciprocal Rank at K)
as our evaluation metrics. The values of K included {10, 20}.

7.2 Effectiveness of SEFrame and SERec

To prove the effectiveness of SEFrame, we plugged the existing
non-social-aware SR methods into our framework to obtain social-
aware methods for SSR. Then, we compared the performance of
the adapted social-aware methods and the original methods. To
prove the effectiveness of SERec, we compared SERec with the
adapted social-aware methods and the state-of-the-art SSR method,
DGRec. The results are shown in Table 2. We denote the social-
aware model adapted from an existing non-social-aware model by
adding a prefix ‘S’ to the model name. From the results, we have
the following observations.

The simple baselines, ItemKNN and FPMC, which only use the
last item for prediction, perform much worse than other methods
that can consider all previous items, showing the importance of
utilizing the complete sequential information. On LBSN datasets,
ItemKNN (geo) has the worse performance, meaning that it is not
enough to only consider distances in these datasets.



Table 2: Performance of SR methods in %

Model ‘ Gowalla ‘ Delicious ‘ Foursquare
| HR@10 MRR@10 HR@20 MRR@20 | HR@10 MRR@10 HR@20 MRR@20 | HR@10 MRR@10 HR@20 MRR@20

TtemKNN 33.27 18.47 39.11 18.88 20.84 9.98 27.82 10.46 43.88 23.58 52.11 24.15
ItemKNN (geo) | 25.07 11.26 32.95 11.80 — - - — 28.51 12.28 37.02 12.87
FPMC 35.31 17.66 42.57 18.17 29.59 14.46 38.26 15.02 4451 20.93 55.05 21.66
NextItNet 39.87 21.51 47.80 22.04 35.14 18.04 44.62 18.69 52.02 27.67 60.83 28.28
NARM 41.56 22.50 49.55 23.04 37.18 19.76 46.39 20.40 53.63 29.40 62.32 30.00
STAMP 41.93 22.55 49.68 23.10 36.29 19.05 44.96 19.63 53.12 28.32 62.14 29.05
SR-GNN 4131 22.39 49.31 22.94 37.01 19.57 45.74 20.20 53.19 28.78 62.07 29.40
SSRM 41.63 22.45 49.64 22.98 37.51 19.83 46.57 20.46 53.83 29.33 62.50 29.93
SNextItNet 45.42 24.82 52.93 25.33 38.87 20.84 48.48 21.50 61.11 33.57 69.48 34.16
SNARM 4451 24.02 52.08 24.54 39.84 21.15 49.41 21.95 60.09 32.90 68.30 33.50
SSTAMP 4535 24.77 52.84 25.30 38.90 20.57 48.20 21.12 61.30 33.81 69.69 34.40
SSR-GNN 45.46 24.97 52.95 25.49 39.92 21.10 4935 21.81 61.04 33.47 69.50 34.06
SSSRM 45.01 24.34 52.60 24.87 39.94 21.08 49.26 21.64 60.94 33.48 69.51 34.08
DGRec 42.18 23.04 49.95 23.58 37.78 20.07 47.36 20.73 57.05 31.53 65.85 32.15
SERec 46.01 25.14 53.72 25.67 40.02 21.29 49.53 21.98 61.66 34.03 70.05 34.62

Generally, the more information a model considers, the better
it can perform. In most cases, the PSR model, SSRM, outperforms
the ASR models, and the SSR models outperform those non-social-
aware models. Therefore, it is of great advantage for SR models
to consider personalized preferences and social influences when
reliable user information can be obtained.

All SSR models adapted from non-social-aware methods signifi-
cantly outperform their original models and even the state-of-the-
art SSR model, DGRec, which strongly proves the effectiveness of
SEFrame. DGRec performs better than the non-social-aware models
because it leverages the social network to learn more accurate user
preferences. However, it does not perform better than the models
that implement SEFrame. One possible reason is that in DGRec,
the way of using the information from social networks introduces
noise to the model. Specifically, some of the most recent sessions of
neighbors and the current session may not have any common items
so they are totally uncorrelated. Another reason is that models
using SEFrame can leverage more knowledge than DGRec. In addi-
tion to the social network, we also integrate all historical user-item
interactions and cross-session item transitions into the knowledge
graph, so the models can learn more accurate user preferences.

The proposed model, SERec, outperforms the simple SSR mod-
els that are adapted from non-social-aware methods. Compared
with SNextItNet, SNARM, SSTAMP and SSR-GNN, SERec consid-
ers the user’ long-term interests when learning the personalized
session embedding. Compared with SSSRM, SERec computes con-
textualized item embeddings to understand what features the user
is focusing on for each item. Therefore, SERec can learn a better
session representation that more accurately captures the user’s
dynamic and personalized interests in the current session.

7.3 Efficiency of SEFrame

To prove the efficiency of SEFrame, we compared the models’ run-
ning time during both training and inference on the largest dataset
Foursquare. The embedding size d is set to 128 and the number of
GNN layers L is set to 1. The results are shown in Table 3.

Table 3: Running time in seconds per 1000 batches

Model Training Inference ‘ Model Training Inference
NextItNet 18.77 5.56 SR-GNN 27.73 26.61
SNextItNet 58.17 5.60 SSR-GNN 50.81 25.96
NARM 11.95 5.08 SSRM 14.63 5.24
SNARM 48.37 5.16 SSSRM 45.71 5.20
STAMP 11.55 4.98 DGRec 62.77 62.85
SSTAMP 49.11 5.06 SERec 54.62 27.52

SSR models adapted from non-social-aware methods run slightly
faster than DGRec during training and run as fast as their original
models during inference, which is consistent with our theoretical
analysis in Section 6. SSR models are much slower than non-social-
aware models because they need to process much more information.
A larger running time during training is acceptable in practice
as long as the model can have a better performance because the
model needs to be trained only once in a period. However, a larger
running time during inference is less tolerable because inference
requires low latency and high throughput in most applications.
The inference time of DGRec is more than twice than that of the
slowest non-social-aware model, SR-GNN, which greatly limits
the practical use of DGRec. In contrast, SSR models adapted from
non-social-aware methods using our framework can have a higher
prediction accuracy, while the inference time is as fast as that of the
original models, making them better choices than DGRec in terms of
both accuracy and efficiency. Although the adapted model requires
more time and memory for training, during inference, there is no
additional time and memory required (the original embeddings can
be replaced by the KG embeddings during inference). Therefore,
our framework is of great practical value.

7.4 Ablation Study

To evaluate the effectiveness of different parts of SEFrame, we
conducted an ablation study. We used SERec in the experiment but
the results were similar for other models that implement SEFrame.



We compared the following six variants of SERec with the origi-
nal SERec: (1) SERec-noPSE has no PSE component. The average
of all item KG embeddings is used as s”*". (2) SERec-noKGE has no
KGE component. The original user and item embeddings are used
as the KG embeddings. (3) SERec-noUU has no user-user edges
in K. (4) SERec-noUIIU has no user-item and item-user edges in
XK. (5) SERec-noll has no item-item edges in K. (6) SERec-HA
uses the hierarchical aggregation scheme instead of the attention
aggregation scheme. The second-level aggregation is just defined
as a linear transformation. The results are shown in Table 4.

Table 4: Performance of the variants of SERec

Gowalla Delicious Foursquare

HR@20 MRR@20 HR@20 MRR@20 HR@20 MRR@20

SERec-noPSE 50.92 23.29 47.09 20.30 68.29 31.16
SERec-noKGE 52.47 24.50 47.32 21.26 68.55 33.29

Model

SERec-noUU 53.49 25.58 48.95 21.87 69.75 34.15
SERec-noUIIU 53.50 25.56 49.13 21.92 68.82 33.58
SERec-noll 52.58 25.32 49.19 21.91 69.35 34.06
SERec-HA 53.56 25.53 49.18 21.96 69.95 34.32
SERec 53.72 25.67 49.53 21.98 70.05 34.62

Variants with either component completely removed, i.e., SERec-
noPSE and SERec-noKGE, have the worst performance, indicating
both components have a great contribution to the performance.
SERec-noPSE performs worse than SERec-noKGE, so users’ dy-
namic interests are more important than social influences. Variants
with some edges removed perform better than SERec-noKGE but
are still inferior to the complete model SERec, suggesting that it
is beneficial to incorporate the knowledge from social influences,
user-item interactions and cross-session item transitions. SERec-
HA performs worse than SERec, which proves that the proposed
attention aggregation scheme is better than the hierarchical ag-
gregation scheme because the attention aggregation scheme can
automatically choose the more reliable information source.

8 CONCLUSION

In this paper, we propose an efficient framework called SEFrame
for SSR . In the framework, a heterogeneous knowledge graph is
constructed from the social network and historical user behaviors.
Then, a heterogeneous GNN is applied to learn KG embeddings
of users and items that capture the knowledge from social con-
nections, user-item interactions and cross-session item transitions.
The KG embeddings can be fed into a SR model to provide more
accurate recommendations by leveraging the information from the
knowledge graph. Since the KG embeddings can be precomputed,
the overall SSR model can be as efficient as the original SR model
during inference while being more accurate. Apart from being effi-
cient and effective, SEFrame is also flexible because it is compatible
with any existing SR models and it can incorporate more informa-
tion other than social networks. To further prove the advantages of
SEFrame, we propose an implementation of the framework called
SERec which has a better prediction accuracy than the simple base-
lines. Finally, We prove theoretically and empirically the efficiency
of SEFrame, and we conduct extensive experiments to show the
effectiveness of SEFrame and SERec. In the future, we want to ex-
plore the usage of SEFrame in other applications of SR where more

information other than social networks are available. Besides, our
current framework has a static heterogeneous knowledge graph,
which means that it may be less effective in situations where the
intra- and inter-dependencies among users and items are constantly
evolving. We would study how to adapt our method for a more
dynamic setting.
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