k-Regret Minimizing Set
Efficient Algorithms and Hardness

Wei Cao! Jian Li' Haitao Wang? Kangning Wang?!
Ruosong Wang! Raymond Chi-Wing Wong ~ Wei Zhan!

1Tsinghua University
2Utah State University
3The Hong Kong University of Science and Technology

ICDT, 2017

18

Regret Minimizing Set (RMS)

18

Regret Minimizing Set (RMS)

18

Regret Minimizing Set (RMS)

18

Regret Minimizing Set (RMS)

[NSL*10]:

0 = max inf
IRI=r weR?d Maxpep (P, w)

maxper (p)

18

Regret Minimizing Set (RMS)

[NSL*10]:

0 = max inf

maxper (p)

IRI=r weR?d Maxpep (P, w)

18

k-Regret Minimizing Set (k-RMS)

[CTVW14]:

6 = max inf
peD

maxper (P, w)

IRi=rwerd max®) (p,w)’

/18

k-Regret Minimizing Set (k-RMS)

[CTVW14]:

6 = max inf
peD

maxper (P, w)

IRi=rwerd max®) (p,w)’

(0<1)

/18

k-Regret Minimizing Set (k-RMS)

[CTVW14]:

6 = max inf
peD

» Optimization:
Given D, r, k, find out the optimal R.

maxper (P, w)

RI=r werd max() (p,w)

(0 <1)

18

k-Regret Minimizing Set (k-RMS)

[CTVW14]:

0 = max inf —maxpeR(p,w>

= d (k) ’
IR| rweRqy maxpeD<p7w>

(0 <1)

» Optimization:

Given D, r, k, find out the optimal R.
» Decision:

Given D, r, k, decide availability of 6.

Main Results

» When d = 2:

/18

Main Results

> When d = 2:
» Dec-k-RMS in O(n+ m) with preprocessing.
(n=|D]| and m is the size of k-level set)

18

Main Results

> When d = 2:
» Dec-k-RMS in O(n+ m) with preprocessing.
(n=|D]| and m is the size of k-level set)
» k-RMS in O(n?log n).
> Previous result [CTVW14]: O(rn*k*/® + n?log n).

18

Main Results

> When d = 2:
» Dec-k-RMS in O(n+ m) with preprocessing.
(n=|D]| and m is the size of k-level set)
» k-RMS in O(n?log n).
> Previous result [CTVW14]: O(rn*k*/® + n?log n).

18

Main Results

> When d = 2:
» Dec-k-RMS in O(n+ m) with preprocessing.
(n=|D]| and m is the size of k-level set)

» k-RMS in O(n?log n).

> Previous result [CTVW14]: O(rn*k*/® + n?log n).

» RMS in expected O(nlog n).

18

Main Results

> When d = 2:
» Dec-k-RMS in O(n+ m) with preprocessing.
(n=|D]| and m is the size of k-level set)

» k-RMS in O(n?log n).

> Previous result [CTVW14]: O(rn*k*/® + n?log n).

» RMS in expected O(nlog n).

18

Main Results

> When d = 2:
» Dec-k-RMS in O(n+ m) with preprocessing.
(n=|D]| and m is the size of k-level set)

» k-RMS in O(n?log n).

> Previous result [CTVW14]: O(rn*k*/® + n?log n).

» RMS in expected O(nlog n).
» When d > 3, Dec-RMS is NP-hard.

18

Geometric View

5/18

Geometric View

5/18

Geometric View

p=(xy)
N8
fo(A) = (p,w)

=(1—=MN)x+Ay.

> k-level set (LSk)

5/18

Geometric View

p=(xy)
4
fo(A) = (p,w)
=(1—=MN)x+Ay.
> k-level set (LSk)
» Scaled k-level set (0-LSk)

5/18

Geometric View

p=(xy)
4
fo(A) = (p,w)
=(1—=MN)x+Ay.
> k-level set (LSk)
» Scaled k-level set (0-LSk)

> f-
2163% fo(X) > 6-LSk(N)

5/18

Warm-Up: Dec-RMS

» When k =1, LS; (and thus
0-LS1) is convex.

6/18

Warm-Up: Dec-RMS

» When k =1, LS; (and thus
0-LS1) is convex.

» Reduced to interval cover.

6/18

Dec-k-RMS

» Goal: Cover polygonal C(X) with a bunch of lines f,(\).

18

Dec-k-RMS

» Goal: Cover polygonal C(X) with a bunch of lines f,(\).

> Problem:
The intervals that f, covers C may be disconnected.

18

Dec-k-RMS

» Goal: Cover polygonal C(X) with a bunch of lines f,(\).

> Problem:
The intervals that f, covers C may be disconnected.

> Solution:
Greedily increment the initial covered interval [0, b].

18

Dec-k-RMS

» Suppose records are sorted:

x12...2x,20,0<y1 <. < yp.

18

Dec-k-RMS

» Suppose records are sorted:
x12...2x,20,0<y1 <. < yp.

» Then the rest covered intervals disconnected from the initial
one are useless:

18

Dec-k-RMS

» Suppose records are sorted:
x12...2x,20,0<y1 <. < yp.

» Then the rest covered intervals disconnected from the initial
one are useless:

18

Dec-k-RMS

We apply the following greedy algorithm:
> Keep selected lines R as a stack;

» Once the new line increments the initial covered interval, push
it into R;

» While pushing, pop out the redundant lines from R.

Dec-k-RMS (Example)

10/18

Dec-k-RMS (Example)

fi

10/18

Dec-k-RMS (Example)
f

f>

R: fl f2

10/18

Dec-k-RMS (Example)
f

f>
f3

10/18

Dec-k-RMS (Example)
f

f2
f3

fa

R: b 3 f4

10/18

Dec-k-RMS (Example)
f

f2
f3

R: fh 3 £

10/18

Dec-k-RMS (Example)
f

f2
f3

SGh mh

roa
R: fh 3 5 f

10/18

Dec-k-RMS (Data Structure)

» b; = the value of b when f; is pushed in.

11/18

Dec-k-RMS (Data Structure)

» b; = the value of b when f; is pushed in.

» Suppose at a moment R = (fi, ..., f;); then we store the
convex hull of C()) for A € [b;,, bj, ,].

11/18

Dec-k-RMS (Data Structure)

» b; = the value of b when f; is pushed in.

» Suppose at a moment R = (fi, ..., f;); then we store the
convex hull of C()) for A € [b;,, bj, ,].

» The stack of convex hulls need to support the following
operations:

11/18

Dec-k-RMS (Data Structure)

» b; = the value of b when f; is pushed in.
» Suppose at a moment R = (fi, ..., f;); then we store the
convex hull of C()) for A € [b;,, bj, ,].
» The stack of convex hulls need to support the following
operations:
Create

11/18

Dec-k-RMS (Data Structure)

» b; = the value of b when f; is pushed in.
» Suppose at a moment R = (fi, ..., f;); then we store the
convex hull of C()) for A € [b;,, bj, ,].
» The stack of convex hulls need to support the following
operations:
Test coverage

11/18

Dec-k-RMS (Data Structure)

» b; = the value of b when f; is pushed in.
» Suppose at a moment R = (fi, ..., f;); then we store the
convex hull of C()) for A € [b;,, bj, ,].
» The stack of convex hulls need to support the following
operations:
Merge

11/18

Dec-k-RMS (Time Analysis)

» m: the size of (number of segments in) LS.

12/18

Dec-k-RMS (Time Analysis)

» m: the size of (number of segments in) LS.

» Calculate LS,: O(nlog m+ mlog!*® k) ([Cha99]);

12/18

Dec-k-RMS (Time Analysis)

» m: the size of (number of segments in) LS.
> Calculate LSy: O(nlog m + mlog'*? k) ([Cha99)]);

» Sort the lines: O(nlog n);

12/18

Dec-k-RMS (Time Analysis)

» m: the size of (number of segments in) LS.

Calculate LSy: O(nlog m + mlogt*? k) ([Cha99]);

v

v

Sort the lines: O(nlog n);

v

Maintain the stack of convex hulls: O(n + m).

12/18

k-RMS

» Goal: binary search over 6, and call the algorithm of
Dec-k-RMS.

13/18

k-RMS

» Goal: binary search over 6, and call the algorithm of
Dec-k-RMS.

» All possible values of 6:

Cand(D) := {Lfg;f?))\) |peD,)Xe X(D)})

13/18

k-RMS

» Goal: binary search over 6, and call the algorithm of
Dec-k-RMS.

» All possible values of 6:

Cand(D) := {Lfg;f?))\) |peD,\e X(D)} .

» Problem: |Cand(D)| can be as large as ©(n?).

13/18

k-RMS

v

Goal: binary search over 6, and call the algorithm of
Dec-k-RMS.

All possible values of 8:

v

Cand(D) := {Lfg;f?))\) |peD,\e X(D)} .

v

Problem: |Cand(D)| can be as large as ©(n?).

Solution: Implicitly store |Cand(D)| using sweep line over
X(D).

v

13/18

k-RMS

» We can access jj-th largest f,(\) for each A € X(D) once in
|X(D)| = O(n?) time.

14 /18

k-RMS

» We can access jj-th largest f,(\) for each A € X(D) once in
|X(D)| = O(n?) time.

» Maintain a search range for every A € X(D). Half of them are
reduced by half in each round.

14 /18

k-RMS

» We can access jj-th largest f,(\) for each A € X(D) once in
|X(D)| = O(n?) time.

» Maintain a search range for every A € X (D). Half of them are
reduced by half in each round.

A e X(D)

Do
14/18

k-RMS
» We can access jj-th largest f,(\) for each A € X(D) once in
|X(D)| = O(n?) time.

» Maintain a search range for every A € X(D). Half of them are
reduced by half in each round.

A e X(D)

k-RMS
» We can access jj-th largest f,(\) for each A € X(D) once in
|X(D)| = O(n?) time.

» Maintain a search range for every A € X(D). Half of them are
reduced by half in each round.

A e X(D)

k-RMS

» Using weighted median, we can ensure a stable
1/4-reduction of candidate values.

15/18

k-RMS

» Using weighted median, we can ensure a stable
1/4-reduction of candidate values.

» O(n?) time each round, O(log n) rounds.

» O(nlog m+ mlog**® k) = o(n?) preprocessing.

15/18

RMS

> All possible values of :

Cand(D) := {LfS(()) | p,q €D, fp,(A) =f ()\)}

correspond to intersection points.

16 /18

RMS

> All possible values of :

Cand(D) := {LfS(()) | p,q €D, fp,(A) =f ()\)}

correspond to intersection points.

» For a search range [0, 01], the candidate values could not be
listed, but could be random accessed.

16

18

RMS

> All possible values of :

Cand(D) = { L’;((A)) Ip.aeD, f(\) = fq()\)}

correspond to intersection points.

» For a search range [0, 01], the candidate values could not be
listed, but could be random accessed.

» O(nlog n) time for n random sampling each round, expected
O(1) round.

16

18

RMS

Traverse the O(n) endpoints on the boundary in counterclockwise:
X y

17/18

RMS

Traverse the O(n) endpoints on the boundary in counterclockwise:
X y

17/18

RMS

Traverse the O(n) endpoints on the boundary in counterclockwise:
X y

17/18

RMS

Traverse the O(n) endpoints on the boundary in counterclockwise:
X y

17/18

RMS

Traverse the O(n) endpoints on the boundary in counterclockwise:
X y

17/18

3D Dec-RMS is NP-hard

» Observation: If a spherical triangle
AABC contains the circumcenter P, then
{A, B, C} has fixed regret ratio in respect
to P:

1-0=1—cosa.

— /]

18/18

3D Dec-RMS is NP-hard

» Observation: If a spherical triangle
AABC contains the circumcenter P, then
{A, B, C} has fixed regret ratio in respect
to P:

1-0=1—cosa.

» So for 6 ~ cos «, one either choose P or
choose ABC.

— /]

18/18

3D Dec-RMS is NP-hard

» Observation: If a spherical triangle
AABC contains the circumcenter P, then
{A, B, C} has fixed regret ratio in respect — N/
to P:
1-60=1-—cosa.
» So for 6 ~ cos «, one either choose P or
choose ABC.

» Reduced to Vertex Cover on a highly
constraint class of planar graphs, which
we project to the sphere surface.

18/18

[Timothy M Chan.
Remarks on k-level algorithms in the plane.
Manuscript, Department of Computer Science, University of
Waterloo, Waterloo, Canada, 1999.

@ Sean Chester, Alex Thomo, S Venkatesh, and Sue Whitesides.
Computing k-regret minimizing sets.
Proceedings of VLDB, 7(5), 2014.

@ Danupon Nanongkai, Atish Das Sarma, Ashwin Lall, Richard J
Lipton, and Jun Xu.
Regret-minimizing representative databases.
Proceedings of the VLDB Endowment, 3(1-2):1114-1124,
2010.

18/18

	Introduction
	2-Dimensional Algorithms

