k-Regret Minimizing Set Efficient Algorithms and Hardness

Wei Cao¹ Jian Li¹ Haitao Wang² Kangning Wang¹ Ruosong Wang¹ Raymond Chi-Wing Wong Wei Zhan¹

 $$^{1}\rm{Tsinghua}$$ University $$^{2}\rm{Utah}$$ State University $^{3}\rm{The}$ Hong Kong University of Science and Technology

ICDT, 2017

$$\begin{split} & [\mathsf{NSL}^+10] \\ & \theta = \max_{|R|=r} \inf_{\omega \in \mathbb{R}^d_+} \frac{\max_{p \in R} \langle p, \omega \rangle}{\max_{p \in D} \langle p, \omega \rangle} \end{split}$$

[NSL⁺10]:

$$\theta = \max_{|R|=r} \inf_{\omega \in \mathbb{R}^d_+} \frac{\max_{p \in R} \langle p, \omega \rangle}{\max_{p \in D} \langle p, \omega \rangle}$$

[CTVW14]:

$$\theta = \max_{|R|=r} \inf_{\omega \in \mathbb{R}^d_+} \frac{\max_{p \in R} \langle p, \omega \rangle}{\max_{p \in D}^{(k)} \langle p, \omega \rangle}.$$

[CTVW14]:

$$\theta = \max_{|R|=r} \inf_{\omega \in \mathbb{R}^d_+} \frac{\max_{p \in R} \langle p, \omega \rangle}{\max_{p \in D}^{(k)} \langle p, \omega \rangle}. \quad (\theta \le 1)$$

[CTVW14]:

$$\theta = \max_{|R|=r} \inf_{\omega \in \mathbb{R}^d_+} \frac{\max_{p \in R} \langle p, \omega \rangle}{\max_{p \in D}^{(k)} \langle p, \omega \rangle}. \quad (\theta \le 1)$$

Optimization:

Given D, r, k, find out the optimal R.

[CTVW14]:

$$\theta = \max_{|R|=r} \inf_{\omega \in \mathbb{R}^d_+} \frac{\max_{p \in R} \langle p, \omega \rangle}{\max_{p \in D}^{(k)} \langle p, \omega \rangle}. \quad (\theta \le 1)$$

- Optimization: Given D, r, k, find out the optimal R.
- ▶ **Decision**: Given D, r, k, decide availability of θ .

▶ When d = 2:

- ▶ When d = 2:
 - ▶ Dec-k-RMS in O(n + m) with preprocessing. (n = |D| and m is the size of k-level set)

- ▶ When d = 2:
 - ▶ Dec-*k*-RMS in O(n + m) with preprocessing. (n = |D| and m is the size of k-level set)
 - ▶ k-RMS in $O(n^2 \log n)$.
 - Previous result [CTVW14]: $O(rn^2k^{1/3} + n^2 \log n)$.

- ▶ When d = 2:
 - ▶ Dec-*k*-RMS in O(n + m) with preprocessing. (n = |D| and m is the size of k-level set)
 - ▶ k-RMS in $O(n^2 \log n)$.
 - Previous result [CTVW14]: $O(rn^2k^{1/3} + n^2 \log n)$.

- ▶ When d = 2:
 - ▶ Dec-k-RMS in O(n + m) with preprocessing. (n = |D| and m is the size of k-level set)
 - ▶ k-RMS in $O(n^2 \log n)$.
 - Previous result [CTVW14]: $O(rn^2k^{1/3} + n^2 \log n)$.
 - ▶ RMS in expected $O(n \log n)$.

- ▶ When d = 2:
 - ▶ Dec-k-RMS in O(n + m) with preprocessing. (n = |D| and m is the size of k-level set)
 - ▶ k-RMS in $O(n^2 \log n)$.
 - Previous result [CTVW14]: $O(rn^2k^{1/3} + n^2 \log n)$.
 - ▶ RMS in expected $O(n \log n)$.

- ▶ When d = 2:
 - ▶ Dec-k-RMS in O(n + m) with preprocessing. (n = |D| and m is the size of k-level set)
 - ▶ k-RMS in $O(n^2 \log n)$.
 - Previous result [CTVW14]: $O(rn^2k^{1/3} + n^2 \log n)$.
 - ▶ RMS in expected $O(n \log n)$.
- ▶ When $d \ge 3$, Dec-RMS is NP-hard.

$$p = (x, y)$$

$$\downarrow \downarrow$$

$$f_p(\lambda) = \langle p, \omega \rangle$$

$$= (1 - \lambda)x + \lambda y.$$

$$p = (x, y)$$

$$\downarrow \downarrow$$

$$f_p(\lambda) = \langle p, \omega \rangle$$

$$= (1 - \lambda)x + \lambda y.$$

$$p = (x, y)$$

$$\downarrow \downarrow$$

$$f_p(\lambda) = \langle p, \omega \rangle$$

$$= (1 - \lambda)x + \lambda y.$$

► k-level set (LS_k)

$$p = (x, y)$$

$$\downarrow \downarrow$$

$$f_p(\lambda) = \langle p, \omega \rangle$$

$$= (1 - \lambda)x + \lambda y.$$

- ► *k*-level set (*LS_k*)
- ▶ Scaled k-level set $(\theta$ - $LS_k)$

$$p = (x, y)$$

$$\downarrow \downarrow$$

$$f_p(\lambda) = \langle p, \omega \rangle$$

$$= (1 - \lambda)x + \lambda y.$$

- ► k-level set (LS_k)
- ▶ Scaled k-level set $(\theta$ - $LS_k)$

$$\max_{p \in R} f_p(\lambda) \ge \theta \text{-} LS_k(\lambda)$$

Warm-Up: Dec-RMS

When k = 1, LS_1 (and thus θ - LS_1) is convex.

Warm-Up: Dec-RMS

- When k = 1, LS_1 (and thus θ - LS_1) is convex.
- Reduced to interval cover.

▶ **Goal**: Cover polygonal $C(\lambda)$ with a bunch of lines $f_p(\lambda)$.

- ▶ **Goal**: Cover polygonal $C(\lambda)$ with a bunch of lines $f_p(\lambda)$.
- ► Problem:

The intervals that f_p covers C may be disconnected.

- ▶ **Goal**: Cover polygonal $C(\lambda)$ with a bunch of lines $f_p(\lambda)$.
- ▶ Problem: The intervals that f_p covers C may be disconnected.
- ► **Solution**: Greedily increment the initial covered interval [0, *b*].

Suppose records are sorted:

$$x_1 \geq \ldots \geq x_n \geq 0, 0 \leq y_1 \leq \ldots \leq y_n.$$

Suppose records are sorted:

$$x_1 \geq \ldots \geq x_n \geq 0, 0 \leq y_1 \leq \ldots \leq y_n.$$

► Then the rest covered intervals disconnected from the initial one are *useless*:

Suppose records are sorted:

$$x_1 \geq \ldots \geq x_n \geq 0, 0 \leq y_1 \leq \ldots \leq y_n.$$

► Then the rest covered intervals disconnected from the initial one are *useless*:

We apply the following greedy algorithm:

- Keep selected lines R as a stack;
- ➤ Once the new line increments the initial covered interval, push it into R;
- ▶ While pushing, pop out the redundant lines from *R*.

R :

 $R: f_1$

 $R: f_2 f_3$

Dec-k-RMS (Example)

 $R: f_2 \ f_3 \ f_5$

Dec-k-RMS (Example)

▶ b_i = the value of b when f_i is pushed in.

- ▶ b_i = the value of b when f_i is pushed in.
- Suppose at a moment $R = (f_{i_1}, \dots, f_{i_r})$; then we store the **convex hull** of $C(\lambda)$ for $\lambda \in [b_{i_\ell}, b_{i_{\ell+1}}]$.

- ▶ b_i = the value of b when f_i is pushed in.
- ▶ Suppose at a moment $R = (f_{i_1}, ..., f_{i_r})$; then we store the **convex hull** of $C(\lambda)$ for $\lambda \in [b_{i_\ell}, b_{i_{\ell+1}}]$.
- The stack of convex hulls need to support the following operations:

- ▶ b_i = the value of b when f_i is pushed in.
- ▶ Suppose at a moment $R = (f_{i_1}, ..., f_{i_r})$; then we store the **convex hull** of $C(\lambda)$ for $\lambda \in [b_{i_\ell}, b_{i_{\ell+1}}]$.
- ► The stack of convex hulls need to support the following operations:

Create

- ▶ b_i = the value of b when f_i is pushed in.
- ▶ Suppose at a moment $R = (f_{i_1}, ..., f_{i_r})$; then we store the **convex hull** of $C(\lambda)$ for $\lambda \in [b_{i_\ell}, b_{i_{\ell+1}}]$.
- ► The stack of convex hulls need to support the following operations:

Test coverage

- $ightharpoonup b_i = ext{the value of } b ext{ when } f_i ext{ is pushed in.}$
- ▶ Suppose at a moment $R = (f_{i_1}, ..., f_{i_r})$; then we store the **convex hull** of $C(\lambda)$ for $\lambda \in [b_{i_\ell}, b_{i_{\ell+1}}]$.
- The stack of convex hulls need to support the following operations:

Merge

• m: the size of (number of segments in) LS_k .

- m: the size of (number of segments in) LS_k .
- ► Calculate LS_k : $O(n \log m + m \log^{1+\delta} k)$ ([Cha99]);

- m: the size of (number of segments in) LS_k .
- ► Calculate LS_k : $O(n \log m + m \log^{1+\delta} k)$ ([Cha99]);
- ▶ Sort the lines: $O(n \log n)$;

- m: the size of (number of segments in) LS_k .
- ► Calculate LS_k : $O(n \log m + m \log^{1+\delta} k)$ ([Cha99]);
- ▶ Sort the lines: $O(n \log n)$;
- ▶ Maintain the stack of convex hulls: O(n + m).

▶ **Goal**: binary search over θ , and call the algorithm of Dec-k-RMS.

- Goal: binary search over θ, and call the algorithm of Dec-k-RMS.
- ▶ All possible values of θ :

$$Cand(D) := \left\{ \frac{f_p(\lambda)}{LS_k(\lambda)} \mid p \in D, \lambda \in X(D) \right\}.$$

- Goal: binary search over θ, and call the algorithm of Dec-k-RMS.
- ▶ All possible values of θ :

$$Cand(D) := \left\{ \frac{f_p(\lambda)}{LS_k(\lambda)} \mid p \in D, \lambda \in X(D) \right\}.$$

▶ **Problem**: |Cand(D)| can be as large as $\Theta(n^3)$.

- Goal: binary search over θ, and call the algorithm of Dec-k-RMS.
- ▶ All possible values of θ :

$$Cand(D) := \left\{ \frac{f_p(\lambda)}{LS_k(\lambda)} \mid p \in D, \lambda \in X(D) \right\}.$$

- ▶ **Problem**: |Cand(D)| can be as large as $\Theta(n^3)$.
- ▶ **Solution**: Implicitly store |Cand(D)| using *sweep line* over X(D).

▶ We can access j_{λ} -th largest $f_p(\lambda)$ for each $\lambda \in X(D)$ once in $|X(D)| = O(n^2)$ time.

- ▶ We can access j_{λ} -th largest $f_p(\lambda)$ for each $\lambda \in X(D)$ once in $|X(D)| = O(n^2)$ time.
- ▶ Maintain a search range for every $\lambda \in X(D)$. Half of them are reduced by half in each round.

- ▶ We can access j_{λ} -th largest $f_p(\lambda)$ for each $\lambda \in X(D)$ once in $|X(D)| = O(n^2)$ time.
- ▶ Maintain a search range for every $\lambda \in X(D)$. Half of them are reduced by half in each round.

$$\lambda \in X(D)$$

- ▶ We can access j_{λ} -th largest $f_p(\lambda)$ for each $\lambda \in X(D)$ once in $|X(D)| = O(n^2)$ time.
- ▶ Maintain a search range for every $\lambda \in X(D)$. Half of them are reduced by half in each round.

$$\lambda \in X(D)$$

- ▶ We can access j_{λ} -th largest $f_p(\lambda)$ for each $\lambda \in X(D)$ once in $|X(D)| = O(n^2)$ time.
- ▶ Maintain a search range for every $\lambda \in X(D)$. Half of them are reduced by half in each round.

$$\lambda \in X(D)$$

► Using **weighted median**, we can ensure a stable 1/4-reduction of candidate values.

- ► Using **weighted median**, we can ensure a stable 1/4-reduction of candidate values.
- ▶ $O(n^2)$ time each round, $O(\log n)$ rounds.
- $O(n \log m + m \log^{1+\delta} k) = o(n^2)$ preprocessing.

▶ All possible values of θ :

$$extstyle extstyle ext$$

correspond to intersection points.

▶ All possible values of θ :

$$extstyle extstyle ext$$

correspond to intersection points.

▶ For a search range $[\theta_0, \theta_1]$, the candidate values could not be **listed**, but could be **random accessed**.

▶ All possible values of θ :

$$extstyle extstyle ext$$

correspond to intersection points.

- ▶ For a search range $[\theta_0, \theta_1]$, the candidate values could not be **listed**, but could be **random accessed**.
- ▶ $O(n \log n)$ time for n random sampling each round, expected O(1) round.

3D Dec-RMS is NP-hard

▶ Observation: If a spherical triangle △ABC contains the circumcenter P, then {A, B, C} has fixed regret ratio in respect to P:

$$1-\theta=1-\cos\alpha.$$

3D Dec-RMS is NP-hard

▶ Observation: If a spherical triangle ∆ABC contains the circumcenter P, then {A, B, C} has fixed regret ratio in respect to P:

$$1 - \theta = 1 - \cos \alpha.$$

▶ So for $\theta \approx \cos \alpha$, one either choose *P* or choose *ABC*.

3D Dec-RMS is NP-hard

▶ Observation: If a spherical triangle ∆ABC contains the circumcenter P, then {A, B, C} has fixed regret ratio in respect to P:

$$1 - \theta = 1 - \cos \alpha.$$

- ▶ So for $\theta \approx \cos \alpha$, one either choose *P* or choose *ABC*.
- Reduced to Vertex Cover on a highly constraint class of planar graphs, which we project to the sphere surface.

Remarks on k-level algorithms in the plane.

Manuscript, Department of Computer Science, University of Waterloo, Waterloo, Canada, 1999.

Sean Chester, Alex Thomo, S Venkatesh, and Sue Whitesides. Computing k-regret minimizing sets.

Proceedings of VLDB, 7(5), 2014.

Danupon Nanongkai, Atish Das Sarma, Ashwin Lall, Richard J Lipton, and Jun Xu.

Regret-minimizing representative databases.

Proceedings of the VLDB Endowment, 3(1-2):1114–1124, 2010.