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[CTVW14]:
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k-Regret Minimizing Set (k-RMS)

[CTVW14]:

0 = max inf —maxpeR(p,w>

= d (k) ’
IR| rweRqy maxpeD<p7w>

(0 <1)

» Optimization:

Given D, r, k, find out the optimal R.
» Decision:

Given D, r, k, decide availability of 6.
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Main Results

> When d = 2:
» Dec-k-RMS in O(n+ m) with preprocessing.
(n=|D]| and m is the size of k-level set)

» k-RMS in O(n?log n).

> Previous result [CTVW14]: O(rn*k*/® + n?log n).

» RMS in expected O(nlog n).
» When d > 3, Dec-RMS is NP-hard.
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Geometric View

p=(xy)
4
fo(A) = (p,w)
=(1—=MN)x+Ay.
> k-level set (LSk)
» Scaled k-level set (0-LSk)

> f-
2163% fo(X) > 6-LSk(N)
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Warm-Up: Dec-RMS

» When k =1, LS; (and thus
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Warm-Up: Dec-RMS

» When k =1, LS; (and thus
0-LS1) is convex.

» Reduced to interval cover.
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Dec-k-RMS

» Goal: Cover polygonal C(X) with a bunch of lines f,(\).
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Dec-k-RMS

» Goal: Cover polygonal C(X) with a bunch of lines f,(\).

> Problem:
The intervals that f, covers C may be disconnected.

> Solution:
Greedily increment the initial covered interval [0, b].
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» Suppose records are sorted:

x12...2x,20,0<y1 <. < yp.
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Dec-k-RMS

We apply the following greedy algorithm:
> Keep selected lines R as a stack;

» Once the new line increments the initial covered interval, push
it into R;

» While pushing, pop out the redundant lines from R.
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» b; = the value of b when f; is pushed in.
» Suppose at a moment R = (fi, ..., f;); then we store the
convex hull of C()) for A € [b;,, bj, ,].
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Dec-k-RMS (Data Structure)

» b; = the value of b when f; is pushed in.
» Suppose at a moment R = (fi, ..., f;); then we store the
convex hull of C()) for A € [b;,, bj, ,].
» The stack of convex hulls need to support the following
operations:
Merge
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Dec-k-RMS (Time Analysis)

» m: the size of (number of segments in) LS.

Calculate LSy: O(nlog m + mlogt*? k) ([Cha99]);

v

v

Sort the lines: O(nlog n);

v

Maintain the stack of convex hulls: O(n + m).
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k-RMS

v

Goal: binary search over 6, and call the algorithm of
Dec-k-RMS.

All possible values of 8:

v

Cand(D) := {Lfg;f?))\) |peD,\e X(D)} .

v

Problem: |Cand(D)| can be as large as ©(n?).

Solution: Implicitly store |Cand(D)| using sweep line over
X(D).

v
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k-RMS

» We can access jj-th largest f,(\) for each A € X(D) once in
|X(D)| = O(n?) time.
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» Maintain a search range for every A € X(D). Half of them are
reduced by half in each round.

A e X(D)



k-RMS

» Using weighted median, we can ensure a stable
1/4-reduction of candidate values.
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k-RMS

» Using weighted median, we can ensure a stable
1/4-reduction of candidate values.

» O(n?) time each round, O(log n) rounds.

» O(nlog m+ mlog**® k) = o(n?) preprocessing.
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RMS
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> All possible values of :
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correspond to intersection points.

» For a search range [0, 01], the candidate values could not be
listed, but could be random accessed.
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RMS

> All possible values of :

Cand(D) = { L’;((A)) Ip.aeD, f(\) = fq()\)}

correspond to intersection points.

» For a search range [0, 01], the candidate values could not be
listed, but could be random accessed.

» O(nlog n) time for n random sampling each round, expected
O(1) round.
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3D Dec-RMS is NP-hard

» Observation: If a spherical triangle
AABC contains the circumcenter P, then
{A, B, C} has fixed regret ratio in respect
to P:

1-0=1—cosa.
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3D Dec-RMS is NP-hard

» Observation: If a spherical triangle
AABC contains the circumcenter P, then
{A, B, C} has fixed regret ratio in respect — N/
to P:
1-60=1-—cosa.
» So for 6 ~ cos «, one either choose P or
choose ABC.

» Reduced to Vertex Cover on a highly
constraint class of planar graphs, which
we project to the sphere surface.
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